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ABSTRACT
In wilderness search and rescue, objects not native or typ-
ical to a scene may provide clues that indicate the recent
presence of the missing person. This paper presents the re-
sults of augmenting an aerial wilderness search-and-rescue
system with an automated spectral anomaly detector for
identifying unusually colored objects. The detector dynami-
cally builds a model of the natural coloring in the scene and
identifies outlier pixels, which are then filtered both spatially
and temporally to find unusually colored objects. These ob-
jects are then highlighted in the search video as suggestions
for the user, thus shifting a portion of the user’s task from
scanning the video to verifying the suggestions. This pa-
per empirically evaluates multiple potential detectors then
incorporates the best-performing detector into a suggestion
system. User study results demonstrate that even with an
imperfect detector users’ detection increased significantly.
Results further indicate that users’ false positive rates did
not increase, though performance in a secondary task did
decrease. Furthermore, users subjectively reported that the
use of detector-based suggestions made the overall task eas-
ier. These results suggest that such suggestion-based sys-
tems for search can increase overall searcher performance
but that additional external tasks should be limited.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Operator Inter-
faces; I.4.9 [Image Processing and Computer Vision]:
Applications

Keywords
Wilderness Search and Rescue, Search and Detection, Un-
manned Aerial Vehicles, Anomaly Detection, User Study

1. INTRODUCTION
Wilderness search and rescue (WiSAR) is the task of find-

ing missing persons in wilderness areas. This is highly time-
sensitive, not only because of increasing danger to the search
subject (missing person) but also because the search area
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(a) Grassy Location (b) Desert Location

Figure 1: Examples of video frames from a search
scenario. Targets are marked with yellow arrows:
(a) blue blanket and (b) white shirt.

increases over time. An efficient way to augment search is
to use semi-autonomous unmanned aerial vehicles (UAVs)
with cameras that transmit live video and telemetry data to
a ground-based team [15]. With sufficient video resolution,
searchers can identify traces of the subject from the air.

Even with the aid of aerial video, it can be difficult to
identify signs of a search subject. Figure 1 shows examples
of typical search video frames. Image resolution is limited
both by the camera (constrained by the payload capacity
of inexpensive UAVs) and by the need to cover as much
ground as possible. In addition, the UAV and hence the
video can move quickly, disorienting searchers and giving
them little time to detect targets. This can be compensated
for somewhat by enhancing the spatiotemporal presentation
of the video [19] or visually enhancing the hue and saturation
of color values [24], but detecting objects of interest remains
a challenging problem. Consequently, searchers may miss
signs of the search subject, even when seen by the camera.

In practice, the task of observing search video consists of
two elements: detection and analysis. An object of poten-
tial interest must first attract the user’s attention as worthy
of inspection, then further analysis must determine whether
it is indeed of interest. Objects of interest may include the
missing person, abandoned clothing, camping or hiking gear,
or other personal items. Such objects may also vary in diffi-
culty of detection; a blanket (Figure 1(a)) may be easier to
detect than a shirt (Figure 1(b)).

Detection is the task of quickly identifying possible signs of
the search subject. It might be something as simple as seeing
something that “looks out of place”, especially when search-
ing wilderness areas with primarily naturally-occurring con-
tent. When performed by a person, detection may be re-
sponded to by a reflexive action, such as a keystroke, ac-
companying the appearance of an unusual or significant ob-
ject. The person then tries to determine, through inspection
of the imagery, whether the object is likely to be a positive
sign. Since detection is less dependent on domain knowledge
it is a good candidate for automation, while analysis is best
left to the human operator.
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Anomaly detection clearly has strong similarities to au-
tomated target recognition (ATR) systems, which have also
been used to assist human operation of semi-autonomous
UAVs (e.g., [8, 11, 12]). However, such ATR systems usually
have a notion of a specific target (in our case, the missing
person) rather than the more ill-posed problem of finding
clues that indicate the recent presence of the search subject.

This work primarily relies on leveraging color information
in video of the search area to detect signs of a missing per-
son, a technique referred to as spectral anomaly detection.
For the best chances of success in applying spectral anomaly
detection to this domain, multiple detection methods were
implemented and compared empirically. Using the tempo-
ral and spatial information in the video stream, unusually
colored pixels are aggregated into larger objects.

Because of the sensitive nature of search and rescue, and
likely imperfections in automated anomaly detection, the
detection task is best treated as a collaborative effort be-
tween human and autonomy. Indeed, the very question is
ill-posed: find anything that “looks out of place”. Therefore,
the goal of this work is to use automated detection as an aid
for visual search rather than a replacement for it.

The addition of automation into human tasks is not with-
out potential issues. Research has shown that automation
can affect users’ behavior in various ways, including misuse
of the automation [23]. In particular, the results of using au-
tomation aids for human-robot interaction can vary greatly
depending on the task [16] or even across users [7]. In addi-
tion to empirical evaluation of potential detector methods,
this paper also contributes the results of a user study de-
signed to evaluate the effects of detector-based suggestions.

2. EFFECTS OF AUTOMATION
Automated detection systems have been studied for many

years, including their impact on users’ behavior in the pres-
ence of imperfect detection. Although such systems can in-
crease user performance in many situations, there are nu-
merous examples of ways in which these systems can be
misused or disused [23].

Introducing automation can result in inattention either
through a false sense of complacency or through automa-
tion bias, in which the saliency and authoritative nature of
the recommendations from the automation affect user be-
havior and compliance [22]. Because anomaly detectors will
inevitably miss potential targets of interest this can result
in errors of omission, in which users similarly miss potential
targets by focusing primarily on the automated suggestions.
Because the detector will also inevitably make make incor-
rect suggestions, false alarms can serve both as a source of
distraction and as a source of commission errors (more false
alarms similarly raised by the user).

The effects of false alarms can be even more pronounced
for detection tasks with rare targets or events [23]. If targets
appear relatively infrequently, as is the case with search,
even a detector with a low false-alarm rate will result in
many more false alarms than correct detections (hits). The
effects of these false alarms is an important question to ad-
dress when evaluating the use of detector-based suggestions.

Some studies have shown that imperfect automation has
the potential to detract rather than enhance users’ perfor-
mance [11, 12], especially when performing multiple tasks si-
multaneously. An abundance of either false alarms or missed
detections can lead to disuse of the automation. Similarly,
frequent misses by the detector may lead to users not making
use of it (and thus not gaining the benefit of the suggestions).

Other studies have shown that for UAVs with ATR sys-
tems, “human-robot teams can benefit from imperfect [ATR]

automation even under high workload conditions” [8, 9].
This suggests that incorporation of imperfect (and even ill-
posed) anomaly detectors may behave similarly.

3. COLOR ANOMALY DETECTION
The literature on detection in video is full of various meth-

ods, but many of these are not suitable for the particular
needs of wilderness search and rescue. Background subtrac-
tion [18, 28] can be used to find objects not normally found
in a scene, but only if the background has been previously
observed. This is not the case when searching a new area,
though it does have potential for repeated sweeps. Detec-
tors designed for specific objects (e.g., [21, 27]) also do not
apply since the nature of the objects of potential interest
is typically not known ahead of time. Detectors based on
other domain knowledge [4, 14] might be of use—for exam-
ple, the method in [4] is useful for finding large man-made
objects in natural scenes by using texture distributions for
large natural regions versus large man-made regions. How-
ever, this reliance on texture means that this method works
only for objects significantly larger than those in WiSAR
search video, which may only be several pixels in size.

Of course, the one known target is the missing person,
so it is tempting to use methods for detecting humans [20,
21, 31]. However, the body of work in this area has focused
almost exclusively on detection of humans that are moving
and/or upright relative to the camera. Since aerial video sees
the person only from above (or perhaps at a slightly oblique
angle), these methods cannot be used here unless by chance
the person is lying on the ground. Similarly, the speed at
which the aircraft passes over the area makes detection and
analysis of much-slower human motion difficult.

Finally, while the term anomaly detection occurs in the
video-processing literature (e.g., [17]), it is commonly used
to describe behavioral anomalies (such as might be associated
with a security threat) rather than simple visual anomalies.

For these reasons, we choose to focus here on anomalous
color detection: the finding of unusually colored objects in a
scene. This is a subclass of the broader problem of spectral
anomaly detection, most of the work for which has focused
on hyperspectral images. We adapt here some of these meth-
ods for use with RGB video images.

3.1 Spectral Anomaly Detection
A common approach to hyperspectral anomaly detection

is to model the statistical distribution of spectral signatures
with one or more multivariate normal distributions [3, 25,
26]. This model is then used to identify pixels whose spectral
signatures are statistical outliers [5]. The normal distribu-
tion is most often used for its simplicity. Once the mean
vector and covariance matrix have been calculated, outliers
can be identified using a threshold on the Mahalanobis dis-
tance [13]. In a multivariate normal distribution, the Maha-
lanobis distances are distributed according to the chi-square
distribution with cumulative distribution function

F (dM ; k) = P (k/2, dM/2) (1)

where k is the dimensionality of the multivariate normal and
P is the regularized Gamma function. The distance thresh-
old can therefore be chosen to encompass a desired probabil-
ity. In the case of one-dimensional data, this method yields
the well-known bell-curve confidence intervals. When data
points are RGB triples, k = 3.

A multivariate normal distribution rarely characterizes all
of the colors in a natural scene, though. This means any ef-
fective spectral anomaly detector must perform some trans-
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formation on or clustering of the data for it to fit the as-
sumption of normality. Such procedures are referred to here
as normalization. Once the values have been normalized, the
mean vector and covariance matrix are estimated in order
to calculate the Mahalanobis distance of each pixel.

3.2 The RX Algorithm
Perhaps the simplest normalization method is the RX al-

gorithm [25]. It assumes that each pixel is drawn from a mul-
tivariate normal distribution but that the mean and variance
of the distribution change across the image. The variance is
generally assumed to change more slowly than the mean, so
much so that it is common to use the same variance estimate
for the entire image but to calculate this using a spatially-
varying mean [6]. The mean is usually calculated within
a window near, but not including, the immediate neighbor-
hood of the pixel. Once this local mean has been subtracted,
it is straightforward to calculate the covariance matrix and
thereby the Mahalanobis distance of each pixel. Apart from
the Mahalanobis distance threshold, the only parameters to
this algorithm are the radius of the outer included neighbor-
hood, R, and the radius of the inner excluded neighborhood,
r, of the local neighborhood.

These steps can be thought of as an unsharp masking
operation, resulting in a residual error image. Next, a color
transformation is applied to the error image with the inverse
of its color covariance matrix. Finally, the dot product of
each transformed error vector with the corresponding un-
transformed error vector is computed and stored, resulting
in a gray-scale image of Mahalanobis distances, to which is
applied a threshold chosen with Equation 1.

Adaptations of the RX algorithm include exchanging the
covariance matrix for the correlation matrix [6] or combining
local parameter estimation with clustering [1].

3.3 Clustering Methods
A common normalization method is to divide the image

pixels into clusters using methods such as vector quanti-
zation and k-means [1, 3, 26]. In none of these examples
do the authors explicitly state that their clusters are nor-
mal in shape, but all use a Mahalanobis distance threshold,
which implies an assumption of normality. The BACON
algorithm [2, 26] explicitly chooses the distance threshold
using the chi-square distribution, as discussed previously.

Gaussian Mixture Modeling (GMM) can be considered a
form of fuzzy clustering. It assumes that the true distribu-
tion can be modeled by a mixture of normal (Gaussian) dis-
tribution components. The GMM for a set of data is usually
found using Expectation-Maximization (EM) [10]. If prop-
erly estimated, each mixture component may be considered
a fuzzy cluster. Unlike clusters produced by k-means or vec-
tor quantization, these clusters are designed to be normally-
distributed, but this is a much more costly process.

3.4 Robust Methods
Most clustering approaches, such as CBAD [3] and GMM,

simply use the sample mean and covariance matrix of each
cluster, but a more robust approach to outlier detection is
the BACON algorithm [2, 26]. BACON aggregates sample
points within a cluster into an inlier set by gradually increas-
ing the threshold on Mahalanobis distance, re-estimating the
mean vector and covariance matrix at each step. This itera-
tive estimation is more robust to outliers, thus ensuring that
the outliers can be correctly identified. It is also more costly
than simply calculating the sample mean and covariance of
the entire image since it requires multiple iterations with
sample sizes approaching the full set.

4. DETECTOR EVALUATION
To evaluate which detection methods work best for this

domain, we implemented the following four methods:

1. The RX algorithm [25]
2. Vector quantization (as used in CBAD [3])
3. K-means clustering
4. The EM algorithm [10], initialized using k-means

The BACON algorithm [2] for robust outlier nomination was
also implemented to see if it could improve the results of the
best spectral detector.

4.1 Data Collection
In order to evaluate the different detectors, a set of test

images was collected. These images are of natural scenes
containing a few foreign man-made objects. A ground-truth
labeling of the objects within each image was created for
fast and repeatable testing.

To best control the content of the images, the scenes were
set up carefully and deliberately. Two natural scenes were
used: a grassy location and a desert location, each typi-
cal of wilderness search environments. These two locations
were carefully chosen to minimize the likelihood of man-
made objects in the scene. A small number of man-made
objects were then placed at each location for use as visual
targets. These targets ranged in size from a t-shirt to a small
blanket. Each target consisted of one or two solid-colored
objects. Six targets were placed in the first scene and five
targets were placed in the second scene. Thus, each scene
contained mostly naturally-occurring objects, with only a
few foreign man-made objects.

A professional aerial photographer captured aerial im-
agery of each scene using a digital camera mounted on a
small, remote-controlled plane. The photographer then flew
the camera over the area, capturing both high-resolution
still images and standard-resolution digital video.

The video and images of each scene were then reviewed
carefully by visual inspection and with the aid of temporally
local mosaics [19]. In addition to the target objects placed in
the scene, a number of other objects that could reasonably
be considered foreign to the environment were seen. For
the grassy location, these included the pilot and two other
people, two vehicles, and multiple nearby buildings (video
only). For the desert location, these included the pilot and
a vehicle (video only), a plastic grocery bag (photographs
only), a white box, and a bright orange object.

All anomalies, including the accidental objects listed, were
manually labeled in the digital stills on a per-pixel basis.
These label maps were then used to tune and compare the
different spectral anomaly detection methods.

4.2 Spectral Detector Evaluation
An automated test suite was built for fast and repeat-

able evaluation. The test suite calculates a Receiver Oper-
ating Characteristic (ROC) curve for each anomaly detec-
tion method by varying the detector’s threshold and plotting
the true positive rate (TPR) against the false positive rate
(FPR). The comparison metric for the different methods is
the area under the ROC curve.

At least one method (the RX algorithm) is sensitive to
the size of objects in the image. Therefore, the full-size stills
as well as the corresponding label images were subsampled
to get object sizes similar to those seen in the video but
not so small as to hinder visual detection, and the images
were subdivided to produce stills comparable to the video
frames. Each of the 278 still images produced 24 video-
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Figure 2: ROC curves for each method

frame-sized subimages, for the equivalent of about 3.7 min-
utes of manually-labeled high-quality video.

In order to cover as near as possible the full range of false
positive values, the target false positive rate was varied from
0% to 100%. This target value was used, in connection with
Equation 1, to determine the Mahalanobis distance thresh-
old for each test. Each ROC curve was comprised of 40 tests.

4.3 Detector Evaluation Results
The detector that performed the best overall was the RX

algorithm with R = 53 and r = 13 (Figure 2). While there
were significantly worse settings for RX, comparable results
were found in a fairly broad range of the parameter space.1

The second best detector was the degenerate clustering
case of k = 1. This case is the same for all clustering meth-
ods as it performs no clustering or normalization of the data.
Comparable results were found for each clustering method
with k = 2, but larger values of k showed a decrease in
performance overall, even though more clusters sometimes
performed better for selected images.

4.3.1 Why Clustering Approaches Struggle
In further analyzing the performance of the various cluster-

based approaches, values of k ranging from two to four would
often outperform the degenerate k = 1 case on many im-
ages. In fact, these would often outperform the RX method
as well. These results show that clustering can work very
well in many cases with appropriate parameter tuning, but
the degenerate k = 1 case still performs best overall for the
clustering approaches, and the RX method in general out-
performed that. The problem with using clustering in this
domain is that it is sensitive to the content of the scene [3].
The content of the scene can change frequently as the plane
flies over different areas. If only one type of ground cover
is present, k should be very low. For more types of ground
cover, it should be higher to correctly model the background.
The correct number of clusters to use will then change as
more or fewer types of ground cover are in view.

In contrast, the best window size for RX is primarily de-
termined by the projected sizes of the targets and other ob-
jects [3], which is a function of true object size, viewing
distance, and camera resolution. In aerial search, altitude is
controlled to keep targets large enough for detection while
maximizing ground coverage [15]. (For our system’s camera
resolution, this range is 60–100 meters for targets the size of
a person.) Thus, the projected target size should easily fall

1A more complete reporting of the performance of each
method for various parameter settings can be found in [30].

within a predictable range. Since target size is less variable
and easier to predict in this domain than scene content, RX
should be preferable to a clustering approach.

Although there are numerous methods in the literature
for dynamically adjusting the number of clusters (e.g., [29]),
these methods were not explored further because dynamic
adjustment of the number of clusters on a constant basis was
considered too slow for processing of live search video.

4.3.2 BACON
The best performing normalization method, RX, was com-

bined with a robust outlier detection method, BACON [2],
to try to improve performance. The ROC curve area with
BACON (97.17%) was slightly higher than with RX alone
(96.93%), but this increase is less significant than the one
between no normalization (96.46%) and RX.

Although using BACON produced minimally better re-
sults, it was also much slower (for reasons given in Sec-
tion 3.4). It was also harder to control in terms of tuning the
desired false alarm rate than RX alone. Therefore, BACON
was not further used for detection in this work.

5. SYSTEM AND USER STUDY
To evaluate the effectiveness of suggestions made by an

automated detector for unusually colored objects, we im-
plemented a simple system with detector-based suggestions
and conducted a user study to compare user performance
both with and without the aid of such suggestions. In par-
ticular, we designed the study to investigate potential effects
identified previously for automated systems (Section 2):

• How does the introduction of detector-based sugges-
tions affect the user’s overall detection sensitivity?

• Do false positives from the detector increase the user’s
false positive rate?

• Do these false positives distract in such as way as to
cause the user to miss potential targets of interest?

• How do these false positives affect a user’s performance
on a secondary task?

5.1 Presentation and Interface
There are numerous ways that the search imagery and

detector’s suggestions could be presented to a searcher, and
the choice of presentation will certainly have an effect on
the searcher’s performance. In order to keep the implemen-
tation and analysis tractable, one simple user interface was
implemented and evaluated for this study.

Each participant was asked to view a series of eight aerial
video clips and mark foreign or man-made objects. Partic-
ipants placed marks (displayed as red circles) on the video
with a single mouse-click and could similarly remove marks.
To reduce effects of hand-eye coordination, participants were
given the option of freezing the video display to examine or
mark objects, after which display would resume with the
“live” video search. Each time a participant marked an ob-
ject in the video, the location and time were recorded. Un-
less a mark was removed by the participant, it was also
logged in a final list of markings for that participant.

All aerial videos were presented using temporally-local
mosaics, a presentation method previously developed in or-
der to expand the spatiotemporal window of observation op-
portunity for the user [15]. The presentation order was coun-
terbalanced and the order of the videos was randomized. For
each participant, four of the eight video clips were randomly
selected and marked with suggestions from the detector.

In addition to the primary task of target detection, par-
ticipants were also given a secondary task in order to assess
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(a) Tan shirt w/ shorts (b) Blue blanket

(c) Red shirt (d) Black shirt

(e) Green bag

Figure 3: Target objects at the grassy location

the effect on this of primary task automation. For the sec-
ondary task, users were asked to count discrete tones played
during each video clip. Some clips contained a series of only
low-pitched tones, while other clips contained tones of two
different pitches. After each exercise, the participant was
asked to report the number of low tones and (if present) the
number of high tones played during the exercise. We feel
this to be an ecologically valid secondary task, as search-
and-rescue personnel are often required to monitor audible
communications while performing their primary tasks.

These options resulted in four presentation/task combi-
nations: suggestions with only low tones only, suggestions
with both high and low tones, no suggestions with low tones
only, and no suggestions with both high and low tones.

After completing a brief demographic survey, each user
walked through a set of on-screen instructions. This con-
sisted of a number of explanatory example images followed
by two practice video clips before beginning the exercises.
In both practice clips, the participant viewed the same video
sequence but with different presentation methods. The pre-
sentation method for the first practice clip was generated
randomly, with the second being the complement of the first.

5.2 Video Clips Used
As explained in Section 4.1, aerial video was taken at both

a grassy and a desert location, with many of the same target
objects being used at both locations. For each location,
four one-minute video clips were selected for the user study.
The number of targets visible in each clip ranges from zero
to seven. The complete set of eight video clips included
two appearances each of 12 target objects for a total of 24
targets. See Figures 3 and 4 for higher-resolution images of
each target, and Figure 1 for examples of their placement
and size in full video frames.

Each of the 12 target objects consisted of one or two man-
made objects. Each man-made object is on the order of a
person in size and consists of a single color: red, blue, green,
orange, tan, black, or white. Some of these physical objects
were used at both locations. For example, the same blue
blanket was laid out on the ground in the grassy location
(Figures 3(b) and 1(a)) and draped over sage brush at the
desert location (Figure 4(a)). The same red shirt is laid out

(a) Blue blanket (b) Black shirt

(c) White shirt (d) Red shirt w/ shorts

(e) Green bag (f) Orange object

(g) White box

Figure 4: Target objects at the desert location

by itself in the grass (Figure 3(c)) but paired with the tan
shorts in the desert (Figure 3(c)).

In addition to intentionally-placed targets, several other
man-made objects were discovered at each location, and
video clips were carefully chosen to exclude most of these
objects. Two unintentional objects were included as targets
because they were difficult to exclude, were of the right size,
and consisted of solid colors (Figures 4(g) and 4(f)). (The
detector does not require solid-colored objects, but we used
them here for consistency.)

Because some targets appear twice and several physical
components are reused between targets, a training effect is
possible. In a pilot version of the study, participants were
asked if they noticed any repeated objects and all of them
answered in the negative, suggesting that different appear-
ances of the same object were sufficiently unique and that
the randomized order of presentation was sufficient.

Four of the eight video clips presented to each user in-
cluded target suggestions, and the other four did not. Sug-
gestions were presented as light blue circles (Figure 5) with
one circle for each anomaly found by the detector. The size
and location of each circle was made to encompass a region
twice the size of the anomaly’s bounding box.

For the pixel-wise detection step, an RX detector was
used. The inner radius for the RX convolution kernel should
be large enough to exclude most of the target object, while
the outer radius needs to be just large enough to accurately
sample the surrounding region. While the optimal settings
discovered in ground-truth evaluation were 13 and 53, re-
spectively, the inner radius was increased here to 26 to pro-
duce better results with some of the larger targets. The
false-positive rate for the pixel-wise detector was adjusted
to 1 in 10 million pixels.

To compensate for noisy imagery (either from acquisition
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Figure 5: Suggestions as blue circles

or transmission), we also implemented a spatiotemporal fil-
tering step in order to present to the user only object-level
anomalies rather than stray pixels. Potential anomalies were
ignored if they appeared for less than 3 frames or in less than
91% of their known temporal extent. Objects of potential
interest were also restricted to those that had contained at
least 43 anomalous pixels in at least one frame and touched
the border of their first or last frame. The best parame-
ters for the object filtering step were determined empirically
using the ground-truth and the object lists from this ag-
gregation step. The settings were chosen by varying each
parameter, observing the resulting object list in the user
study interface, and subjectively choosing a good trade-off
point between the number of true positives and the number
of false positives. Of the 24 target objects, 11 overlapped
with suggestions for a 45.8% true-positive rate.

With eight video clips and four presentation methods,
there were 32 unique exercises to choose from. The pre-
sented sequences were generated so that each participant
would view each of the eight video clips once and each of
the four presentation methods twice. If this constraint re-
sulted in multiple choices, exercises were then chosen to en-
sure equal frequency among the 32 exercises across all par-
ticipants. Other constraints on the selection included pre-
venting any presentation method, exercise, or two-clip sub-
sequence from occurring more frequently than the others.

5.3 Data Gathering Methods
The final set of results consisted of data logs from 35 users.

Seven clips were shown to each of the participants, with one
clip accidentally skipped by one participant. Three presen-
tation methods were shown 70 times, with one shown 69
times. Nine of the exercises were shown 8 times, with 23
shown 9 times.

Ground truth markings were created by hand using the
user study interface. One ground truth marking was made
for each of the 24 target objects. Once all of the participant
data had been gathered, all user markings, suggestions, and
ground truth markings were grouped into clusters. Each
marking was put in the same cluster as any other markings
whose centers lay within its radius, resulting in a total of 535
clusters. Each of the 24 ground truth markings belongs to
a unique cluster. Of these ground truth clusters, 11 include
one or more suggestions and 21 include one or more partic-
ipant markings. Out of all 535 clusters, only 132 included
one or more suggestion markings. Markings removed by the
participant were included in the clustering step but ignored
in all other considerations.

In reviewing the data for the secondary task, two types
of input errors became apparent: so-called “fat-finger” er-
rors (pressing two adjacent number keys when only one was
intended), and skipping a tone-count question (which was

No Suggestions Suggestions
Detection Rate 52.57% 61.14%
False Positive Rate 2.88% 2.44%
Sensitivity (d′) 1.96 2.25
Response Bias (c) 0.92 0.84

Table 1: User performance on the primary task both
with and without automated suggestions.

erroneously recorded as zero). These errors appeared to be
random, and we attribute them to the interface for gather-
ing the users’ responses rather than the task itself. Data
exhibiting such obvious errors (e.g., a response of “87”when
the correct answer was “7”) were removed manually prior to
evaluating the users’ performance.

5.4 Results and Statistical Analysis
An analysis of variance using least-squares means showed

that the effect of the suggestions on the primary task per-
formance was significant (F (1, 33) = 5.69, p = 0.02). Users’
detection rates increased by 16.30% when aided by sugges-
tions from the anomaly detector (M = 61.14%, SE = 2.77)
as compared to normal search without suggestions (M =
52.57%, SE = 2.57). The difficulty of the secondary task
did not produce a significant effect on the detection rate.

No statistically significant difference was found for either
the false positive rate (FPR) or positive predictive value
(PPV) for the different presentation methods or level of
secondary-task difficulty. Of the four combinations, the low-
est estimated FPR was 2.44% for suggestions and only low
tones. The highest was an FPR of 2.88% for no suggestions
with both high and low tones. Estimates for PPV ranged
from 49.88% for suggestions and only low tones to 50.84%
for no suggestions with both high and low tones. None of
the differences in FPR or PPV were statistically significant.

Secondary task performance was estimated using the log
of the mean squared error in reported tone counts. No signif-
icant difference in log MSE was found between exercises with
low tones and those with both high and low tones, suggesting
that this aspect did not affect their performance. However,
the log MSE increases from 0.5269 to 0.8843 when sugges-
tions are added (p = 0.0047), suggesting that the presence
of suggestions did have an effect on user attention.

5.5 Discussion and Findings
The likely reason that users detected more targets is that

the anomaly detector suggested ones that they otherwise
would have missed. But it is also worth exploring the ef-
fect of automated suggestions on targets not identified by
the anomaly detector, specifically whether the presence of
other suggestions distracted the users from these targets or
caused them to exhibit complacency. This could potentially
decrease the user detection rate for targets that the anomaly
detector missed and thus trade increased detection of sug-
gested targets for decreased detection of non-suggested ones.

To see if this effect existed, we broke down user perfor-
mance further by whether the target was suggested by the
detector (11 targets) or was not (13 targets), the results of
which can be found in Table 2. For targets the automated
detector missed, there was no significant difference in user
detection whether the detector was otherwise making sug-
gestions (38.0%) or not (37.3%). This suggests that the
presence of other suggestions did not impair the detection
of non-suggested targets.

For targets found by the automated detector, users ex-
hibited a significant increase in detection with suggestions
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No Suggestions Suggestions
Not Marked 37.2% 38.0%
Marked 68.1% 87.9%

Table 2: User detection rates by whether the auto-
mated detector identified the target.

(87.9%) compared to without suggestions (68.1%). This sug-
gests that for targets suggested by the detector the contri-
bution of the suggestions is even stronger (29.1%).

It is interesting to note that users still missed some targets
even if were correctly identified by the automated detector.
This suggests that, even if automatically detected, these tar-
gets were still difficult for human users to verify in such a
live-flight scenario.

These results plus those from Section 5.4 suggest the fol-
lowing regarding the questions identified previously:

• User detection rates increased by 16.3% from 52.6%
to 61.1% when using detector-based suggestions. We
would not expect user detection to increase for objects
not identified and suggested by the detector, and this
was indeed the case (consistently approximately 38%).
For objects suggested by the detector, user detection
increased 29.1% from 68.1% to 87.9%.

• Although the anomaly detector made frequent false
suggestions, we did not detect a significant change in
the users’ false positive rates when using these sugges-
tions. This suggests that, given modest operational
limits, users were able to effectively and quickly filter
out incorrect suggestions.

• It did not appear that the presence of false sugges-
tions served as a distractor and caused the users to
miss targets of interest. As shown in Table 2, their
performance on non-suggested targets appeared to be
unaffected by the presence of false suggestions.

• While the use of suggestions increased performance on
the primary detection task, it also decreased perfor-
mance on the secondary tone-counting task. This sug-
gests that filtering false suggestions might require in-
creased user attention. However, it might also suggest
that the suggestions shifted more attention to the pri-
mary task and away from the secondary task. While
the latter is a good thing in terms of the search, it is
a factor that should be considered when considering
other roles the video searcher might be performing. It
should be further noted that 60% of the users subjec-
tively reported that they found the overall combination
of tasks easier with suggestions than without.

5.6 Study Limitations
These specific results are for a single simple interface only,

and clearly many other factors might be considered. For ex-
ample, the form in which the suggestions appeared in the
interface—their size, coloring, or contrast—would likely af-
fect user performance. Indeed the interface used to present
the video itself would also affect the performance.

The parameters of the detector, especially the false posi-
tive rate, would also affect the amount to which suggestions
aid the searcher. If the false positive rate is too high, it is
likely that users would be overwhelmed with processing sug-
gestions, resulting in both decreased detection and increased
false positives. In practice, the searcher would also likely be
given the ability to adjust this to suit their preferences and
comfort level, but this was not included in this study.

The study was limited to fairly consistent (mid-day out-
door) illumination, though this should not generally affect

the proposed methods. As long as the variation in light-
ing is not so extreme as to cause the object’s color to no
longer appear different from the surrounding environment,
the anomaly detector can still function correctly. Changes
in daytime lighting also affect shadows, which we found fre-
quently appear as near-black regions of the image and com-
prise a sufficiently large enough fraction of the image so as
to be considered part of the normal environment.

Finally, this study was limited to two search environments
typical for Wilderness Search and Rescue and did not encom-
pass a wider range of potential search environments. We
have found that some types of search environments generate
more potential anomalies than others or are simply more
difficult to search. The findings here should generalize to
search environments where the targets of interest can be
distinguished from the surroundings by their coloring. The
environment may consist of a variety of colors, which need
not be known ahead of time. Similarly, the targets can con-
sist of multiple colors, which also do not need to be known,
as long as one or more of them is atypical of the environ-
ment. The methods here would struggle when the target
was distinguished by other characteristics (shape, texture,
etc.). They would also generate frequent false positives for
environments that routinely contain non-target anomalies–
i.e., colors that are natural to the scene but do not comprise
large parts of it. For these situations, it might be benefi-
cial to allow users to mark these irrelevant anomalies and to
explicitly mask these colors in the detector.

6. CONCLUSION
This paper has presented a method for aiding users per-

forming UAV-assisted wilderness search and rescue by incor-
porating a spectral anomaly detector to suggest unusually
colored objects. The contributions include an empirical eval-
uation of candidate spectral anomaly detectors to evaluate
how well each works within this domain, a method for filter-
ing out stray anomalously colored pixels and grouping pixels
into potential targets, and a simple method for presenting
these potential targets as suggestions to the user.

The empirical evaluation of the various detectors shows
that while all of the methods compared here can achieve
nearly comparable performance with appropriate parame-
ter tuning, the detector with RX normalization had slightly
better overall performance and was much more robust to
parameter settings. This robustness relative to clustering-
based approaches is likely due to the dependence of these
more on the size of potential objects (which stays fairly con-
sistent under search conditions) than on the variation in
ground cover (which does not and affects clustering).

The results of the accompanying user study suggest that
the use of automated detectors to aid human observers of
aerial search video can increase user performance in WiSAR
tasks. Even with a partially effective detector (which is per-
haps the best that can be hoped for in many situations)
that has a much higher false-positive rate than hit rate,
user detection can increase without corresponding increase
in false positives. User detection of targets suggested by
the anomaly detector increased while their detection of non-
suggested targets was unaffected. However, the filtering of
incorrect suggestions (or a potential shift of attention caused
by the suggestions) might require limiting secondary tasks
placed on the user.

These findings should transfer to similar search domains
where objects of potential interest might be identified by
unusual coloring relative to the normal search environment.
Actual performance will of course vary depending on the
task, the relative clarity of the targets, the detector used,
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and the interface used to present the suggestions, but incor-
poration of suggestions from an automated detector should
be considered when designing interfaces for searching video.
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