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ABSTRACT
Leveraging the abilities of multiple affordable robots as a
swarm is enticing because of the resulting robustness and
emergent behaviors of a swarm. However, because swarms
are composed of many different agents, it is difficult for a hu-
man to influence the swarm by managing individual agents.
Instead, we propose that human influence should focus on
(a) managing the higher level attractors of the swarm system
and (b) managing trade-offs that appear in mission-relevant
performance. We claim that managing attractors theoret-
ically allows a human to abstract the details of individual
agents and focus on managing the collective as a whole. Us-
ing a swarm model with two attractors, we demonstrate this
concept by showing how limited human influence can cause
the swarm to switch between attractors. We further claim
that using quorum sensing allows a human to manage trade-
offs between the scalability of interactions and mitigating the
vulnerability of the swarm to agent failures.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems, coherence and coordination;
H.1.2 [Models and Principles]: User/Machine Systems—
human factors; I.2.9 [Artificial Intelligence]: Robotics—
operator interfaces, intelligent vehicles

Keywords
Human-swarm interaction, managing attractors of dynamic
systems, bio-inspired swarms, quorum sensing

1. INTRODUCTION
Swarms provide complex behaviors out of simple agents

following simple rules. The ability for swarms to adapt and
produce complex behaviors allows us to build multi-agent
systems that are flexible and resilient. However, two impor-
tant problems emerge when we try to allow humans to man-
age robot swarms. First, in contested or noisy real-world
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environments where bandwidth is limited, it is necessary to
interact with only a subset of the agents in order to achieve
desired behaviors. Thus operators need ways to manage a
swarm by managing the collective emergent behaviors while
only requiring communication with a subset of the swarm.
Second, as swarms grow in size it becomes increasingly dif-
ficult for a human operator to manage the behavior of a
swarm by controlling individual agents.

The swarm model presented in [17] has three properties
that make it ideal for studying human interaction with robot
swarms. First, the model (a) uses an abstract but appropri-
ate model for how well a robot can sense neighboring robots
and (b) matches the mobility characteristics of fixed-wing
unmanned aerial vehicles and a large class of fixed-speed
non-holonomic robots. Second, the model has been shown
to have two emergent collective behaviors: a flock and a
torus. Third, the model can be extended, as shown below,
to include bio-inspired quorum-signaling, which lends itself
to human interaction through managing trade-offs between
scalability and vulnerability of the swarm. Note that this
property is essential for this paper because the results do
not include experiments with real humans or real robots.

The second property is essential for human-swarm interac-
tion because it allows a huge number of details to be ignored
when managing the swarm. The behavior of any individual
agent in a swarm can be difficult to understand and ex-
plain due to the highly dynamic interactions with neighbor-
ing agents, but by managing the collective as a whole, much
of this difficulty can be avoided. We empirically show that
there exists a critical point in the parameter space and show
that managing the swarm at this critical point allows both
a flock and a torus to form. Through empirical simulations,
we show that controlled switches between a torus and a flock
are possible, given a significant number of human-influenced
agents in the swarm.

The third property is also essential for human interaction
with robot swarms because it is necessary to balance the
desire to allow the swarm to be responsive to human input
without becoming a centralized system with a single point of
failure. To increase the scalability of the swarm we introduce
the notion of quorum sensing, as found in biological systems
and show how this can be applied to a swarm. In addition to
increasing the scalability of human-swarm interactions, we
show evidence that quorum sensing provides a mechanism
for limiting the vulnerability of the swarm to agent failure.

The main contribution of this paper is a theoretical and
empirical exploration of how human interaction with robot
swarms can operate at a high level of abstraction. Claims
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in the paper are supported by so-called “Oz of Wizard” em-
pirical studies [28] that explore how an idealized human can
manage swarms by managing attractors and trade-offs.

2. SWARM MODEL
The experiments and simulations in this paper build upon

the model of swarming presented in [17]. This model ex-
hibits both a flock and torus behavior, is similar to many
biological models of swarming behavior, and has dynamics
similar to those of actual robots. The model consists of a
set of N agents with the dynamics for agent i given by

ẋi = s · cos θi, ẏi = s · sin θi, θ̇i = ωi (1)

where [xi, yi]
T ∈ R2 is the agent’s position, θi ∈ [−π, π] is

the agent’s angular heading, s is the constant agent speed,
and wi is the agent’s angular velocity. For simplicity we
define vi = [cos(θi), sin(θi)]

T and ci = [x, y]T . Let A(t) =
aij(t) denote the sensory adjacency matrix where aij(t) = 1
means that agent j is visible to agent i at time t. Each aij(t)
is determined at time t according to a Bernoulli random vari-
able with parameter pij(t) = min

(
1, 1/dij(t)

)
where dij(t)

is the Euclidean distance between agents i and j at time t.
Similar to the Couzin model of biological swarms [9] and

the Reynold model of synthetic agents [26], agents in this
model react to neighbors within three different zones: re-
pulsion, orientation, and attraction. The neighbors in these
zones are determined by

nr
i = {j : ‖ci − cj‖2 ≤ Rr, aij = 1} (2)

no
i = {j : ‖ci − cj‖2 ≤ Ro, aij = 1} (3)

na
i = {j : aij = 1} (4)

where nr
i , no

i , and na
i are the sets of agent i’s neighbors in

the regions of repulsion, orientation, and attraction, respec-
tively. The parameters Rr and Ro are the associated radii
of repulsion and orientation. The angular velocity ωi is de-
termined by first computing the repulsion, orientation, and
attraction vectors

ur
i = −

∑
nr
i

cj − ci
‖cj − ci‖22

(5)

uo
i =

vi +
∑

no
i
vj

‖vi +
∑

no
i
vj‖2

(6)

ua
i =

∑
na
i
(cj − ci)

‖
∑

na
i
(cj − ci)‖2

. (7)

Next, the desired heading vector ui is computed as ui =
ur
i + uo

i + ua
i . Finally, angular velocity, ωi, is computed as

ωi = k(atan2(uy
i , u

x
i )− θi) (8)

where k is a positive gain and atan2(uy
i , u

x
i ) is the two-

argument arctangent that places the angle in the correct
quadrant by considering the y and x components of ui.

We note three important aspects of this model that give
confidence that the results will extend to real robots. First,
because we limit (atan2(uy

i , u
x
i )− θi) to the interval [−π, π],

the magnitude of ωi is bounded by kπ. Thus the agent dy-
namics match the Dubins curve model which is often used
for actual UAV path planning and applies to some constant-
speed, non-holonomic ground robots [10], lending some eco-
logical validity to our experimental results below. Second,
the method of choosing neighbors is similar to the random

(a) Torus (b) Flock

Figure 1: The two group types formed by our model.
Agent headings are represented by straight lines.

neighbor model used in [1] which replicated field observa-
tions of starlings and is relevant for robot systems where
visibility and sensing distance-limited. Third, we note that
the performance in this swarm model is robust to small devi-
ations in model parameters and noise levels [16], indicating
that results are likely to be applicable on real robots.

2.1 Group metrics
In order to define the two different attractors of the model

we use two metrics of group behavior, namely, group angu-
lar momentum, mgroup, and group polarization, pgroup [9,
17]. The mgroup is a measure of the degree of rotation of
the group about its centroid and is a value between 0 and
1. The mgroup of a swarm reaches a maximum value of 1
if all the agents are rotating around the group centroid in
the same direction. The pgroup measures the degree of align-
ment among individuals within the group and is also a value
between 0 and 1. The pgroup of a swarm reaches a maximum
value of 1 when all the agents have the same heading.

2.2 Group types
When Ro > Rr, and agents are started from random ini-

tial conditions, simulation results only exhibit two group
types: a torus and a flock (see Figure 1). A stable torus
is characterized by pgroup close to 0 and mgroup close to
1. It has a relatively stationary group centroid, and either
a clockwise or counterclockwise rotation. A swarm in the
torus formation could be used for omnidirectional sensing
of a target, perimeter monitoring, or as a fixed-wing UAV
loitering command.

A stable flock is characterized by pgroup close to 1 and
mgroup close to 0. It has a moving centroid with all of the
agents heading in the same general direction. A swarm in
the flock formation allows a swarm to quickly move from one
location to another and could be used for search or tracking.

For a stable flock and torus, mgroup and pgroup are in-
versely related; however, when the swarm is perturbed, these
values may fluctuate widely. To enable classification of swarm
behaviors despite human influence, we define the group type
of the swarm as follows:

type =

{
torus, if pgroup < 0.25 and 0.75 < mgroup

flock, if mgroup < 0.25 and 0.75 < pgroup.
(9)

These values were chosen to ensure the fundamental char-
acteristics mentioned previously were visually evident.1

1Unless otherwise noted, N = 100, s = 5, k = 0.5, Ro = 8,
and Rr = 1. Simulations used a discrete time approximation
with simulation time step of ∆T = 0.1 seconds.

91



(a) (b)

Figure 2: The group momentum and polarization as
the radius of orientation is increased and decreased.

3. ATTRACTORS AND HYSTERESIS
Kerman et al. [17] show that the torus behavior is a fun-

damental attractor of the swarm model presented above. In
this section we briefly summarize work that is under review
for a journal that argues that the flock behavior is also an
attractor of the swarm model. This attractor is fundamen-
tally caused by the orientation dynamics, with attraction
and repulsion simply causing the flock to stay cohesive but
avoid collisions. Being able to treat a flock and torus as ba-
sic attractors of a swarm system means that a human can
treat the torus and flock at an abstract level as cohesive units
without having situation awareness of (or even observing [2])
all individual agents.

To argue that the flock is an attractor, consider a discrete
time approximation of the system with only orientation dy-
namics (ui = uo

i in Equation (8)). The angular velocity θ̇
can be approximated by

θ̇i =
k

ni + 1

∑
j

(θj − θi) (10)

where ni is the number of neighbors of agent i. When the
underlying orientation graph is connected, (10) is known to
cause all agents to converge to a common heading [21]. Sim-
ulation results show that even when the orientation graph
dynamically switches, agents converge to a common head-
ing. Thus, agents following the dynamics in Equation (10)
will converge to a stable flock, providing strong evidence
that the flock behavior is an attractor of the swarm model.

3.1 Hysteresis
Systems that have inherent memory are said to exhibit

hysteresis. Couzin noted hysteresis in his model [9], so there
is reason to believe that hysteresis will be found in our model
as well. Figure 2 shows the results of incrementally changing
the radius of orientation, Ro. To obtain these results, the pa-
rameter Ro was incremented or decremented by 1 unit every
1000 time steps, and the average mgroup and pgroup was cal-
culated over 15 replicates. As shown in Figure 2, the group
behavior depends on the previous history of the group—this
is because trajectories in the state space2 are characterized
by the model parameters, so changing Ro changes the basins
of attraction for the flock and torus. Interestingly, when Ro

decreases, the flock does not ever switch to a torus but sim-
ply remains a flock until Ro = 0 at which point the flock
turns into an unoriented cyclic group with agents rotating
in both directions around the swarm’s centroid.

2The state is the agents’ positions and headings.

Figure 3: Probability of swarm forming a flock or a
torus as a function of radius of orientation.

This form of hysteresis is important because is indicates
that the attractors of the swarm exhibit what Couzin called
collective memory. This memory is important if the human
is going to manage a swarm by managing the attractors for
two reasons. First, if the attractors are unstable, the human
will not be able to form an accurate and reliable mental
model of the swarm’s behavior. Second, if the attractors are
stable, the human can neglect the swarm, meaning that the
human need not exert continuous control.

Unfortunately, this form of hysteresis is found by increas-
ing or decreasing the parameter Ro for all agents, which
requires the human to act as a centralized controller of the
agents by broadcasting global parameters. Fortunately, it is
apparent from inspecting Figure 2 that there are two differ-
ent attractors that can be obtained when Ro is roughly in
the interval (4, 12). We use this in the next sections.

3.2 Tipping point
Because we desire to be able to switch between the torus

and flock attractors without changing model parameters, we
ran an experiment to determine whether parameter values
exist that allow both group types to emerge. We ran a series
of simulations using N = 100, k = 0.5, s = 5, Rr = 1 and
varied the radius of orientation. Each simulation was run
for 200 seconds. One hundred simulations were performed
for values of Ro between 0 and 30. For each iteration, agents
were given random initial headings with random initial po-
sitions uniformly distributed over a 20 unit×20 unit square.

The percentage of trials that converged to a torus and to
a flock were calculated for each value of Ro and are shown
in Figure 3. The value Ro = 8 resulted in an approximately
equal proportion of torus and flock group types. Thus,
Ro ≈ 8 is the tipping point between the basins of attrac-
tion for the torus and flock, meaning that when a swarm is
started from random initial conditions, both attractors are
approximately equally probable. This equal probability sug-
gests that having the human inject randomization and con-
straints into the swarm is a sufficient condition for allowing
the human to determine what behavior will be exhibited.

The hysteresis exhibited when R0 = 8 and the tipping
point property at the same parameter value indicate that
it is possible for a human to change the collective behavior
of the swarm by simply perturbing a subset of the agents
enough. For this reason we use Ro = 8 for the remainder
of this paper, but note that our results are robust to small
deviations in this and other model parameters.
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4. SWITCHING BETWEEN ATTRACTORS
UNDER HUMAN INFLUENCE

In this section we explore two leadership strategies that
enable a human to switch between the flock and torus attrac-
tors. Because the torus and flock are both stable collective
behaviors (within an appropriate region of the parameter
space) it is interesting to see how much effort is needed to
push the swarm out of one stable attractor and into another.
Additionally, having a swarm that can switch between differ-
ent stable formations affords the operator increased flexibil-
ity in using the swarm. For example, switching from a torus
to a flock, and then back to a torus, would allow a loitering
swarm to transition to a stable flock, quickly move to a new
location, and then switch to a stable torus to start monitor-
ing that location. To investigate whether these controlled
collective behavior switches can be performed when com-
munication is limited, we assume that the human can only
interact with a subset of the swarm. We use a refined ver-
sion of the stakeholders that we have used in prior work [25,
13], modified to support switching between attractors.

4.1 Stakeholders
Stakeholders are agents in the swarm that are influenced

by both the human and by other agents. Each stakeholder
has a priority parameter ρ ∈ [0, 1] that determines the prior-
ity of human influence over influence from other agents. If ρ
is high, then the stakeholder responds more to human com-
mands. If ρ is low, then the stakeholder responds more to
its neighbors. Human influence is applied via teleoperation
through a waypoint q.

Stakeholders can be led using two different methods: at-
traction and orientation. Stakeholders that are led by at-
traction have the desired direction ui = usa

i +uo
i +ur

i where

usa
i =

ρq̂i + (1− ρ)ua
i

‖ρq̂i + (1− ρ)ua
i ‖2

and q̂i =
q − ci
‖q − ci‖2

. (11)

The vector q ∈ R2 is the human-generated waypoint, ρ ∈
[0, 1] is priority parameter, and ua

i , uo
i , ur

i are the usual
attraction, orientation, and repulsion influences described
previously in Equations (5)–(7). This causes stakeholders to
continue to orient with their neighbors while adjusting their
positions to be closer to the human-specified waypoint.

Stakeholders that are led by orientation have the desired
direction ui = ua

i + uso
i + ur

i where

uso
i =

ρq̂i + (1− ρ)uo
i

‖ρq̂i + (1− ρ)uo
i ‖2

. (12)

This causes stakeholders to continue to be attracted to their
neighbors’ positions while adjusting their headings towards
the human-specified waypoint. We use the notation M to
denote the number of stakeholders.

4.2 Methods
To determine how best to switch the swarm from one

group type to the other, we ran simulations with values of
M ranging from 10 to 100 in 10 step increments and val-
ues of ρ ranging from 0.1 to 1 in 0.1 step increments. Both
orientation and attraction leadership strategies were tested
using a constant waypoint command. These methods sys-
tematically explore the bounds of what an idealized human,
which we denote as an OoWiz after the Oz of Wizard ap-
proach [28], can do to switch between attractors. Ten trials

were performed for each M and ρ pair, and for each leader-
ship strategy. To initialize the simulations, agent positions
were distributed randomly in a 20 unit×20 unit square cen-
tered at the origin. Initial orientations varied depending on
whether the group began as a torus or flock.

When switching from a flock to a torus, all agents were
given random initial positions with initial headings θi = 0,
∀i. After allowing 25 seconds for the group to stabilize,
the constant input q̂ = cg(25) + [0, 10]T , where cg(25) is
the group centroid after 25 seconds, was applied to each
stakeholder to encourage the group to turn and form a torus.
When switching from a torus to a flock, each agent was
given a random initial position ci with initial heading θi =
atan2(cxi , c

y
i ) + π/2 to form a counterclockwise torus. After

letting the group stabilize for 25 seconds, an arbitrarily large
constant control input, q̂ = cg(25)+[10, 000, 0]T , was applied
to the stakeholders to influence them to form a flock. We
gave the swarm 200 seconds to switch group types, removed
the OoWiz human influence, and gave the swarm 50 seconds
to stabilize to evaluate whether the swarm would remain in
the desired group type.

4.3 Switching from Flock to Torus
Leadership by attraction was effective for switching from

a flock to a torus. Figure 4(a) shows the percentage that
switched when under the influence of the OoWiz human.
Figure 4(b) shows the percentage that switched after the
OoWiz human input was removed. As can be seen, for suffi-
ciently high M and ρ, the group successfully switched. How-
ever, there is a noticeable drop in the number of simulations
that switched and remained for ρ = 1 and high values of M .
We investigated this and found that because the OoWiz hu-
man was explicitly controlling the attraction dynamics, the
agents formed a flock-like structure that circled around the
reference input. Because the agents never spread out into
a full torus, when the control input was removed the group
returned to a flock formation.

When leading stakeholders by orientation, we found a
large discrepancy between the number of simulations that
switched to a torus and the number of simulations that re-
mained as a torus (see figures 4(c) and 4(d)). We investi-
gated this phenomenon and found that the human influence
on the orientation dynamics often caused stakeholders to ro-
tate in different directions around the desired torus centroid.
This behavior prevents the torus from fully forming and is
undesirable for actual robots because of the risk of head-
on collisions. After the human influence was removed, the
stakeholders were able to orient properly, causing a torus to
form. This is an example of what Walker et al. refer to
as neglect benevolence [31]. Neglect benevolence says that,
in some cases, the swarm must be allowed to self stabilize
before receiving a new command from the human.

4.4 Switching from Torus to Flock
When switching from a torus to a flock (see Figure 5),

leading stakeholders by orientation worked much better than
leading stakeholders by attraction. We examined these re-
sults and found that leading stakeholders by attraction was
successful in causing the agents to switch from a torus to a
flock. However, the attraction input q̂ caused the stakehold-
ers to slowly pull away from the rest of the group causing the
flock to elongate. Thus, when the human influence was re-
moved, the flock was unstable and usually reformed a torus.
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(a) Lead by attraction (b) Lead by attraction

(c) Lead by orientation (d) Lead by orientation

Figure 4: Switching from flock to torus.

(a) Lead by attraction (b) Lead by attraction

(c) Lead by orientation (d) Lead by orientation

Figure 5: Switching from torus to flock.

Figures 5(a) and 5(b) show that except for limited areas of
the parameter space, simulations that switched to a flock
usually switched back to a torus. Using leadership by orien-
tation eliminated this phenomenon and caused the agents to
form a less elongated flock that remained stable after human
influence was removed (see figures 5(c) and 5(d)).

4.5 Discussion
Based on these results, we lead stakeholders by orientation

when switching from a torus to a flock, and by attraction
when switching from a flock to a torus, for the remainder
of this paper. This is a potential problem when viewed in
light of our assumption that we want the human to be able
to manage a swarm at a high level of abstraction because
invoking a switch between attractors requires the human to
choose what type of influence to exert. A simple solution
to this problem is to allow the human to indicate, through
a GUI or some other means, a desire to change from one
structure to another. Given the current structure and the
desire to switch structures, the correct controller can auto-
matically be used to facilitate the switch.

5. QUORUM SENSING
The previous section showed that an OoWiz human could

manage a swarm by switching between attractors and ar-
gued that the HRI principles of neglect tolerance and neglect
benevolence apply to such a system. Unfortunately, doing
so required the human to send information to a large num-
ber of robots in the collective. In this section, we propose
a way to decrease the number of agents that a human must
influence, and find a design parameter that allows a human
to manage a trade-off between two important properties of
the collective: scalability and vulnerability.

To accomplish this, we use the concept of quorum sensing,
which is used in biological systems to regulate the emergence
of different behaviors depending on external thresholds [6,
7]. To facilitate a discussion of quorum sensing, we utilize
the taxonomy of agent types presented in [12]. An agent’s
type determines how it responds to human influence, exter-
nal influence, and other agents. Agents can be divided into
two classes: human-aware agents who can respond to human
input and human-blind agents who do not respond to human
input. In this section we explore the properties of a hetero-
geneous swarm in which we have both human-aware agents
and human-blind agents. Specifically, we investigate using
stakeholders, a kind of human-aware agent, and a particular
kind of human-blind agent called a type-aware agent.

5.1 Type-aware agents
Type-aware agents are influenced by both human-aware

agents and human-blind agents, but are not influenced by
the human. Type-aware agents have an awareness parame-
ter α ∈ [0, 1] that determines the degree of type-awareness
of the agent. If α is high, then the type-aware agent is influ-
enced more by human-aware agents than by other human-
blind agents. If α is low, then the type-aware agent is influ-
enced more by other human-blind agents and less by human-
aware agents. For the remainder of this section we assume
that in the quorum sensing model, agents are either stake-
holders or type-aware agents. Thus, for a swarm of size N
with M stakeholders, we have N −M type-aware agents.

Type-aware agents follow the normal agent dynamics de-
scribed in Section 2 unless one or more of their neighbors are
stakeholders. Each type-aware agent i uses quorum sensing
to adjust its awareness parameter αi. To incorporate quo-
rum sensing into the agent dynamics, we define a quorum
threshold Qi for type-aware agent i. If type-aware agent i
has more than Qi stakeholder neighbors, then it will tem-
porarily increase its type awareness by setting αi = αmax

i ,
and maintain this increased type awareness until the num-
ber of stakeholders within its sensing range falls below Qi,
at which point the agent sets αi = αmin

i . We use αmax
i and

αmin
i to denote the maximum and minimum awareness for

agent i. The parameter αmax
i determines how much agent i

is influenced by stakeholder neighbors if it senses a quo-
rum. The parameter αmin

i determines how much agent i is
influenced by stakeholder neighbors if it does not sense a
quorum. Thus, if we let Ni = {j : aij = 1} represent the set
of neighbors of agent i, and S be the set of stakeholders in
the swarm, then for any type-aware agent i we have

αi =

{
αmax
i , if Qi < |Ni ∩ S|
αmin
i , if |Ni ∩ S| ≤ Qi.

(13)
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The desired direction vector of type-aware agent i is

ui =
uta
i

‖uta
i ‖2

+
uto
i

‖uto
i ‖2

+ ur
i (14)

where the uta
i and uto

i are defined in the footnote3, Ni \ S
represents the set of all non-stakeholder neighbors of agent i,
and ur

i is given by Equation (5). Thus, the type-aware
agent’s attraction and orientation vectors are weighted be-
tween neighbors that are stakeholders and neighbors that
are not stakeholders by the awareness parameter αi.

The effect of an agent increasing αi is to increase the in-
fluence of stakeholders, thereby amplifying human influence
over the swarm. Because this amplification only happens
when there are Qi or more stakeholders in a type-aware
agent’s sensing neighborhood, the threshold Qi acts as a
nonlinear switch that improves the responsiveness of the
swarm once enough agents are influenced by the human. We
demonstrate empirically that this nonlinear switch based on
the threshold Qi improves the scalability of human influence
over a swarm. Note that there is a trade-off between the re-
sponsiveness and the vulnerability of a swarm. A swarm
that is highly responsive to changes in behavior made by
only a few agents implies that if an adversary compromises
a small percentage of the agents, or if a small percentage of
the agents fail, then the swarm will be vulnerable to per-
forming unwanted behaviors. We demonstrate that the em-
bedded quorum response can act as a mechanism to limit
the vulnerability of the swarm to agent failures.

5.2 Improved Scalability
To demonstrate improved scalability of human-swarm in-

teractions, we compare how well the quorum sensing model
(the model with N −M type-aware agents) and the stake-
holder model (the model with zero type-aware agents) allow
switches between attractors. To investigate the scalability
of these two models we repeated the experiment described in
Section 4 using both the stakeholder model and the quorum
sensing model for swarm sizes of N = 100, 200, 300, and 400
agents. We varied M from 10 to N/2 in 10 agent increments
and varied ρ from between 0.1 and 1. Ten trials were per-
formed for each M and ρ pair. When switching from torus
to flock, we led the M stakeholders by orientation. When
switching from flock to torus, we led the M stakeholders
by attraction. To limit the number of parameters in these
simulations we set αmin

i = 0, αmax
i = 1, and Qi = 0, ∀i.

Figure 6 shows the minimum number of stakeholders nec-
essary to switch group types and have 100% of the simula-
tions remain in the new group type for N = 100, 200, 300,
and 400. Results are shown for switching from a torus to a
flock where M stakeholders are led by orientation (t2fo) and
for switching from a flock to a torus where M stakeholders
are led by attraction (f2ta). As the size of the swarm in-
creases, the difference in scalability between the two models
is very distinct. We see that switching between attractors
using the quorum sensing model scales much better to larger
swarm sizes. As the size N of the swarm increases, the num-
ber of agents that the human needs to interact with stays rel-
atively constant for the quorum sensing model, but rapidly
increases for the stakeholder model.

3uta
i = αi

∑
j∈Ni∩S(cj−ci)

‖
∑

j∈Ni∩S(cj−ci)‖2
+ (1− αi)

∑
j∈Ni\S

(cj−ci)

‖
∑

j∈Ni\S
(cj−ci)‖2

uto
i = αi

vi+
∑

j∈Ni∩S vj

‖vi+
∑

j∈N∩S vj‖2
+ (1− αi)

vi+
∑

j∈Ni\S
vj

‖vi+
∑

j∈Ni\S
vj‖2

Figure 6: Minimum number of stakeholders, M ,
needed to switch from torus to flock where stake-
holders are led by orientation (t2fo) and to switch
from flock to torus where stakeholders are led by
attraction (f2ta). Results compare the stakeholder
model with the quorum sensing model.

5.3 Limited vulnerability
We now investigate whether using a quorum threshold al-

lows us to limit the vulnerability of the swarm. We define
limited vulnerability as the requirement that a swarm has
an upper bound on the number of agents that can fail and
not adversely affect the collective behavior.

To demonstrate that quorum sensing provides a way to
limit the vulnerability of a swarm, we ran a series of exper-
iments where M stakeholders attempt to switch the group
type for different quorum thresholds Q. We experimented
with values of Q between 0 and 6 and values of M between
0 and 50. Because of the large number of parameters in our
model we restricted our analysis to parameter settings found
to reliably allow the collective to switch between group types
and remain switched. We used ρ = 0.7 when switching from
a flock to a torus and ρ = 0.5 when switching from a torus
to a flock. We led the agents by orientation when switching
to a flock and by attraction when switching to a torus. We
ran 10 replicates of each M and Q combination and used
αmax = 1 and αmin = 0. We compare these results with the
stakeholder model.

Figure 7 shows the probability of the swarm switching
from a torus to a flock and from a flock to a torus. From
this figure we see that the probability of switching decreases
as Q increases. If we consider the stakeholders as malfunc-
tioning or adversarial agents, then these results show that
the quorum threshold Q provides a tunable parameter that
controls the vulnerability/responsiveness of the swarm. By
choosing a value for Q that is sufficiently high, we can limit
the responsiveness of the swarm and prevent the swarm from
switching group types unless there are sufficient agents mak-
ing the change. Alternatively, if the goal is to have a swarm
that is highly responsive, a low quorum threshold provides
controlled switches with fewer agents.

5.4 Summary
We have shown that quorum sensing improves the scal-

ability of human-swarm interactions. We have additionally
shown that the quorum threshold Q provides a mechanism
for limiting the vulnerability of a swarm. In light of our goal
to find ways for a human to manage a bio-inspired robot
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(a) Probability of switching from torus to
flock

(b) Probability of switching from flock to
torus

Figure 7: Switching between collective behaviors us-
ing only M stakeholders, or using M stakeholders
and quorum sensing with Q = 0–6 (N = 100 agents).

swarm, these results indicate that it is possible for a human
to select a switching probability before execution that bal-
ances scalability and vulnerability. Although this violates
our goal of avoiding having a human broadcast parameters
to the collective, it is useful since it allows a human to man-
age a trade-off prior to execution and still manage the flock
and torus using a set of stakeholders during run-time.

6. RELATED WORK
Swarm models have been explored in a variety of fields

and are typically capable of either flocking [26, 30, 23] or
cyclic behavior [20, 19]. The model described in this paper
is one of a small set of swarm models that exhibit multiple
group behaviors [9, 29, 27]. This research concentrates on
the flock and torus behaviors; however, there are other types
of swarm behavior seen in the literature. Couzin’s model [9]
has four group types: swarm, torus, dynamic parallel group,
and highly parallel group. Couzin’s swarm behavior is anal-
ogous to a torus without orientation in our model, and the
dynamic and highly parallel groups are simply two flavors of
flocking. Strömbom [29] demonstrates that attractive forces
between agents are sufficient to form swarms, flocks, and
mills (torus-like formations where agents do not all rotate
in the same direction). Strömbom also shows that adding a
blind spot creates two additional group types: a torus and an
interweaving chain-like structure. Romero et al. [27] present
a swarm model that produces a swarm, a torus, a flock, and
a flock that rotates around a stationary point. If we re-
strict our attention to models without centralized control,

global information, or explicit inter-agent communication,
the group types mentioned above are the only group types
we have found in the literature that emerge from swarm
models capable of exhibiting multiple behaviors.

Couzin et al. [8] and Conradt et al. [5] explore leading a
flock with a small number of informed agents. Couzin et al.
show that their method of leading a flock scales well as group
size increases, but do not consider leading a torus or chang-
ing group types. In the controls community much research
focuses on consensus protocols [24] for flocking [23], but we
have not found any research involving switching between at-
tractors without communication or centralized control.

Some work has been done with communication-free flock-
ing, but this work typically creates flocks that can be con-
trolled by one or a few agents, which makes the flock vul-
nerable to leader failure. Gervasi and Prencipe [11] study
distributed coordination and control without any communi-
cation or shared reference frame, but require that all agents
can identify the leader agent and can be efficiently controlled
by a single agent. Jadbabaie [15] provides mathematical re-
sults on the convergence of the Vicsek flocking model [30]
to a single group direction as well as convergence conditions
for the group to converge to a single leader’s direction.

Recent work has compared different methods for human-
swarm interactions, but has either focused on flocking [25]
or has relied on connectivity maintenance, rendezvous, and
deployment algorithms that require a communication net-
work between agents [18]. Nunnally et al. explore band-
width constraints on swarm-to-human communications, but
assume human communication with the entire swarm [22].
Our work extends and enhances the work by Kerman et al.
[17], which provided preliminary results on human interac-
tion with the flock and torus behaviors.

Several researchers have studied the effects of heterogene-
ity and quorum sensing on multi-agent interactions. Wu [3,
4] investigates the importance and role of heterogeneity in
robot teams and shows that increased agent variation in task
allocation problems can increase stability. Kumar [14] uses
mathematical models of bio-inspired foraging tasks and quo-
rum sensing to develop control strategies for redistributing
agents among multiple sites, but does not investigate human
influence over the agent behaviors.

7. CONCLUSIONS
We have presented a model of swarming that has two

emergent behaviors: a flock and a torus. We also provided
evidence that these behaviors are fundamental attractors
of the swarm dynamics. Because these behaviors are at-
tractors, a human operator can interact with the swarm by
managing these attractors. We propose that human-swarm
interactions should focus on managing higher level attractors
of the swarm systems because it allows a human to abstract
the details of individual agents and focus on managing the
collective as a whole. We extended this work by presenting
an application of quorum sensing to human-swarm interac-
tions that increases the scalability of human-swarm interac-
tions as well as provides a mechanism for allowing a human
to balance a trade-off between vulnerability and responsive-
ness of the swarm to agent failures. Both the stakeholder
and the quorum sensing models demonstrate the ability for a
human to manage a swarm by managing its emergent behav-
iors. Future work should improve our static OoWiz model
by examining dynamic interactions. In particular, user stud-
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ies with humans will be necessary to fully understand the
implications of controlling swarms by managing attractors.
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