
IS ABSTRACTION THE KEY
TO COMPUTING?

Why is it that some software engineers and computer scientists are 
able to produce clear, elegant designs and programs, while others cannot? 

Is it possible to improve these skills through education and training? 
Critical to these questions is the notion of abstraction.

For over 30 years, I have been involved in teaching 
and research in computer science and software engineering.
My teaching experience ranges from courses in programming,
to distributed systems, distributed algorithms, concurrency,
and software design. All these courses require that students are
able to perform problem solving, conceptualization, modeling,
and analysis. My experience is that the better 
students are clearly able to handle complexity and to produce
elegant models and designs. The same students are also able 
to cope with the complexities of distributed algorithms, the
applicability of various modeling notations, and other 
subtle issues.

By JEFF KRAMER

36 April  2007/Vol. 50, No. 4 COMMUNICATIONS OF THE ACM COMMUNICATIONS OF THE ACM April  2007/Vol. 50, No. 4 37

 



Henri Matisse manages to clearly represent the
essence of his subject, a naked woman, using only
simple lines or cutouts. His representation removes
all detail yet conveys much. In his painting “South
Wind, Clear Skies” (Red Fuji), Katsushika Hokusai
captures Mount Fuji (see Figure 2). Art critic
(Gabrielle Farran) remarks that he uses a “perfect
balance of colour and composition rendering an
abstract form of the mountain to capture its
essence.” Another example is from jazz, where musi-
cians identify the essential melody or heart of the
particular piece of music, and improvise around that
to provide their own embellishments. One jazz
musician provided the follow-
ing apposite remark, “It is
easy to make something sim-
ple sound complex, however
it is more difficult to make
something complex sound
simple.” This difficulty is a
clear example of the challenge
in the application of abstrac-
tion in removing extraneous
detail.

A wonderful example of the
utility of abstraction is pro-
vided by the contribution of
Harry Beck to the renowned
London Underground map. In
1928, the map was essentially
an overlay of the underground
system onto a conventional
geographical map of London
(see Figure 3a). It showed the
curves of the train lines and of
the River Thames, and the rel-
ative distances between the
stations. In 1931, Beck pro-
duced the first abstract,
schematic representation, simplifying the curves to
just horizontal, vertical and diagonal lines and where
the distances between stations were no longer propor-
tional to the geographical distances (see Figure 3b). 

This form of simplified representation or abstrac-
tion is ideally fit for the purpose of navigating around
the London Underground. Not only is this transit
abstraction still used today, it has been adopted by
transportation agencies in numerous countries.
Indeed, the level of abstraction had to be carefully
selected so as to include only the required details but
neglect the unnecessary—too abstract and the map
would not provide sufficient information for the pur-
pose; too detailed and the map becomes confusing
and less comprehensible. Like any abstraction, it can

be misleading if used for other purposes. The under-
ground map is sometimes misused by tourists who
misinterpret it as an actual geographical map of Lon-
don. The level, benefit, and value of a particular
abstraction depend on its purpose. 

Why is abstraction important in computer science
and software engineering? Software itself is certainly
abstract, and the discipline of producing software
requires abstraction skills. Keith Devlin [2] states the
case clearly and concisely, “Once you realize that com-
puting is all about constructing, manipulating, and
reasoning about abstractions, it becomes clear that an
important prerequisite for writing (good) computer

programs is the ability to handle abstractions in a pre-
cise manner.” Wing [11] confirms the importance of
abstraction in computational thinking by emphasiz-
ing the need to think at multiple levels of abstraction.
Ghezzi et al. [4] identify abstraction as one of the fun-
damental principles of software engineering in order
to master complexity. The removal of unnecessary
detail is obvious in requirements engineering and
software design. 

Requirements elicitation involves identifying the
critical aspects of the environment and the required
system while neglecting the irrelevant. Design
requires that one avoid unnecessary implementation
constraints. For instance, in compiler design, one
often employs an abstract syntax to focus on the
essential features of the language constructs, and
designs the compiler to produce intermediate code for
an idealized abstract machine to retain flexibility and
avoid unnecessary machine dependence. The general-
ization aspect of abstraction can be clearly seen in pro-
gramming with the use of data abstractions and

COMMUNICATIONS OF THE ACM April  2007/Vol. 50, No. 4 3938 April  2007/Vol. 50, No. 4 COMMUNICATIONS OF THE ACM

On the other hand, there
are a number of students
who are not so able. They
tend to find distributed algo-
rithms very difficult, do not
appreciate the utility of mod-
eling, find it difficult to iden-
tify what is important in a
problem, and produce convo-
luted solutions that replicate
the problem complexities.
Why? What is it that makes
the good students so able?
What is lacking in the weaker
ones? Is it some aspect of intel-
ligence? I believe the key lies in
abstraction: The ability to per-
form abstract thinking and to
exhibit abstraction skills.

The rest of this article
explores this hypothesis and
makes recommendations for
future work. We first discuss
what abstraction is and its
role in computing and other
disciplines. Others, such as
Hazzan [5] and Devlin [2]
have also discussed abstrac-
tion as a core skill in mathe-
matics and computing.
Using findings from cogni-
tive development, we explore
the factors affecting students’
ability to cope with and per-
form abstraction. We discuss
whether or not abstraction is
teachable and suggest that
steps must be taken to test
abstraction skills as a means
of validating our hypothesis,
checking our teaching tech-
niques and even, perhaps,
selecting our students. 

ABSTRACTION: WHAT IS IT? WHY IS IT SO IMPORTANT?
From the definitions of abstraction [10], we focus
on two particularly pertinent aspects.1 The first
emphasizes the process of removing detail to sim-
plify and focus attention based on the definitions:

• The act of withdrawing or removing something,
and;

• The act or process of leaving out of consideration
one or more properties of a complex object so as
to attend to others.

The second emphasizes the process of generalization
to identify the common core or essence based on the
definitions:

• The process of formulating general concepts by
abstracting common properties of instances, and; 

• A general concept formed by extracting common
features from specific examples. 

Abstraction is widely used in other disciplines such
as art and music. For instance, as shown in Figure 1,

Figure 1. Henri Matisse,
“Naked Blue IV,” 1952; 

paper cutouts.

Figure 2.  Katsushika 
Hokusai, “South Wind,

Clear Sky (Gaif˚ kaisei) or
“Red Fuji,” a color 

woodblock print, Japan, 
AD 1830–33. 

1See [3] for an interesting discussion on the faces of abstraction.©
Su

cc
es

sio
n

H
.

M
at

iss
e/

D
A

C
S

20
05

©
T

he
T

ru
st

ee
s

of
th

e
B

rit
ish

M
us

eu
m



Henri Matisse manages to clearly represent the
essence of his subject, a naked woman, using only
simple lines or cutouts. His representation removes
all detail yet conveys much. In his painting “South
Wind, Clear Skies” (Red Fuji), Katsushika Hokusai
captures Mount Fuji (see Figure 2). Art critic
(Gabrielle Farran) remarks that he uses a “perfect
balance of colour and composition rendering an
abstract form of the mountain to capture its
essence.” Another example is from jazz, where musi-
cians identify the essential melody or heart of the
particular piece of music, and improvise around that
to provide their own embellishments. One jazz
musician provided the follow-
ing apposite remark, “It is
easy to make something sim-
ple sound complex, however
it is more difficult to make
something complex sound
simple.” This difficulty is a
clear example of the challenge
in the application of abstrac-
tion in removing extraneous
detail.

A wonderful example of the
utility of abstraction is pro-
vided by the contribution of
Harry Beck to the renowned
London Underground map. In
1928, the map was essentially
an overlay of the underground
system onto a conventional
geographical map of London
(see Figure 3a). It showed the
curves of the train lines and of
the River Thames, and the rel-
ative distances between the
stations. In 1931, Beck pro-
duced the first abstract,
schematic representation, simplifying the curves to
just horizontal, vertical and diagonal lines and where
the distances between stations were no longer propor-
tional to the geographical distances (see Figure 3b). 

This form of simplified representation or abstrac-
tion is ideally fit for the purpose of navigating around
the London Underground. Not only is this transit
abstraction still used today, it has been adopted by
transportation agencies in numerous countries.
Indeed, the level of abstraction had to be carefully
selected so as to include only the required details but
neglect the unnecessary—too abstract and the map
would not provide sufficient information for the pur-
pose; too detailed and the map becomes confusing
and less comprehensible. Like any abstraction, it can

be misleading if used for other purposes. The under-
ground map is sometimes misused by tourists who
misinterpret it as an actual geographical map of Lon-
don. The level, benefit, and value of a particular
abstraction depend on its purpose. 

Why is abstraction important in computer science
and software engineering? Software itself is certainly
abstract, and the discipline of producing software
requires abstraction skills. Keith Devlin [2] states the
case clearly and concisely, “Once you realize that com-
puting is all about constructing, manipulating, and
reasoning about abstractions, it becomes clear that an
important prerequisite for writing (good) computer

programs is the ability to handle abstractions in a pre-
cise manner.” Wing [11] confirms the importance of
abstraction in computational thinking by emphasiz-
ing the need to think at multiple levels of abstraction.
Ghezzi et al. [4] identify abstraction as one of the fun-
damental principles of software engineering in order
to master complexity. The removal of unnecessary
detail is obvious in requirements engineering and
software design. 

Requirements elicitation involves identifying the
critical aspects of the environment and the required
system while neglecting the irrelevant. Design
requires that one avoid unnecessary implementation
constraints. For instance, in compiler design, one
often employs an abstract syntax to focus on the
essential features of the language constructs, and
designs the compiler to produce intermediate code for
an idealized abstract machine to retain flexibility and
avoid unnecessary machine dependence. The general-
ization aspect of abstraction can be clearly seen in pro-
gramming with the use of data abstractions and

COMMUNICATIONS OF THE ACM April  2007/Vol. 50, No. 4 3938 April  2007/Vol. 50, No. 4 COMMUNICATIONS OF THE ACM

On the other hand, there
are a number of students
who are not so able. They
tend to find distributed algo-
rithms very difficult, do not
appreciate the utility of mod-
eling, find it difficult to iden-
tify what is important in a
problem, and produce convo-
luted solutions that replicate
the problem complexities.
Why? What is it that makes
the good students so able?
What is lacking in the weaker
ones? Is it some aspect of intel-
ligence? I believe the key lies in
abstraction: The ability to per-
form abstract thinking and to
exhibit abstraction skills.

The rest of this article
explores this hypothesis and
makes recommendations for
future work. We first discuss
what abstraction is and its
role in computing and other
disciplines. Others, such as
Hazzan [5] and Devlin [2]
have also discussed abstrac-
tion as a core skill in mathe-
matics and computing.
Using findings from cogni-
tive development, we explore
the factors affecting students’
ability to cope with and per-
form abstraction. We discuss
whether or not abstraction is
teachable and suggest that
steps must be taken to test
abstraction skills as a means
of validating our hypothesis,
checking our teaching tech-
niques and even, perhaps,
selecting our students. 

ABSTRACTION: WHAT IS IT? WHY IS IT SO IMPORTANT?
From the definitions of abstraction [10], we focus
on two particularly pertinent aspects.1 The first
emphasizes the process of removing detail to sim-
plify and focus attention based on the definitions:

• The act of withdrawing or removing something,
and;

• The act or process of leaving out of consideration
one or more properties of a complex object so as
to attend to others.

The second emphasizes the process of generalization
to identify the common core or essence based on the
definitions:

• The process of formulating general concepts by
abstracting common properties of instances, and; 

• A general concept formed by extracting common
features from specific examples. 

Abstraction is widely used in other disciplines such
as art and music. For instance, as shown in Figure 1,

Figure 1. Henri Matisse,
“Naked Blue IV,” 1952; 

paper cutouts.

Figure 2.  Katsushika 
Hokusai, “South Wind,

Clear Sky (Gaif˚ kaisei) or
“Red Fuji,” a color 

woodblock print, Japan, 
AD 1830–33. 

1See [3] for an interesting discussion on the faces of abstraction.©
Su

cc
es

sio
n

H
.

M
at

iss
e/

D
A

C
S

20
05

©
T

he
T

ru
st

ee
s

of
th

e
B

rit
ish

M
us

eu
m



classes in object-oriented programming. Abstract
interpretation for program analysis is another exam-
ple of generalization, where the concrete program
domain is mapped to an abstract domain to capture
the semantics of the computation for program 
analysis. 

Abstraction skills are essential in the construction
of appropriate models, designs, and implementations
that are fit for the particular purpose at hand. Abstract
thinking is essential for manipulating and reasoning
about abstractions, be they formal models for analysis
or programs in a programming language. 

In fact, abstraction is fun-
damental to mathematics
and engineering in general,
playing a critical part in the
production of models for
analysis and in the produc-
tion of sound engineering
solutions.

WHAT DETERMINES OUR

STUDENTS’ ABILITIES?
Do our students’ powers of
abstraction depend on their
cognitive development? Can
we improve their abilities
and, if so, how? Is it possible
to teach abstract thinking
and abstraction skills? 

Jean Piaget (1896–1980)
provided the foundations for
an understanding of the cog-
nitive development of chil-
dren from infants to
adulthood [6, 9]. Based on
case studies, he derived four
stages for development: sen-
sorimotor, pre-operational,
concrete operational, and
formal operational. The first
two stages are from infancy
to early childhood (about the
age of seven), where intelli-
gence is roughly indicated by
motor activity and then by
language and early symbol
manipulation respectively.
The third is the concrete
operational stage, from about
seven to 12, where intelli-
gence is roughly indicated by
a grasp of conservation of
matter, of causality and an
ability for classification of
concrete objects. The fourth
is the formal operational
stage, from around 12 to
adulthood, where individuals

indicate an ability to think abstractly, systematically,
and hypothetically, and to use symbols related to
abstract concepts. This is the crucial stage at which
individuals are capable of thinking abstractly and sci-
entifically. 

Although there is some criticism concerning the
way Piaget conducted his research and derived his

theory, there is general support for his underlying
ideas. Further studies and experimental evidence sup-
ports Piaget’s hypothesis that children progress
through the first three stages of development; how-
ever it appears that not all adolescents progress to the
formal operations stage as they mature. Biological
development may be a prerequisite, but tests con-
ducted on adolescent and adult populations indicate
that only 30% to 35% of adolescents achieve the for-
mal operations stage, that some adults never do [7],
and that particular environmental conditions and
training may be required for adolescents and adults
to achieve this stage. 

IS ABSTRACTION TEACHABLE?
Although the low attainment figures for Piaget’s for-
mal operations stage may be rather disappointing,
there does seem to be some hope of improving stu-
dents’ achievement by creating the right educational
environment. For instance, for adolescents Huitt
and Hummel [6] (based on Woolfolk and McCune-
Nicolich [12]) recommend using teaching tech-
niques such as giving students the opportunity to
explore many hypothetical questions—encouraging
students to explain how they solve problems—and
teaching broad concepts in preference to just facts. 

What about course content and curricula? At
Imperial College, the four-year Masters of Engineer-
ing degree in computing offers over 60 different
course modules, including a number of optional spe-
cialization courses in the third and fourth years.
None of these courses is a course on abstraction, yet
all rely on or utilize abstraction to explain, model,
specify, reason or solve problems! This seems to con-
firm that abstraction is an essential aspect of com-
puting, but that it must be taught indirectly through
other topics.

Our anecdotal experience is that mathematics is an
excellent vehicle for teaching abstract thinking. In
our early years, when there was less mathematical
content in our curricula for undergraduate courses,
the students appeared to lack abstraction skills and
were less able to deal with complex problems. Devlin
confirms this experience by remarking, “The main
benefit of learning and doing mathematics is not the
specific content; rather it’s the fact that it develops
the ability to reason precisely and analytically about
formally defined abstract structures” [2]. More
detailed supporting arguments are provided by
Devlin and others in Communications’ special section
“Why Students Need Math” [2].  The case in favor of
a mathematical treatment of computing and the
inclusion of mathematical topics in the curriculum is
strong. However, in computing, it is crucial students

are not only capable of manipulating symbolic and
numerical formalisms, but also skilled at moving
from an informal and complicated real world to a
simplified abstract model.

The ACM/IEEE Computing Curricula: Software
Engineering Volume 2004 [1] gives some recognition
of the importance of abstraction by including aspects
such as encapsulation, levels of abstraction, general-
ization and class abstractions; however, it is software
modeling and analysis that receives major attention.

Formal modeling and analysis is a powerful means
for practicing abstract thinking and consolidating
students’ ability to apply abstraction. Modeling is the
most important engineering technique; models help
us to understand and analyze large and complex
problems. Since models are a simplification of reality
intended to promote understanding and reasoning,
students must exercise all their abstraction skills to
construct models that are fit for purpose. They must
also be capable of mapping between reality and the
abstraction, so as to appreciate the limitations of the
abstraction and to interpret the implications of
model analysis. 

Student motivation can be enhanced by present-
ing the mathematics of the modeling formalism in a
problem-oriented manner, and can benefit by the
provision of tool support (such as model checking)
for reasoning and analysis. 

My personal experience teaching model building
and analysis as part of a course on concurrency [8]
has been very encouraging. Given a model, students
find it very helpful in clarifying the important aspects
of the problem and in using a model checking tool to
reason about its properties and behavior. However,
some still seem to find it extremely difficult to con-
struct the models themselves. It is not enough to
think about what they want to model, they need to
think about how they are going to use that model.
What is the purpose of the model? Though capable of
abstract thinking and reasoning, these students seem
to lack the skills to apply abstraction. 

WHAT DO WE NEED TO DO?
If abstraction is a key skill for computing, we should
focus more directly on ensuring that our teaching is
effective and that computing professionals have ade-
quate abstraction skills. 

What has been presented here is mostly anecdotal,
with some supporting evidence from the literature.
How can we put this on a more scientific footing and
improve our understanding of the situation? As in all
scientific and engineering endeavors, before we can
control or effect, we must first measure. The aim is to
gather the following data:

COMMUNICATIONS OF THE ACM April  2007/Vol. 50, No. 4 4140 April  2007/Vol. 50, No. 4 COMMUNICATIONS OF THE ACM

Figure 3.  The London 
Underground Map (a) the
1928 map and (b) the 1933
map by Harry Beck. 

Lo
nd

on
’s

T
ra

ns
po

rt
M

us
eu

m
©

T
ra

ns
po

rt
fo

r
Lo

nd
on



classes in object-oriented programming. Abstract
interpretation for program analysis is another exam-
ple of generalization, where the concrete program
domain is mapped to an abstract domain to capture
the semantics of the computation for program 
analysis. 

Abstraction skills are essential in the construction
of appropriate models, designs, and implementations
that are fit for the particular purpose at hand. Abstract
thinking is essential for manipulating and reasoning
about abstractions, be they formal models for analysis
or programs in a programming language. 

In fact, abstraction is fun-
damental to mathematics
and engineering in general,
playing a critical part in the
production of models for
analysis and in the produc-
tion of sound engineering
solutions.

WHAT DETERMINES OUR

STUDENTS’ ABILITIES?
Do our students’ powers of
abstraction depend on their
cognitive development? Can
we improve their abilities
and, if so, how? Is it possible
to teach abstract thinking
and abstraction skills? 

Jean Piaget (1896–1980)
provided the foundations for
an understanding of the cog-
nitive development of chil-
dren from infants to
adulthood [6, 9]. Based on
case studies, he derived four
stages for development: sen-
sorimotor, pre-operational,
concrete operational, and
formal operational. The first
two stages are from infancy
to early childhood (about the
age of seven), where intelli-
gence is roughly indicated by
motor activity and then by
language and early symbol
manipulation respectively.
The third is the concrete
operational stage, from about
seven to 12, where intelli-
gence is roughly indicated by
a grasp of conservation of
matter, of causality and an
ability for classification of
concrete objects. The fourth
is the formal operational
stage, from around 12 to
adulthood, where individuals

indicate an ability to think abstractly, systematically,
and hypothetically, and to use symbols related to
abstract concepts. This is the crucial stage at which
individuals are capable of thinking abstractly and sci-
entifically. 

Although there is some criticism concerning the
way Piaget conducted his research and derived his

theory, there is general support for his underlying
ideas. Further studies and experimental evidence sup-
ports Piaget’s hypothesis that children progress
through the first three stages of development; how-
ever it appears that not all adolescents progress to the
formal operations stage as they mature. Biological
development may be a prerequisite, but tests con-
ducted on adolescent and adult populations indicate
that only 30% to 35% of adolescents achieve the for-
mal operations stage, that some adults never do [7],
and that particular environmental conditions and
training may be required for adolescents and adults
to achieve this stage. 

IS ABSTRACTION TEACHABLE?
Although the low attainment figures for Piaget’s for-
mal operations stage may be rather disappointing,
there does seem to be some hope of improving stu-
dents’ achievement by creating the right educational
environment. For instance, for adolescents Huitt
and Hummel [6] (based on Woolfolk and McCune-
Nicolich [12]) recommend using teaching tech-
niques such as giving students the opportunity to
explore many hypothetical questions—encouraging
students to explain how they solve problems—and
teaching broad concepts in preference to just facts. 

What about course content and curricula? At
Imperial College, the four-year Masters of Engineer-
ing degree in computing offers over 60 different
course modules, including a number of optional spe-
cialization courses in the third and fourth years.
None of these courses is a course on abstraction, yet
all rely on or utilize abstraction to explain, model,
specify, reason or solve problems! This seems to con-
firm that abstraction is an essential aspect of com-
puting, but that it must be taught indirectly through
other topics.

Our anecdotal experience is that mathematics is an
excellent vehicle for teaching abstract thinking. In
our early years, when there was less mathematical
content in our curricula for undergraduate courses,
the students appeared to lack abstraction skills and
were less able to deal with complex problems. Devlin
confirms this experience by remarking, “The main
benefit of learning and doing mathematics is not the
specific content; rather it’s the fact that it develops
the ability to reason precisely and analytically about
formally defined abstract structures” [2]. More
detailed supporting arguments are provided by
Devlin and others in Communications’ special section
“Why Students Need Math” [2].  The case in favor of
a mathematical treatment of computing and the
inclusion of mathematical topics in the curriculum is
strong. However, in computing, it is crucial students

are not only capable of manipulating symbolic and
numerical formalisms, but also skilled at moving
from an informal and complicated real world to a
simplified abstract model.

The ACM/IEEE Computing Curricula: Software
Engineering Volume 2004 [1] gives some recognition
of the importance of abstraction by including aspects
such as encapsulation, levels of abstraction, general-
ization and class abstractions; however, it is software
modeling and analysis that receives major attention.

Formal modeling and analysis is a powerful means
for practicing abstract thinking and consolidating
students’ ability to apply abstraction. Modeling is the
most important engineering technique; models help
us to understand and analyze large and complex
problems. Since models are a simplification of reality
intended to promote understanding and reasoning,
students must exercise all their abstraction skills to
construct models that are fit for purpose. They must
also be capable of mapping between reality and the
abstraction, so as to appreciate the limitations of the
abstraction and to interpret the implications of
model analysis. 

Student motivation can be enhanced by present-
ing the mathematics of the modeling formalism in a
problem-oriented manner, and can benefit by the
provision of tool support (such as model checking)
for reasoning and analysis. 

My personal experience teaching model building
and analysis as part of a course on concurrency [8]
has been very encouraging. Given a model, students
find it very helpful in clarifying the important aspects
of the problem and in using a model checking tool to
reason about its properties and behavior. However,
some still seem to find it extremely difficult to con-
struct the models themselves. It is not enough to
think about what they want to model, they need to
think about how they are going to use that model.
What is the purpose of the model? Though capable of
abstract thinking and reasoning, these students seem
to lack the skills to apply abstraction. 

WHAT DO WE NEED TO DO?
If abstraction is a key skill for computing, we should
focus more directly on ensuring that our teaching is
effective and that computing professionals have ade-
quate abstraction skills. 

What has been presented here is mostly anecdotal,
with some supporting evidence from the literature.
How can we put this on a more scientific footing and
improve our understanding of the situation? As in all
scientific and engineering endeavors, before we can
control or effect, we must first measure. The aim is to
gather the following data:

COMMUNICATIONS OF THE ACM April  2007/Vol. 50, No. 4 4140 April  2007/Vol. 50, No. 4 COMMUNICATIONS OF THE ACM

Figure 3.  The London 
Underground Map (a) the
1928 map and (b) the 1933
map by Harry Beck. 

Lo
nd

on
’s

T
ra

ns
po

rt
M

us
eu

m
©

T
ra

ns
po

rt
fo

r
Lo

nd
on



Measure students abstraction abilities annually while
at college.

This could be used to check whether or not their
ability correlates with their grades, relative to others
in their year. Assuming that our conventional grad-
ing techniques—coursework, laboratory work and
examinations—are indicative of a student’s ability in
computing, this would help to gain confidence that
abstraction is a key indicator of ability. A second
purpose of such testing is that it would provide an
alternative means for checking students’ abilities.
Finally, it could also help to assess the efficacy of our
teaching techniques, ensuring that students of all
abilities do improve as they progress through the
degree course.

Measure students abstraction abilities at the time of
application to study computing.

Currently, entry is based almost solely on school
grades. Abstraction ability could potentially be used
to help eliminate those students that are not suitable
or less likely to perform well, and to select those who
are not just academically capable, but that have a real
aptitude for computing and software engineering. 

Conducting these experiments and collecting this
data depends on the availability of good abstraction
tests for measuring students’ abstract thinking and
abstraction skills. Unfortunately, we have been unable
to find any existing appropriate tests. Tests for the for-
mal operations stage focus mainly on logical reasoning
and are not appropriate for testing abstraction skills
nor capable of distinguishing between the abilities of
students at college level. Orit Hazzan, of the Depart-
ment of Education in Science and Technology at the
Technion, has recommended that a specific set of test
questions be constructed, including sufficiently differ-
ent kinds of tasks and descriptions, supporting the col-
lection of both quantitative and qualitative data, and
including open-ended questions and interviews. 

These tests should examine different forms of
abstraction, different levels of abstraction and differ-
ent purposes for those abstractions. This must be our
next step. Only then can we be more definitive as to
the criticality of abstraction in computing and of our
ability to teach it. For instance, we should be able to
confirm or refute that a particular course, such as for-
mal modeling and analysis, is indeed an effective
means for teaching abstraction. 

CONCLUSION

Like others, I believe that abstraction is a key skill
for computing. It is essential during requirements

engineering to elicit the critical aspects of the envi-
ronment and required system while neglecting the
unimportant. At design time, we must articulate the
software architecture and component functionalities
that satisfy functional and non-functional require-
ments while avoiding unnecessary implementation
constraints. Even at the implementation stage we
use data abstraction and classes so as to generalize
solutions. 

This article proposes the reason that some software
engineers and computer scientists are able to produce
clear, elegant designs and programs, while others can-
not, is attributable to their abstraction skills. I argue
that a sound understanding of the concept of abstrac-
tion and its importance in software engineering, and
the means to teach and to test abstraction skills are cru-
cial to the future of our profession. The primary need
is for a set of abstraction Tests for checking student
progress, checking our teaching techniques, and poten-
tially as an aid for student admissions selection.

References
1. The ACM/IEEE Computing Curricula: Software Engineering (2004);

www.computer.org/education/cc2001.
2. Devlin, K. Why universities require computer science students to take

math, Comm of ACM 46, 9 (Sept. 2003), 37–39.
3. Frorer, P., Hazzan, O. and Manes, M. Revealing the faces of abstrac-

tion. International J. Computers for Mathematical Learning. Kluwer
Academic Publishers, 1997,  217–228.

4. Ghezzi, C., Jazayeri, M. and Mandrioli, D. Fundamentals of Software
Engineering, 2nd Edition. Pearson International, NJ, 2003.

5. Hazzan, O. Reducing abstraction level when learning abstract algebra
concepts. Educational Studies in Mathematics 40. Kluwer Academic
Publishers, 1999, 71–90.

6. Huitt, W. and Hummel, J. Piaget’s theory of cognitive development.
Educational Psychology Interactive. Valdosta State University, Valdosta,
GA, 2003. 

7. Kuhn, D., Langer, J., Kohlberg, L., and Haan, N.S. (1977). The devel-
opment of formal operations in logical and moral judgment. Genetic
Psychology Monographs 95 (1977), 97–188. 

8. Magee, J. and Kramer, J. Concurrency—State Models and Java Pro-
grams, 2nd Edition. John Wiley & Sons, Chichester, UK, 2006.

9. Piaget, J. and Inhelder, B. The Psychology of the Child. Routledge &
Kegan Paul, 1969.

10. Webster’s Third New International Dictionary, 1966. 
11. Wing, J.M. Computational thinking, Comm of ACM 49, 3 (Mar.

2006), 33–35.
12. Woolfolk and McCune-Nicolich. Educational Psychology for Teachers,

2nd Edition. Prentice-Hall, Englewood Cliffs, NJ, 1984. 

Jeff Kramer  (j.kramer@imperial.ac.uk) is dean of the Faculty of
Engineering and a professor in the Department of Computing at
Imperial College London. 

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2007 ACM 0001-0782/07/0400 $5.00

c

42 April  2007/Vol. 50, No. 4 COMMUNICATIONS OF THE ACM


