
Neglect Tolerant Teaming: Issues and Dilemmas∗

Michael A. Goodrich, Jacob W. Crandall, and Jeffrey L. Stimpson
Computer Science Department

Brigham Young University
Provo, Utah, USA 84602

Abstract

In this paper, a brief overview of neglect-tolerant human-
robot interaction is presented. Recent results of a neglect-
tolerance study are then summarized. The problem is then
posed of how neglect tolerance affects how a human interacts
with multiple robots, and a scenario is constructed that illus-
trates how multiple robot management can produce a problem
with the form of a prisoner’s dilemma. An abstraction of this
prisoner’s dilemma problem is then presented, and two robot
learning algorithms are outlined that may address key points
in this abstracted dilemma.

Introduction
In the phrasehuman-robot interaction, the terminteraction
consists of a robotautonomy levelas well as aninterfaceele-
ment. This interaction is illustrated in Figure 1 for a situation
where a human interacts with a remote robot over a com-
munication link. The human gathers information about the

Human

Robot

World

Info Control

Sensors Actuator

Interface

Autonomy Mode

Figure 1: Neglect tolerance.

world (and the robot’s status) through messages sent from
∗This work was supported in part by DARPA/DOI contract

#NBCH1020013
Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the robot to the human, and then manages the robot by pass-
ing messages to it. This loop is governed by the interface
that facilitates information dissemination and robot instruc-
tion. The robot then modulates the instructions from the
human to generate actuator signals in some manner which
takes into consideration what the robot senses. This mod-
ulation is governed by the autonomy algorithms present on
the robot.

Much has been written about adjusting robot autonomy
levels, but dynamic autonomy requires some method for
choosing the right autonomy for the circumstances. In this
paper, we identify the variables that determine efficient in-
teraction using the concept ofneglect-tolerance. We then
address how teams of semi-autonomous, semi-independent
robots could learn to coordinate in a way that utilizes human
attention efficiently, and identify some issues and dilemmas
that can arise using the set of autonomy levels discussed
herein. Finally, we speculate on two possible algorithms for
addressing these dilemmas.

Neglect-Tolerant Interaction
Concept
We can summarize the concept of neglect tolerant interac-
tion1 as follows (Crandall & Goodrich 2002; Goodrichet al.
2001):Performance of a semi-autonomous robot declines as
human attention is spent on other tasks and/or as the com-
plexity of the world increases.This relationship between
robot performance, neglect time, and complexity is concep-
tualized in Figure 2.

The precise shape of the neglect-tolerance curve for a par-
ticular autonomy mode is dictated by (a)neglect impact,
the decline in performance that occurs when human atten-
tion is dedicated to a secondary task, and (b)interface effi-
ciency, the way an interface assists a human to regain robot
situation-awareness and re-direct a robot once attention is
dedicated to the robot. Combining these two factors and set-
ting a level of required performance determines how much
time can be spent on tasks other than managing a particular
robot. This combination is illustrated in Figure 3. In the fig-
ure, the robot begins at a standstill and the human instructs
the robot (task 1) until performance achieves a peak level.

1The reader is referred to (Sheridan 1992; Wickens & Hollands
2000) for a survery of related concepts.



Human Workload

Complexity

Team Effectiveness

Figure 2: Neglect tolerance.

The human then turns attention to a second task (task 2) dur-
ing which time performance deteriorates while the robot is
neglected. Sometime before this level of performance de-
clines below an acceptable level, the human turns attention
back to the robot (task 1) and instructs the robot enough for
performance to increase to peak performance again.

Time

Performance

Neglect Impact

Interface
Efficiency

Task 1 Task 1Task 2

Neglect
Tolerance

Required
Performance

(ease/safety tradeoff)

Figure 3: Neglect tolerance is determined by neglect-impact
and interface efficiency. These conceptual plots are shown
for a fixed level of complexity.

For a team of semi-autonomous, semi-independent
robots, the neglect tolerance characteristics of each robot
constrain how attention needs to be shared between robots.
For example, time spent servicing robot A is time spent ne-
glecting robot B, and this means that the number of robots
that can be managed by a single human is limited by the
neglect tolerance of the robots. Thus, to efficiently manage
multiple robots, it is necessary for the robots to coordinate
in such a way that human attention is used well.

Multiple Autonomy Modes We have developed a suite of
robot autonomy levels and verified that these levels work on
real robots. To explore how these autonomy levels might be
affected by neglect, we set up a series of simulator experi-
ments with 32 undergraduate students drawn from a class of

computer science and electrical engineering students. The
three autonomy modes are:teleoperation, point-to-point,
andscripted.

Theteleoperationautonomy mode uses the shared control
algorithm described in (Crandall & Goodrich 2001). In this
control scheme, the human guides the robot via a joystick
while watching a video stream from the robot’s camera. The
robot modulates the direction vector given by the joystick
by accounting for obstacles sensed by the sonars. This bal-
ance allows the robot safely to go in the general direction
requested by the user.

The point-to-pointautonomy mode also uses the shared
control algorithm. In this control scheme, the human opera-
tor clicks the mouse on various locations within the video
stream window to tell the robot what to do at the next
branching point that it finds (e.g., click on the right side of
the video stream if the robot is to turn right at the next in-
tersection). The robot can be told to turn right, turn left, or
go straight through the intersection. In addition, the human
can direct the robot to go backwards, spin right, or spin left.
If no input is given, the robot defaults to going straight. The
interface confirms the human input by superimposing a di-
rectional arrow on the video stream.

This interaction scheme is more autonomous than the tele-
operation system because the human must only provide an
input vector for every branching point (i.e., intersection) that
the robot faces. Additionally, if the robot gets turned around
by obstacles, misses an intersection, or thinks it has found
an intersection when it, in reality, has not, the operator must
provide additional help. In this way the robot can move
through somewhat cluttered environments effectively.

The scriptedautonomy mode also uses the shared con-
trol algorithm. The interface for this scheme is a god’s-eye
map of the world where the human clicks to establish way-
points. The human must not only put a waypoint at every in-
tersection (i.e., the robot does not do any path planning) but
also use waypoints to guide the robot through some com-
plex obstacles. A script of these waypoints is created and
then executed by the robot. The robot derives a direction
vector from the nearest waypoint, uses the shared control al-
gorithm to travel to the waypoint, and then reorients to the
next waypoint. The interface confirms that a waypoint has
been created (or destroyed) by placing (or removing) a col-
ored block on the map.

This autonomy mode is more autonomous than point-to-
point because the robot can navigate an entire route from
start to the goal without intervention (if the waypoints are
appropriately placed). If no waypoint is found, the robot
stops and waits.

Experiment and Results In the experiments, 32 under-
graduate computer science and electrical engineering stu-
dents were subjects. Each subject was asked to control two
simulated2 robots from their current location to a goal. The

2Although simulated robots are not sufficient to validate an in-
terface or a suite of robot algorithms, they are sufficient to allow
neglect tolerance to be characterized. In the context of this paper,
these characterizations are sufficient to identify the resulting robot
dilemmas.



Figure 4: An extremely simple world (right) and an ex-
tremely complex world (left).

goal was displayed on a god’s eye map, and the subject was
instructed to guide a simulated robot through a simulated
world to the goal. When the robot reaches the goal, a new
goal is placed randomly in the world. The information ele-
ment included a god’s eye view of the world as well as the
position of the robot in that world. Additionally, the 16 sonar
values, compass readings, and video stream was displayed.

Several different worlds of varying complexity were used.
Typical worlds include environments with low clutter and
low branching, low clutter and high branching, high clutter
and low branching, and high clutter and high branching so
as to model many kinds of environmental complexity. Two
worlds of extreme complexity are shown in Figure 4.

Complexity was calculated using four measurements ob-
tained from the robot. Three of these measurements indicate
the amount of clutter in the environment. First, sonar values
will tend to change more rapidly in cluttered environments
than uncluttered environments. Second, the autonomous al-
gorithms on a robot will tend to cause it to change directions
(encoded as steering entropy (Boeret al. 2001)) as it moves
around obstacles. Third, a robot’s velocity will tend to fluc-
tuate as it moves around obstacles (clutter). Measurements
are taken from these three observations, and are averaged to-
gether to estimate the clutterCc of the environment (a value
between 0 and 1). Branching complexity is predicted by ob-
serving the average number of afforded directions a robot
can take over a period of time. This value is also normal-
ized between 0 and 1 (0 for no branching whatsoever, and
1 for a high number of branches) to predict the branching
factorCb of the current environment. The complexity of the
environment is then estimated by

C = wcCc + wbCb.

Note that the complexity estimates need not be perfect as
long as the relative contributions of various elements are
balanced. The reason for this is that complexity can be de-
fined as those environmental characteristics that cause per-
formance to decline, and the measurements obtained herein
demonstrate the the complexity estimate is sufficient for this
purpose.

For point-to-point and scripted modes, the operator was

given as much time as was needed to service the robot3; this
means that once the operator started to instruct the robot,
they controlled it for as much time as “felt natural” to them
[from the instructions given to the subjects]. When the op-
erator was done servicing the robot, he/she clicked a button,
and the robot was neglected for a pre-specified interval of
time (up to 40 seconds). During this time, the operator either
(a) serviced the second robot4 (if it had been neglected for
the amount of time specified by the experiment design) or
(b) performed a secondary math task. The secondary math
task required that the human select an answer to a two-digit
arithmetic (addition or subtraction) problem from a list of
four possible answers. The math problem was presented in
the same position as the robot video stream, and the answer
was selected by clicking on the appropriate answer. Servic-
ing the second robot and doing the secondary math prob-
lems required both cognitive effort, attention management,
and motor response generation. This means that working
memory, motor responses (Wickens & Hollands 2000), and
attention (Pashler 1997) were loaded.

Neglect Tolerance Cureves After servicing the second
robot or performing the secondary math task, the video
stream for the first robot again appeared and the operator
again serviced the robot. Data was averaged across subjects.
The neglect tolerance curves for point-to-point and scripted
autonomy modes are shown in Figures 5-6.

The neglect-tolerance random process for the (shared con-
trol) teleoperation mode is not shown because it is uninter-
esting. Performance goes to zero for any neglect interval
longer than about 0.5 seconds. This occurs because subjects
take their hands off the joystick to use the mouse, and when
the joystick is not controlled the robot stops. As complexity
decreases, there is a decrease in the robot’s performance, as
expected.

Figure 5 displays the mean of the neglect-tolerance ran-
dom process for the point-to-point mode. Although the data
is noisy, the general trends match the hypothesized shape of
Figure 2. The plot of the expected (mean) performance of
the robot shows that as the robot is neglected, performance
decreases over time. Additionally, as the environment be-
comes more complex, performance decreases as well. In
very complex environments, the robot performs quite poorly
in this interaction scheme.

Figure 6 displays the mean of the neglect-tolerance ran-
dom process for the scripted mode. Although the data is
noisy, the general trends again match the hypothesized shape
of Figure 2. In very complex environments, the robot per-
forms quite poorly in this interaction scheme. Depend-
ing on the workload requirements of the system, this in-
teraction scheme may not be appropriate for some complex

3Because the robot was serviced for a sufficient period of time,
the neglect random process is not necessarily an accurate estimate
for instances in which a robot is not serviced sufficiently.

4Robots were identified with a color-coded icon in the god’s eye
view, and the display background changed colors to indicate which
robot was being serviced. This helped reduce mode confusion.



Figure 5: A graph of the mean of the neglect tolerance ran-
dom process for the point-to-point autonomy mode.

worlds/environments unless the human dedicates a lot of at-
tention to it.

Figure 6: A graph of the mean of the neglect tolerance ran-
dom process for the scripted autonomy mode.

Note that, in the interest of space, we have not presented
results from variability. Variance in the random processes
increases when complexity increases indicating that com-
plex worlds affect how consistently a robot performs.

Interface Efficiency Curves Figure 7 illustrates the inter-
face efficiency for the scripted autonomy mode. As pre-
dicted, more time-on-task results in greater instantaneous
performance of the robot, but it takes some time for peak
performance to be obtained. More complex worlds reduce
the efficiency of the interface. Figures 8 and 9 present the
same information for the point-to-point and teleoperated au-
tonomy modes.

These three plots display some anomalies in how com-
plexity impacts performance, and may indicate that some

Figure 7: A graph of the mean of the interface efficiency
random process for the scripted autonomy mode.

Figure 8: A graph of the mean of the interface efficiency
random process for the point-to-point autonomy mode.

adjustments to the complexity estimate need to be made.
There are also some strange things that happen along the
performance axis, such as the slight decrease in teleopera-
tion efficiency after an initial improvement, that may lead to
further insight into how humans interact with robots.

When comparing the results, it is important to note that
the scales are different along both the performance axis and
the time axis. Thus, teleoperation has a higher possible per-
formance level for nearly all world complexities. Further-
more, teleoperation reaches its maximum level quicker than
the scripted and point-to-point modes.

Sharing Attention
The Game: A Motivating Example
In this section, we want to present a simple illustration of
how neglect tolerance can create a social dilemma if a hu-
man is trying to manage multiple robots. Consider the prob-



Figure 9: A graph of the mean of the interface efficiency
random process for the teleoperation autonomy mode.

lem of a human manager interacting with two robots. Each
robot has adjustable autonomy levels, and the human and
robots must manage human intention in such a way as to
maximize team performance. In this scenario, suppose that
the team must explore an environment as quickly as pos-
sible. The robots must learn the best way to interact with
the human; such interaction includes selecting an appropri-
ate level of autonomy and organizing relevant information
in such a way to allow the human to interact.

Suppose that the robots can select from the three levels
of autonomy described herein: teleoperation, point-to-point,
and fully autonomous. Associated with each of these au-
tonomy levels is an associated neglect curve. The robots
must operate in the world diagrammed in Figure 10. In the

Start End

Figure 10:A navigation world where a dilemma might arise.

world, the two robots must navigate through one of three
corridors. The southern corridor is too narrow (e.g., it has
high complexity) for the robot to autonomously navigate; a
robot passing through this corridor requires teleoperation.
The middle corridor is wider than the southern and narrower
than the northern (e.g., it has moderate complexity); one or
two robots can navigate the corridor with waypoint-driven
assistance from the human. The northern corridor is wide
(e.g., it has low complexity) and can easily be navigated by

one or two autonomous robots.
Suppose that the two robots begin on the same side of

the room and must pass through one of the corridors to
reach their respective goal locations. Each robot must make
choices among the following options:

• Go to the southern corridor, switch to teleoperation mode,
and request the manager to teleoperate them through the
corridor.

• Go to the middle corridor, switch to waypoint-driven
mode, and request the manager to guide them through the
corridor.

• Go to the top corridor and autonomously drive through
the corridor.

There are a couple of ways that we could solve this prob-
lem. First, we could have the human choose an autonomy
level for each robot, but this just means that the human has
another task to do (the autonomy level selection task) which,
in turn, means that robots will be neglected longer. Second,
we could define a social choice mechanism and negotiation
protocol wherein robots follow scripted interactions to deter-
mine which robot gets which autonomy mode. Third, each
robot could (autonomously) make a decision about what au-
tonomy level to choose and they could learn which states
translate into which autonomy modes. It is this latter prob-
lem with which this paper is concerned.

D C
D (P,P) (T,S)
C (S,T) (R,R)

Table 1: Payoffs for a traditional Prisoner’s Dilemma
game (Axelrod 1984). For a dilemma to arise, we must have
T>R>P>S andT+S

2 >R. T encodes the “temptation” pay-
off, S encodes the “sucker’s” payoff, R encodes the mutual
“reward” for cooperating, and P encodes the “penalty” for
mutual defection.

Such a scenario is a type of social dilemma, similar to the
prisoner’s dilemma shown in Table 1. When both robots
defect (chooses teleoperation), a time ofP units elapses
(from the confusion of the operator plus the time to navi-
gate through the middle corridor). When one robot defects
(choose teleoperation), the other robot cannot choose teleop-
eration nor point-to-point control since all operator attention
is consumed by the first robot; the second (non-teleoperated)
robot must act autonomously and receives theS payoff (be-
cause it takesS units of time to reach its goal) while the first
(teleoperated) robot receives theT payoff (because it takes
only T < S units of time for it to reach its goal). When
both robots choose to cooperate (i.e., they choose the point-
to-point option), both receive theR payoff (because it takes
R units of time,T < R < S, for each of these robots to
reach their goals).

The Game: A First-Level Abstraction
Such dilemmas can take many different forms, so it is useful
to find a type of abstraction that can be used to test different



algorithms. In this section, we summarize an abstract world
that has many of the important elements of these dilemmas.
Consider the following world. In this world, two agents

X XX

Figure 11: A prisoner’s dilemma navigation world.

CIRCLE and DOT, are placed on opposite sides of a parti-
tion in mirror image locations. CIRCLE’s goal (represented
by a triangle) is placed in the lower left corner of DOT’s
territory, and DOT’s goal is placed in the lower right cor-
ner of CIRCLE’s territory. Each agent desires to reach its
corresponding goal in minimum time.

In this world, agents are allowed to simultaneously oc-
cupy a cell. However, if both agents simultaneously attempt
to enter cell (5,3), the southernmost passage (gate 1) through
the partition, then a door closes and neither agent is allowed
to enter. In addition to gate 1 being closed, gate 2 (in state
(5,5)) is also closed; this is depicted on the left-center grid
in Figure 11. If only one agent tries to pass through gate 1
then it is allowed to pass but gates 1, 2, and 3 (in state (5,7))
close forcing the other agent to travel through the northern-
most passage through the partition to reach its goal; this is
depicted on the center two grids in the figure. Finally, if
neither agent tries to pass through gate 1 then all doors stay
open all the time; this is depicted in the right-center grid in
the figure.

Now, consider when both agents are adjacent to gate 1 in
the world, as depicted in the figure. Each agent has two qual-
itatively different choices: choice D is to try to go through
the gate, and choice C is to move elsewhere. Depending
on the joint choices made by the agents, the length of the
minimum-length path for both agents is changed. In game
matrix form, the minimum number of actions required to

reach the goal state are, assuming optimal choices there-
after (except in the right-center grid where we assume that
the agents pursue the path through gate 2) shown in Ta-
ble 2. When this table is compared to the traditional pris-

CIRCLE/DOT D C
D (16,16) (7,19)
C (19,7) (11,11)

Table 2: Minimum number of actions given a particular
strategy. Note that the minimum path through gate 3 to the
goal is 15 steps; we use the number 16 as the effective path
length because we consider the case when agents first at-
tempt to go through gate 1, thus increasing the minimum
number of required actions..

oner’s dilemma formulation, shown in Table 1, the prisoner’s
dilemma becomes apparent.

Adapting to Human Limitations
Given that social dilemmas can arise when multiple robots
try and interact with a human, we propose having the robots
learn which autonomy levels are appropriate for given world
complexities and human attentional demands. Current al-
gorithms in multi-agent learning do not seem appropriate
for these dilemmas because they emphasize either learning
a Nash equilibrium or they require a centralized learner to
coordinate the robots. A Nash equilibrium is inappropriate
because the equilibrium in the Prisoner’s dilemma is worse,
from the human manager’s perspective, than mutual coop-
eration. A centralized learner is inappropriate because one
purpose of having multiple robots is to take advantage of the
distributed computing, the robot mobility, and the robust-
ness to failure that multiple robots provide. Thus, we want
to identify learning algorithms that allow robots to succeed
in social dilemmas without a centralized arbiter and still be
robust to robot failures. Our research in this area is still
in progress, but we present overviews of two possible al-
gorithms: Relaxed Negotiation and BEANS.

Relaxed Negotiation

The relaxed negotiation algorithm is a variant of Karandikar
et. al ’s satisficing algorithm (Karandikaret al. 1998). The
idea of their algorithm is that, in the repeated play of a pris-
oner’s dilemma game, an agent can update their aspirations
and change their behavior if such a behavior does not meet
the aspiration. Formally, suppose thata is the set of actions
available to the agent. In the simple prisoner’s dilemma, the
actions are cooperate,C, and defect,D. After each agent
makes its choice, payoffs are revealed according to the pay-
off matrix. Letui(a1, a2) denote the payoff to agenti when
agent 1 playsa1 and agent 2 playsa2. An aspiration levelαi

represents the satisficing aspiration level of agent i (Simon
1996). At the next time step, the decision algorithm in Ta-
ble 3 is used to make a choice. In words, the algorithm says
to stay with what you did last time if the payoff exceeded the
aspiration; otherwise switch. After each reward is received,



Choice at timet Choice at timet− 1 Condition
C C ui(a1, a2) ≥ αi

D D ui(a1, a2) ≥ αi

C D ui(a1, a2) < αi

D C ui(a1, a2) < αi

Table 3: Karandikar’s satisficing choice algorithm.

aspirations are updated according to

αi ← λαi + (1− λ)ui(a1, a2).

Karandikar et. al showed that if this update rule was per-
turbed by a small amount of noise then the two agents nearly
always play mutual cooperation.

Stimpson (Stimpson 2002) modified this algorithm by
eliminating the perturbation in the aspiration level and in-
stead requiring that aspiration levels start high. He also let
any choice be made with equal probability if the aspiration
level was not met. Under such circumstances, a high value
of λ (which translates into slowly decreasing the aspiration
level), implies that mutual cooperation emerges with guar-
anteed high probability. Thus, Stimpson turned the satis-
ficing update into a relaxation search where the aspiration
levels are slowly relaxed from a high level to a lower level.
This relaxation allowed, in essence, agents to bargain from
an initially high level of aspiration until they found a so-
lution where both agents were satisfied. Neither agent has
an incentive to defect from this solution (it is a satisficing
equilibrium in the sense of (Stirling, Goodrich, & Packard
2000)), so the solution is stable.

In the context of the dilemma that arises in neglect-
tolerant teaming, Stimpson extended the algorithm further
to include more than two actions (by allowing random se-
lection of an action if the aspiration is not met) and more
than two players. The latter extension was made by cre-
ating a single parameter family of social dilemmas that re-
duces to a prisoner’s dilemma in the two-action, two-player
case, but retains the relevant properties of the dilemma for
a many-action, many-player case (Stimpson 2002). A com-
plete description of this extension is beyond the scope of this
paper, but suffice it to say that the sequential-play prisoner’s
dilemma abstraction can be caste into this form.

This means that if robots begin with high aspirations and
slowly relax these aspirations while randomly trying vari-
ous policies then they will, in effect, negotiate a situation-
dependent, efficient solution to the neglect-tolerant teaming
dilemma. Unfortunately, such a solution may take a very
long time to achieve. Since there will be many world com-
plexities and human workloads, the algorithm in the current
form will be too slow to use in practice. However, the no-
tion of a relaxation search may be very useful in obtaining
an efficient solution to the dilemma.

BEANS
The BEANS5 algorithm is a utility-based algorithm inspired
by particle filtering. It is essentially a technique for assign-

5We want to create a clever acronym for this, but have not suc-
ceeded yet. The name of the algorithm is inspired by the way utility

ing credit to different approaches to solving a problem; ap-
proaches that work well are given high utility. Unlike the
relaxation algorithm described above which slowly relaxes
aspirations until a solution policy is found with high utility,
the BEANS algorithm instead shifts utility between various
solution policies until an efficient algorithm is found.

Each algorithm (agent) is composed ofexpertswhich help
it decide what to do in each state. Each expert seeks to fulfill
one of the agent’s desires, such as get good rewards now, get
good future rewards, avoid bad rewards, etc. Experts act by
giving support for various policies which they feel will help
the agent achieve the desire assigned to that expert. Sup-
port for a policy is given by putting“beans” into bins; i.e., a
fixed amount of utility units is created, and these units are
shifted between different policies according as the experts
assign credit and blame. On each trial through the maze in
Figure 11 from start to finish, the policy corresponding to
the bin with the greatest number of utility units (beans) is
used by the agent to choose its action.

After an iteration is completed, each expert is given a cer-
tain number of utility beans to allocate to the various poli-
cies. In this way, rewards are propagated back through each
expert (acting as a learning critic) to the policy that matched
the experts desires. Additionally, depending on the rewards
received at the end of the iteration, trust in an expert can
be increased or decreased, based on whether an expert sup-
ported actions which helped (or hurt) the agent. This trust
measure affected how many beans are given to an expert on
subsequent iterations.

The BEANS algorithm was applied to the sequential pris-
oner’s dilemma described above. Solution strategies were
identified from the following list of policies (obtained from
multi-agent choice literature but not elaborated upon herein
for the sake of space):

• Nash equilibrium

• Pareto optimal

• Always cooperate

• Tit-for-Tat

• Minimax

• Satisficing

Each policy was assigned utility beans by experts that
were responsible for the following specific goals:

1. Myopically try to maximize payoff in this round by re-
warding a policy if it passes through the bottom door.

2. Avoid bad payoffs by rewarding policies that do not go
through one of the top two gates.

3. Reward policies if they produce satisficing behaviors.

4. Maximize a social welfare function that includes the path
length of the other agent too.

5. Reward policies that tend to entice the other agent to co-
operate in future iterations.

units are shifted between various policies. This movement can be
thought of by a metaphor of moving beans from one bin to another
according to some rule.



Interestingly, these heuristic experts usually produced
utility patterns that selected mutual cooperation wherein
both agents consistently passed through the second to bot-
tom gate. Furthermore, when the algorithm is assigned to
one agent and the other agent receives directions from a hu-
man, the BEANS agent tends to cooperate when the human
cooperates, but adapts to defection when the human defects.

One limitation of this approach is that it requires thea
priori identification of set of possibly useful policies. This
means that the naive application of the algorithm will be un-
acceptable for many multi-robot domains because the num-
ber of agents, the state of the human manager, and the com-
plexity of the world may require the discovery of new poli-
cies.

Future Work

This brief presentation of the two algorithms is insuffi-
cient for true validation. Much future analysis needs to be
done. However, in the abstracted extensive form prisoner’s
dilemma, both approaches can produce efficient solutions.
We conclude that both algorithms deserve future develop-
ment to try and adapt them to complicated robot team sce-
narios.

Discussion
This paper has presented the following:

1. a review of recent results from neglect tolerance studies
of various interaction schemes,

2. an abstraction of how teams of semi-autonomous, semi-
independent robots form a type of multi-agent social
dilemma,

3. a description of why such teams should avoid Nash equi-
libria solutions, and

4. a description of two preliminary mechanisms for having
robots learn to choose neglect-tolerant autonomy levels
in such a way that the human is able to manage multiple
robots.

There are a number of issues and observations that arise
with such an approach to managing a complex system of
multiple robots by having the robots learn neglect tolerant
teaming. The first observation is that learning to choose a
robot autonomy level in a team context should include esti-
mates of human workload and world complexity. Without
such information, it seems likely that learning algorithms
will myopically do what they think is best for themselves
and thereby produce inefficient team behavior. Indeed, the
biggest advantage of using an approach based on machine
learning is that extensive neglect tolerance studies need not
be done for every interface/autonomy mode pair. Instead,
workload and complexity can be used as inputs to a learn-
ing algorithm with team performance acting as the feedback
that guides adaptation. If the robot learns to cooperate with
other robots while accounting form neglect tolerance, then
team performance, which benefits from a prudent allocation
of human attention, should be high.

To develop algorithms that address neglect-based teaming
dilemmas, it is useful to have a test world. We have devel-
oped such a world, but there are many flaws with such a
world. For example, the world does not address the impor-
tant question of how to choose the right level of granularity
in what a robot should learn (e.g., when to request service,
what autonomy level, how much service time to request).
Furthermore, it does not address how can we use noisy real-
time estimates of human workload and environment com-
plexity (e.g., behavioral entropy (Boeret al. 2001)) as states
in a learning algorithm. These issues are areas of future re-
search.

References
Axelrod, R. M. 1984.The Evolution of Cooperation. Basic
Books.
Boer, E. R.; Futami, T.; Nakamura, T.; and Nakayama, O.
2001. Development of a steering entropy method for evalu-
ating driver workload. InSAE 2001 World Congress. SAE
paper #1999-01-0892.
Crandall, J. W., and Goodrich, M. A. 2001. Experiments
in adjustable autonomy. InProceedings of Systems, Man,
and Cybernetics. To appear.
Crandall, J. W., and Goodrich, M. A. 2002. Characteriz-
ing efficiency of human robot interaction: A case study of
shared-control teleoperation. InProceedings of the 2002
IEEE /RSJ International Conference on Intelligent Robots
and Systems. To appear.
Goodrich, M. A.; Olsen, D. R.; Crandall, J. W.; and Palmer,
T. J. 2001. Experiments in adjustable autonomy. InPro-
ceedings of the IJCAI01 Workshop on Autonomy, Delega-
tion, and Control: Interacting with Autonomous Agents.
Karandikar, R.; Mookherjee, D.; Ray, D.; and Vega-
Redondo, F. 1998. Evolving aspirations and cooperation.
Journal of Economic Theory80:292–331.
Pashler, H. E. 1997.Engineering Psychology and Human
Performance. The MIT Press.
Sheridan, T. B. 1992.Telerobotics, Automation, and Hu-
man Supervisory Control. MIT Press.
Simon, H. A. 1996.The Sciences of the Artificial. MIT
Press, 3rd edition.
Stimpson, J. L. 2002. Satisficing solutions to a multi-agent
social dilemma. Master’s thesis, Brigham Young Univer-
sity, Provo, UT, 84602, USA.
Stirling, W. C.; Goodrich, M. A.; and Packard, D. J. 2000.
Satisficing equilibria: A non-classical approach to games
and decisions.Autonomous Agents and Multi-Agent Sys-
tems Journal. To appear.
Wickens, C. D., and Hollands, J. G. 2000.Engineering
Psychology and Human Performance. Prentice Hall, third
edition.


