
A Hierarchical Flight Planner for Sensor-Driven UAV Missions

Spencer Clark and Michael A. Goodrich

Abstract— Unmanned Aerial Vehicles (UAVs) are increas-
ingly becoming economical platforms for carrying a variety
of sensors. Building flight plans that place sensors properly,
temporally and spatially, is difficult. The goal of sensor-driven
planning is to automatically generate flight plans based on
desired sensor placement and temporal constraints. We present
a hierarchical sensor-driven flight planning system capable of
generating 2D flights that satisfy desired sensor placement and
complex timing and dependency constraints. The system makes
use of several well-known planning algorithms and includes a
user interface. Results demonstrate that the algorithm is general
enough for use by a human in several simulated wilderness
search and rescue scenarios.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are frequently used
primarily as sensor platforms, meaning that the UAV is used
to carry a sensor to a particular location at a particular
time. UAVs are capable of carrying a wide variety of
sensors, including the following: cameras (visible [1], [2] and
other spectrums [3]), radio antennas, laser range finders [4],
radars [5], and radiation [6] and chemical [7] detectors.

In order to accomplish a task using UAV-mounted sensors,
the UAV’s flight path must place the relevant sensors effec-
tively both temporally and spatially. A camera, for example,
should be positioned so that targets are visible within the
frame. Often, this is accomplished by a human operator fly-
ing remotely or by an autopilot flying a series of waypoints,
although there exist algorithms for placing specific sensors at
specific locations for specific applications [8]–[10]. Planning
(or remotely flying) a path that places sensors effectively
isn’t easy. This means that, often, the operator must imagine
himself or herself in the position of the plane and then take
into account a variety of factors including sensor properties
(field of view, useful range) and UAV kinematics (airspeed,
turning radius).

Current algorithms are either difficult, error-prone, require
a high level of attention from operators or they are specific
to particular applications and particular sensors. We propose
a general approach to planning that is based on a belief that
users with minimal training can be empowered to easily
create sophisticated flight plans by expressing their high-
level sensor goals and constraints to a planning program
(see Figure 1). We call this process sensor-driven planning.
This paper presents both a user interface for specifying flight
goals and constraints as well as a general-purpose algorithm
for generating flight plans that accomplish the goals while
satisfying the constraints.

II. PROBLEM FORMULATION / TAXONOMY

Since the set of possible UAV flight plans is large and we
want users to be able to express any desired flight to the

Handled By Humans

Goals /

Tasks

Desired

Sensor

Placement

Automatic

UAV Flight

Plan
UAV Flight

Handled By Humans

Goals /

Tasks

Desired

Sensor

Placement

Automatic

UAV Flight

Plan
UAV Flight

Current State of Affairs

Desired State of Affairs – Sensor Driven Planning

Fig. 1. Currently, the bulk of the UAV flight planning process is handled
by humans. We propose that sensor-driven planning enables users to focus
on sensor-based flight goals while letting the computer plan the flight.

planner, it’s necessary to come up with a small set of simple
building blocks that can describe a wide range of useful flight
plans. In this section, we present a taxonomy of sensors
and tasks that serve as the basis for the general purpose
planner. This taxonomy is not only useful for specifying
design requirements, it also enables us to create a hierarchical
planner that uses task- and sensor-specific algorithms as
needed by the problem.

As discussed previously, UAVs can carry many types of
sensor. Fortunately, we can classify them into more general
canonical sensors based on how a UAV must fly in order
to use them effectively. Broadly speaking, a sensor is either
directional (like a camera) or omni-directional (like many
antennas). Directional sensors need to be pointed at their
target whereas omni-directional sensors just need to be
within range of it. Both sensor types are parameterized by a
maximum usable distance, operationally defined as the maxi-
mum distance at which flight tasks can be accomplished with
the sensor. Additionally, directional sensors are characterized
by a “sensing volume” — for cameras, this is known as
field of view. For the purposes of UAV flight planning, we
can use these simple characteristics to represent almost any
sensor. The planner doesn’t need to know anything about the
sensors beyond their directionality, maximum range, and (if
applicable) sensing volume.

There are a huge number of tasks that a user might want
to accomplish with their UAV’s sensors. We can’t enumerate
all of them in a user interface, so instead we propose a set
of canonical tasks that can act as the building blocks for
more complicated tasks. The canonical tasks are coverage
and sampling.1 The coverage task covers or senses an entire
area using a sensor. Aerial photography as in [11] is an

1Note that for convenience we have added a third task, fly through, in
our implementation. This task simply requires that the UAV fly within its
area at least once. The addition of this task does not violate our taxonomy
as it is really just a degenerate coverage or sampling task.

2013 IEEE RO-MAN: The 22nd IEEE International Symposium on
Robot and Human Interactive Communication
Gyeongju, Korea, August 26-29, 2013

WeM1T2.3

978-1-4799-0509-6/13/$31.00 ©2013 IEEE 509

Directional Omni-directional
Coverage Aerial photography Signals intelligence

(SIGINT)
Sampling Pipeline construction

monitoring
Meteorology

TABLE I
EXAMPLES OF THE COMBINATIONS OF CANONICAL TASKS AND

SENSORS.

example of a coverage task. The sampling task uses a sensor
to gather a number of samples from an area as in [12]. The
set of canonical sensors crossed with the set of canonial
tasks provides four fundamental sensing options (see table I).
Although these tasks seem simple, it is possible to represent
a huge spectrum of UAV sensor tasks using the canonical
tasks (and a few scheduling parameters) as building blocks.

The canonical tasks can be configured with two different
types of scheduling constraints: dependencies on other tasks
and valid time windows. When a task α has a dependency
on task β it means that α must not be performed until β has
been performed. Valid time windows are intervals of time
specified by a starting time and an ending time with the
ending time strictly greater than the starting time. A flight
task must be configured with one or more valid time windows
which specify times during which the task may be flown.

There is one final building block in our taxonomy: areas,
including task areas and no-fly (obstacle) areas. Task areas
should be defined on areas of interest by the operator. One
or more canonical tasks can then be assigned to the area.
No-fly zones are obstacles that should be avoided by the
UAV. For simplicity, we consider areas to be two-dimensional
polygons, but future work should extend them to three-
dimensional volumes.

In summary, the taxonomy consists of canonical tasks,
canonical sensors, timing constraints, and areas. Later, we
will discuss how our planner generates flights for planning
problems defined in terms of these building blocks, which
can represent a variety of UAV missions.2

III. COMPLEXITY / PRIOR WORK

Generating a flight that satisfies all tasks and constraints
given by a planning problem is difficult. Consider, for
example, the problem posed by a flight with n areas, each
with a corresponding task to be completed. Generating a
flight that is optimal with respect to flight length and that
handles all n areas (and their tasks) has essentially solved the
traveling salesman problem by deciding the order in which to
visit the tasks [10]. This is evidence that, in general, planning
optimal solutions to sensor-driven flight problems is very
challenging.

Although path planning is a well-studied area, most work
focuses on variations of the problem of getting from a
starting point to an end point efficiently. Approaches for
UAV planning include variants of A* [13], evolutionary algo-
rithms [14], Dubins Curves [15], energy minimization [16],
and RRTs [17]. Some algorithms support obstacle avoidance

2Although the taxonomy can express many UAV missions, there are
limitations. It is not a good model for missions with task areas of non-
uniform importance, for example.

Fig. 2. Each part of the hierarchical planner plays a different role in
generating the overall flight. In this example, C and E are sub-flights
generated by the sub-flight planner to fly tasks in the shaded areas. B and D
are intermediate or connecting flights generated by the intermediate planner,
which runs as a subroutine as the scheduler. The scheduler is responsible
for deciding when to schedule sub flights. A is the UAV’s starting position.

or kinematic constraints. A few plan flights based on sensors.
However, algorithms for planning flights with general goals
for multiple types of sensors do not seem to exist.

IV. HIERARCHICAL PLANNER

The idea behind hierarchical planning is to break the
planning problem into several stages that are more tractable
than the overall problem. The taxonomy suggests that many
problems can be decomposed into two components: planning
a sensor-appropriate flight path for an area, and scheduling
flight paths to satisfy timing constraints. Therefore, our
approach works by breaking the problem up and planning
flights for each flight task in isolation and then scheduling the
generated flights into an overall solution. Figure 2 shows how
the components of the hierarchical planner generate different
pieces of a flight.

Broken up in this manner, our flight planning problem
closely resembles scheduling processes on a computer. Flight
tasks can be thought of as processes and the UAV can be
thought of as a CPU which runs them. Just as a running
process on a CPU can be preempted, our planning problems
sometimes require a flight task to be interrupted before
completion. Just as preempting processes on a CPU has
overhead, interrupting flight tasks to handle another has the
cost of travel between tasks.

The hierarchical approach has some tradeoffs and limi-
tations. It makes the problem tractable and the algorithm
generalizable, but it sacrifices optimality in several places to
do so. One limitation with the hierarchical approach and the
CPU scheduling metaphor is that the UAV cannot fly more
than one task at a time. Thus, we sacrifice optimality when
flight tasks are co-located.

At a high level, the hierarchical planner follows the
steps given in Figure 3. These high-level steps are easy
to understand but the details are more involved. The next
sections will discuss the steps in more detail.

978-1-4799-0509-6/13/$31.00 ©2013 IEEE 510

1) For each flight task:
a) Select a task-specific starting position and orientation

on or near the task area’s boundary.
b) Generate a “sub-flight” that accomplishes the flight

task with its task constraints independent of all
other flight tasks. This sub-flight must start at the
previously-generated starting position and pose.

2) Generate a schedule that determines when to fly each
sub-flight.

3) Using the schedule, build an overall flight by stringing
the sub-flights together with intermediate flights.

Fig. 3. The high-level steps of the hierarchical planner.

Fig. 4. To choose a starting configuration, a bounding box is calculated
around the area. Line segments intersecting the center of the box are
calculated at one degree intervals. The end points of the line with the most
length within the area’s polygon are candidates for the task area’s starting
position. The candidate point which is closest to the average of all task
area’s bounding box centers is selected. The orientation points along the
line.

A. Task Start Position and Pose
Before the planner can generate sub-flights for each of the

flight tasks, positions and orientations from which to start
each sub-flight must be chosen. Choosing a good starting
position and pose is important and non-trivial. Choosing the
optimal starting position and pose (those that will result in
the shortest satisfying flight) requires knowing where the
UAV will be coming from. Since the schedule isn’t computed
until after all sub-flights are generated, it is not possible to
choose the optimal starting position and orientation. We can
however, use a heuristic to choose a starting position and
orientation that are likely to give good results.

The goal of this heuristic is to choose a starting position
and orientation that are close to other tasks and are likely
to allow the UAV to fly for a while without turning. We
calculate lines spaced one degree of angle apart passing
through the center of the task area’s bounding box. The line
with the greatest distance within the task area is selected.
Next we examine the two end points of the line segment
within the task area. The end point which is closest to the
average of all task areas’ centers is chosen as the starting
position. This heuristic seeks to minimize the expected
distance between any preceeding tasks and the starting point.
The starting orientation is chosen to point towards the center
of the task area’s bounding box. This process is pictured in
Figure 4.

B. An Example Sub-Flight Planner
The sub-flight planner is the part of the hierarchical

planner responsible for planning the portions of the overall
flight that accomplish tasks. The sub-flights must start in
their start position and orientation, accomplish their tasks,
and satisfy all task constraints.

Our prototype implementation uses a greedy tree search.
The greedy sub-flight algorithm searches a tree with nodes
defined by a position and a pose. The root node, for example,
is the task area’s starting position and pose. The search
generates child nodes by making valid moves (according
to the UAV’s kinematic constraints) from the best current
node. Each task type (sampling, coverage, etc.) defines the
reward function that rates prospective sub-flights, which are
represented by the position and poses of the nodes from root
to leaf.

At each iteration the node with the highest reward is
removed from a work list. New orientation vectors are
calculated based on the current node’s orientation and the
UAV’s kinematic parameters. In addition, new positions are
generated by translating the current node’s position by each
of the previously generated angles. New nodes are created as
children of the current node with the generated orientations
and positions. Score values are generated for the new nodes
using the flight task’s reward function and the new nodes
are inserted into the work list. This process is summarized
in Algorithm 1. Summaries of the reward functions used in
the greedy planner for each of the canonical tasks is given
in Table II.

Generally, greedy search seems to be a good choice. In
our testing it generated satisfactory flights for coverage and
sampling tasks very quickly (see Section V). However, its
performance is fundamentally tied to the reward functions it
is optimizing for (see Table II). The reward functions should
be adapted as necessary. One limitation of the coverage task
reward function described in Table II is that it assumes
directional sensors have sensing volumes with approximately
square bases. The best flight for a camera with a very
horizontal aspect ratio, for example, may be different from
flights for other sensors.

Greedy search is, of course, not the only possible imple-
mentation of a sub-flight planner. A* could be considered,
but it is not clear how to construct an admissible heuristic
for planning the sub-flights, as they are not simple flights
from point A to point B. Rapidly-Exploring Random Trees
perform inconsistently and would require the addition of
another dimension (time) to the problem in order to plan
sub-flights that self-intersect or have loop-like shapes, such
as sub-flights for coverage tasks. Genetic algorithms were
attempted but had difficulty coping with coverage tasks.

C. Scheduler
Once a sub-flight has been generated for each flight task,

a scheduler must decide when to fly each one and how to
string them together. Scheduling is not a trivial task due to
scheduling and dependency constraints on flight tasks.

Sometimes, one task must be interrupted to fly another
due to time window constraints. In a scenario with two tasks

978-1-4799-0509-6/13/$31.00 ©2013 IEEE 511

Data: Priority queue W, Flight task T, Branch factor B,
Max turn angle θ, Waypoint interval δ

Result: Sequence of positions (a sub-flight)
W.insert(node(T.startPosition, T.startOrientation), 0);
while W not empty do

node,score = W.pop();
if score ≥ T.desiredScore then

return Traceback(node);
end
for i in [−B,B] do

newOrientation = node.orientation + θ * (i
B);

newPosition = node.position +
δ(cos(newOrientation), sin(newOrientation));

newNode = (newPosition, newOrientation);
newNode.parent = node;
newScore = T.RewardFunction(newNode);
W.insert(newNode, newScore);

end
end

Algorithm 1: Pseudocode for the greedy sub-flight planner.

Task Type Reward Function
Coverage The task area is discretized on latitude/longitude

aligned grid with spacing controlled by granularity
parameter. Candidate sub-flights are given 1.0 unit of
reward for each discretized point they come within a
threshold of. The first unreached point in the list gives
a reward proportional to the sub-flight’s proximity
using a Gaussian function.

Sampling The sampling task is parameterized by s, the number
of seconds that the sub-flight must spend within the
task area. Candidate sub-flights are given 1.0 unit of
reward for every second spent within the task area for
up to s seconds.

Fly-Through1 Returns a fixed reward when candidate sub-flights
fly within it at all. Equivalent to a Sampling task
configured with a very small value of s.

TABLE II
THE GREEDY SUB-FLIGHT PLANNER USES A DIFFERENT REWARD

FUNCTION FOR THE DIFFERENT TASK TYPES.

α and β each requiring 10 seconds to be completed, for
example, task α may have the constraint that it must be
completed entirely after 5 seconds but before 20 seconds (a
window longer than 10 seconds is required due to the time
taken to fly between tasks). Task β would be scheduled for
at least the first 5 seconds, after which a transition to task α
would be made. After task α was completed at around 15-20
seconds, task β would be scheduled again and finished.

We attack the problem by returning to the CPU scheduling
metaphor. Flight tasks are processes and the UAV is a CPU.
The UAV can fly a task to completion or it can run it in time
slices with other tasks, “context-switching” between them.
However, flight task scheduling has two key differences from
CPU scheduling: First, we know exactly how much time each
flight task needs since sub-flights which satisfy them were
calculated previously, whereas the run time of a program
cannot generally be predicted. Second, the time required to
transition or “context switch” between flight tasks is highly
variable and must be considered.

5,5

0,0 α

β

Task α

constrained to

finish within 7

seconds.

At (3,0) the

heuristic is 7

(Manhattan

distance to

goal).

Fig. 5. The scheduling state space of an imaginary two-task planning
problem. Both tasks (α and β) take five seconds to be completed. In this
example, task α has a time window constraint specifying that it must be
finished by no later than seven seconds. Edges that would allow task α
to make progress outside of its valid time window have been cut. The A*
heuristic is Manhattan distance to the goal. At node (3,0) the value of the
heuristic is 7.

We treat the scheduling problem as a graph search through
an n-dimensional scheduling space where n is the number
of flight tasks in the planning problem. There is previous
work in CPU and manufacturing scheduling that also uses
graph search [18], [19]. The goal of the search is to find
a least-cost path from (01, ..., 0n) to (c1, ..., cn) where ci
is the amount of time required to complete sub-flight i. A
problem of three tasks each taking 10.5 seconds, for example,
requires the scheduler to find a least-cost path from (0, 0, 0)
to (10.5, 10.5, 10.5). Note that the total time required to fly
the resulting flight plan will be greater than the sum of the
sub-flights’ required times because flying transitions between
tasks takes time.

Solving the scheduling problem can be done optimally
using A*. This is a good choice because we can use the
distance from any state to the goal as an admissible heuristic.
Since the CPU scheduling metaphor restricts our UAV to
flying one sub-flight at a time, the scheduler can only do state
transitions along one dimension at a time within the schedul-
ing space. This means that all A* distance calculations in the
scheduler, including the heuristic, use a “Manhattan” rather
than Euclidean distance. See Figure 5.

When the A* scheduler considers transitioning from one
flight task α to another task β it must generate a transition (or
intermediate) flight from the current state’s progress along
α’s sub-flight to the generated state’s progress along β’s
sub-flight. If the A* scheduler for two tasks α and β had
reached node (3,0) and wanted to explore node (3,1), for
example, it would use the intermediate planner to generate
a flight from the UAV’s configuration 3 seconds into α’s
sub-flight to the beginning (time 0) of β’s sub-flight. The
length of the intermediate flight is used to calculate how
long it will take to transition from α to β and is A*’s “cost
to move”. Intermediate flights are stored during scheduling
so that they can be used as components of the overall flight
when scheduling is completed.

Flight task scheduling constraints such as dependencies

978-1-4799-0509-6/13/$31.00 ©2013 IEEE 512

and valid time windows are encoded in the state space as
obstacles, which A* can easily deal with. Specifically, the
search is not allowed to expand into states where any task’s
dependency constraints or valid time windows are violated.
It is important to note that it is very easy to create unsolvable
planning problems by creating a dependency loop among two
or more tasks or by specifying unrealistic time windows. In
this situation the scheduler will search as far as it can before
detecting that the problem is overconstrained. At that point,
the user can reformulate their planning problem.

D. Intermediate Planner
The intermediate planner is responsible for planning flights

from the start position to task areas and in-between task
areas. Intermediate flights are planned solely to get the UAV
from one configuration to another rather than to accomplish
any of the flight tasks. The intermediate planner takes as
input the positions of no-fly zones and starting and ending
positions/orientations. It outputs a series of positions or
waypoints.

The requirements for the intermediate planner are chal-
lenging. First, it must be very efficient because it runs as a
subroutine of the scheduler’s A* search. Second, it must be
able to plan over long distances. Third, it must avoid no-fly
zones. Finally, it has to be able to plan intermediate flights
that are valid according to the UAV’s kinematic constraints
and that start and end in the correct orientations (not just
positions).

Our intermediate planner, like our overall planner, takes a
hierarchical approach. As a first step it uses A* to generate
a coarse, high-level, obstacle-avoiding path without consid-
eration for desired orientation or UAV kinematics. The A*
search is carried out on a coarse 4-connected graph with
node spacing of 300 meters so that it will run quickly.
Next, it strings the nodes of the A* search together using
Dubins Curves [20], which ensure that the desired starting
and ending orientations are honored and that UAV kinematic
constraints are obeyed. Future work should validate that
Dubins curves are an appropriate model for a fixed-wing
UAV.

V. RESULTS AND LIMITATIONS

We tested our planning system on several simulated
wilderness search and rescue (WiSAR) scenarios (see for
example [21]–[23]). These scenarios tested the ability of the
system to plan sub-flights for different tasks, schedule them
based on dependency and time window constraints, and build
an overall flight while avoiding no-fly zones.

Our first simulated WiSAR scenario is that a lost child
was last seen along a popular trail in a canyon. The goal of
the flight is to obtain aerial imagery of the trail along the
canyon floor for the search team. The secondary goal is to
maintain communications with another group of searchers by
flying to an area within radio range to exchange messages.
Finally, the UAV must return to its launch point and avoid
flying near the dangers of the steep canyon walls.

We encoded this scenario in our planning framework using
three flight tasks in three separate areas, in addition to a

Fig. 6. The results of planning on our first simulated scenario. The green
polygon is the coverage task. The red polygon is the no-fly zone. The blue
polygon is the sampling task. The white polygon is the fly-through task.
The planned flight is represented by the series of yellow dots starting at the
large green dot (the starting point).

no-fly zone. First, a coverage task gathers aerial imagery
of the trail along the canyon floor. Second, a sampling
task within communications range serves to relay messages
between search groups. Third, a fly-through task near the
UAV’s starting point brings the UAV back to the launch area.
The sampling task is configured with a dependency on the
coverage task and the fly-through task is configured with a
dependency on both other tasks to ensure that our priorities
are encoded in the generated flight. Finally, a no-fly zone
is placed over the dangers of the steep canyon wall between
the coverage and sampling tasks to ensure that the UAV does
not crash.

The results of running the planning algorithm on the first
scenario are shown in Figure 6. The planner succeeded in
satisfying all three tasks in the correct, desired order while
avoiding the no-fly zone.

The second simulated scenario is that of an overdue hiker
who did not leave information on which route they would be
taking to their destination. Search personnel want to gather
aerial imagery of three likely routes as quickly as possible.
The search team has conflicting information and believes that
all three search areas are equally important to the search.

We encoded this scenario in the planner as three coverage
tasks to gather imagery of the search areas and a fly-through
task to bring the UAV back to its starting area. Since the
search team has assigned equal importance to each area, none
of them are selected to be searched before the others. Instead,
the planner is left to find the most efficient flight it can. The
results of the planner on this scenario are shown in Figure
7. The planner took about 10 seconds to generate this flight
on an Intel i7 running at 2.67 GHz.

In summary, our sensor-driven hierarchical planner has
shown the ability to generate flights which satisfy complex
scheduling constraints while accomplishing sensor tasks.
Generated flights are also fairly efficient despite the greedy
search method used in the sub-flight planner.

Running times are very good until the number of tasks
grows beyond four or five, at which point they increases
quickly. The bottleneck in the performance of our planner
seems to be the scheduler. The dimensionality of the schedul-

978-1-4799-0509-6/13/$31.00 ©2013 IEEE 513

Fig. 7. The results of planning our second simulated scenario. The three
green polygons are coverage tasks. The small white rectangle is a fly-through
task. The planner was able to generate a flight that satisfied all three coverage
tasks in a reasonable order and then returned to the starting area. This flight
would take approximately 22 minutes for a small UAV to fly at 14 m/s.

ing space can easily grow to be a problem for A* since
each flight task is a dimension of the scheduling space. It is
possible that alternative scheduling algorithms may be better
able to cope with the high dimensionality. We believe that
performance is acceptable for now since most flights do not
have a large number of tasks.

VI. CONCLUSIONS

We’ve created a taxonomy of canonical UAV tasks and
sensors. Using this taxonomy’s generalizing power, we’ve
created a hierarchical algorithm for sensor-driven planning.
The algorithm breaks the problem into planning and schedul-
ing components and attacks them separately. It is capable of
satisfying complicated scheduling constraints while honoring
a simple model of UAV kinematics and no-fly zones. This
algorithm was implemented with a prototype user interface
and tested on several simulated WiSAR scenarios. During
tests, it quickly generated reasonable flights which satisfied
all scheduling constraints and no-fly zones.

VII. FUTURE WORK

There are a number of interesting directions that future
work could take. First and foremost, extending this work
to three dimensions would be beneficial, especially with the
addition of terrain modeling. It would also be very useful to
extend our algorithm to support gimbal planning since many
UAV-carried cameras are mounted on movable gimbals. Fur-
ther extensions could include multi-UAV support, improved
UAV kinematics, and improved scheduling.

REFERENCES

[1] J. Rubio, J. Vagners, and R. Rysdyk, “Adaptive path planning for
autonomous uav oceanic search missions,” in AIAA 1st Intelligent
Systems Technical Conference, 2004, pp. 20–22.

[2] W. Zang, J. Lin, Y. Wang, and H. Tao, “Investigating small-scale water
pollution with uav remote sensing technology,” in World Automation
Congress (WAC), 2012, June, pp. 1–4.

[3] M. Kontitsis, K. Valavanis, and N. Tsourveloudis, “A uav vision
system for airborne surveillance,” in Robotics and Automation, 2004.
Proceedings. ICRA ’04. 2004 IEEE International Conference on,
vol. 1, April-1 May, pp. 77–83 Vol.1.

[4] Y. Lin, J. Hyyppa, and A. Jaakkola, “Mini-uav-borne lidar for fine-
scale mapping,” Geoscience and Remote Sensing Letters, IEEE, vol. 8,
no. 3, pp. 426–430, May.

[5] E. Zaugg, D. Hudson, and D. Long, “The byu sar: A small, student-
built sar for uav operation,” in Geoscience and Remote Sensing
Symposium, 2006. IGARSS 2006. IEEE International Conference on,
31 2006-Aug. 4, pp. 411–414.

[6] G. Stephens, S. Miller, A. Benedetti, R. McCoy, R. McCoy Jr,
R. Ellingson, J. Vitko Jr, W. Bolton, T. Tooman, F. Valero, et al.,
“The department of energy’s atmospheric radiation measurement (arm)
unmanned aerospace vehicle (uav) program,” Bulletin of the American
Meteorological Society, vol. 81, no. 12, pp. 2915–2938, 2000.

[7] V. M. McHugh, C. S. Harden, D. B. Shoff, B. S. Ince, S. E. Harper,
G. E. Blethen, R. J. Schafer, P. Arnold, S. Pavitt, M. Thomas,
et al., “Using an array of ion mobility spectrometers for ground truth
measurements in field tests involving releases of chemical warfare
agent surrogates,” International Journal for Ion Mobility Spectrometry,
vol. 6, pp. 49–52, 2003.

[8] P. Niedfeldt, R. Beard, B. Morse, and S. Pledgie, “Integrated sensor
guidance using probability of object identification,” in American
Control Conference (ACC), 2010. IEEE, 2010, pp. 788–793.

[9] F. Bourgault, T. Furukawa, and H. Durrant-Whyte, “Optimal search for
a lost target in a bayesian world,” in Field and Service Robotics, ser.
Springer Tracts in Advanced Robotics, S. Yuta, H. Asama, E. Prassler,
T. Tsubouchi, and S. Thrun, Eds. Springer Berlin Heidelberg, 2006,
vol. 24, pp. 209–222.

[10] L. Lin and M. Goodrich, “Uav intelligent path planning for wilderness
search and rescue,” in Intelligent Robots and Systems, 2009. IROS
2009. IEEE/RSJ International Conference on, Oct., pp. 709–714.

[11] P. J. Hardin and M. W. Jackson, “An unmanned aerial vehicle for
rangeland photography,” Rangeland Ecology & Management, vol. 58,
no. 4, pp. 439–442, 2005.

[12] D. Caltabiano, G. Muscato, A. Orlando, C. Federico, G. Giudice, and
S. Guerrieri, “Architecture of a uav for volcanic gas sampling,” in
Emerging Technologies and Factory Automation, 2005. ETFA 2005.
10th IEEE Conference on, vol. 1, Sept., pp. 6 pp.–744.

[13] M. Quigley, B. Barber, S. Griffiths, and M. Goodrich, “Towards real-
world searching with fixed-wing mini-uavs,” in Intelligent Robots and
Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference
on. IEEE, 2005, pp. 3028–3033.

[14] D. Rathbun and B. Capozzi, “Evolutionary approaches to path plan-
ning through uncertain environments,” in Proc. of AIAA UAV Confer-
ence, 2002.

[15] G. Yang and V. Kapila, “Optimal path planning for unmanned air
vehicles with kinematic and tactical constraints,” in Decision and
Control, 2002, Proceedings of the 41st IEEE Conference on, vol. 2.
IEEE, 2002, pp. 1301–1306.

[16] S. Bortoff, “Path planning for uavs,” in American Control Conference,
2000. Proceedings of the 2000, vol. 1, no. 6. IEEE, 2000, pp. 364–
368.

[17] M. Kothari, I. Postlethwaite, and D. Gu, “Multi-uav path planning in
obstacle rich environments using rapidly-exploring random trees,” in
Decision and Control, 2009 held jointly with the 2009 28th Chinese
Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE
Conference on. IEEE, 2009, pp. 3069–3074.

[18] M. B. Jones, D. Roşu, and M.-C. Roşu, “Cpu reservations and time
constraints: Efficient, predictable scheduling of independent activities,”
in ACM SIGOPS Operating Systems Review, vol. 31, no. 5. ACM,
1997, pp. 198–211.

[19] D. Y. Lee and F. DiCesare, “Scheduling flexible manufacturing sys-
tems using petri nets and heuristic search,” Robotics and Automation,
IEEE Transactions on, vol. 10, no. 2, pp. 123–132, Apr.

[20] L. E. Dubins, “On curves of minimal length with a constraint
on average curvature, and with prescribed initial and terminal
positions and tangents,” American Journal of Mathematics,
vol. 79, no. 3, pp. pp. 497–516, 1957. [Online]. Available:
http://www.jstor.org/stable/2372560

[21] T. Setnicka, Wilderness Search and Rescue. Appalachian Mountain
Club, 1980.

[22] R. Koester, Lost Person Behavior: A Search and Rescue Guide on
Where to Look – for Land, Air, and Water. dbS Productions, 2012.

[23] M. A. Goodrich, B. S. Morse, D. Gerhardt, J. L. Cooper, M. Quigley,
J. A. Adams, and C. Humphrey, “Supporting wilderness search
and rescue using a camera-equipped mini uav,” Journal of Field
Robotics, vol. 25, no. 1-2, pp. 89–110, 2008. [Online]. Available:
http://dx.doi.org/10.1002/rob.20226

978-1-4799-0509-6/13/$31.00 ©2013 IEEE 514

