Experiments in Adjustable Autonomy

Jacob W. Crandall and Michael A. Goodrich

Computer Science Department
Brigham Young University

Abstract

Human-robot interaction is becoming an increasingly important research area. In this paper, we present
our work on designing a human-robot system with adjustable autonomy and describe not only the pro-
totype interface but also the corresponding robot behaviors. In our approach, we grant the human
meta-level control over the level of robot autonomy, but we allow the robot a varying amount of self-
direction with each level. Within this framework of adjustable autonomy, we explore how existing robot
control approaches can be adapted and extended to be compatible with adjustable autonomy.

1. Introduction

The purpose of this research is to develop human-
centered robot design concepts that apply in
multiple robot settings. More specifically, we
have been exploring the notion of adjustable au-
tonomy and are constructing a prototype systerm.
This prototype system allows a human user to in-
terface with a remote robot at various levels of
autonomy: full autonomy, goal biased autonomy;,
waypoint-based autonomy, intelligent teleopera-
tion, and dormant. The objective is to allow a
single human operator to interact with multiple
robots and do so while maintaining reasonable
workload and team efficiency.

2. Related Liturature

Relevant research in human-robot interaction
can be loosely classified under five topics: au-
tonomous robots, teleoperation, adjustable au-
tonomy, mixed initiatives, and advanced inter-
faces. Of these topics, research in teleoperation
is most mature; we refer to Sheridan’s work for
an excellent overview of these topics [15]. Per-
haps the most difficult obstacle to effective tele-
operation occurs when there are communication
delays between the human and the robot. The
standard approach for dealing with these issues
is to use supervisory control. Work on teleau-
tonomy [5] and behavior-based teleoperation [16]
are extensions to traditional supervisory control
that are designed specifically to account for time
delays.

Alternative approaches to teleautonomy that
focus on the operator include the use of predic-
tive displays [11] and the use of intelligent in-
terface assistants [13]. Approaches that focus

more on the human-robot interaction as a whole
include safeguarded teleoperation [8, 10], mixed
initiative systems [7], and adjustable autonomy-
based methods [6].

Autonomous robot control and vehicle design
has an extensive history. A complete review of
the literature is beyond the scope of this paper,
but we do note the seminal work of Brooks with
behavior-based robotics [4]. We further note
the excellent textbooks on the subject by Mur-
phy [12] and by Arkin [3]. There are many ap-
proaches to behavior-based robotics, but in this
paper we focus on approaches based on utilitar-
ian voting schemes [14]. Hierarchical approaches,
which are the other major approach to designing
autonomous vehicles, are characterized by the
NIST RCS architecture [1, 2].

3. Autonomy Modes and Justification

The purpose of this section is to describe the
levels of autonomy that are being included in
our human-robot system. Additionally, we dis-
cuss how the different autonomy levels are im-
plemented. In the system we describe, the oper-
ator is given the authority to switch autonomy
modes, but, within each mode, the robots have
some authority over their behaviors.

3.1 Time Delays and Neglect

In designing an architecture that allows a hu-
man to interface with multiple robots, it is
desirable to equip robots with enough auton-
omy to allow a single user to service multi-
ple robots. To capture the mapping between
user attention and robot autonomy, we in-
troduced the neglect graph in Figure 1 [9].

Robot Effectiveness
AN

P> Neglect

Teleoperation Fully Autonomous

Figure 1 The neglect curve. The x-axis rep-
resents the amount of neglect that a robot re-
ceives, which can be loosely translated into how
long since the operator has serviced the robot.
The y-axis represents the subjective effectiveness
of the robot. As neglect increases, effectiveness
decreases. The nearly vertical curve represents
a teleoperated robot which includes the poten-
tial for great effectiveness but which fails if the
operator neglects the robot. The horizontal line
represents a fully autonomous robot which in-
cludes less potential for effectiveness but which
maintains this level regardless of operator input.
The dashed curve represents intermediate types
of semi-autonomous robots, such as a robot that
uses waypoints, for which effectiveness decreases
as neglect increases.

The idea of the neglect graph is simple. Robot
A’s likely effectiveness, which measures how well
the robot accomplishes its assigned task and how
compatible the current task is with the human-
robot team’s mission, decreases when the op-
erator turns attention from robot A to robot
B; when robot A is neglected it becomes less
effective.

A common problem that arises in much of the
literature on operating a remote robot is time de-
lays. Round-trip time delays between earth and
Mars are around 45 minutes, between earth and
the moon are around 5 seconds, and between our
laptop and our robot around 0.5 seconds. Since
neglect is analogous to time delay, we can use
techniques designed to handle time delays to de-
velop a system with adjustable autonomy. For
example, when the operator turns attention from
robot A to robot B, the operator introduces a
time delay, albeit a voluntary one, into the in-
teraction loop between the operator and robot

A. Depending on how many robots the opera-
tor is managing and depending on the mission
specifications, it is desirable to adjust how much
a robot is neglected. Adjusting neglect corre-
sponds to switching between techniques for han-
dling time delays in human-robot interaction.

As the level of neglect changes, an autonomy
mode must be chosen that compensates for such
neglect. In the literature review, several schemes
were briefly discussed for dealing with time de-
lays. Schemes devised for large time delays are
appropriate for conditions of high neglect, and
schemes devised for small time delays are appro-
priate for conditions of low neglect. At the low-
est neglect level, shared control can be used for
either instantaneous control or interaction under
minimal time delays; at the highest neglect level,
a fully autonomous robot is required.

We are now in a position to make two ob-
servations that appear important for designing
robots and interface agents. First, the follow-
ing rule of thumb seems to apply: as autonomy
level increases, the breadth of tasks that can be
handled by a robot decreases. Another way of
stating this rule of thumb is that as efficiency in-
creases tolerance to neglect decreases. Second,
the objective of a good robot and interface agent
design is to move the knee of the neglect curve as
far to the right as possible; a well designed inter-
face and robot can tolerate much more neglect
than a poorly designed interface and robot.

3.2 Autonomy Modes

We have constructed (a) a set of robot control
programs and (b) an interface system that allows
a human to communicate with multiple robots
(specifically, Nomad SuperScout robots) via an
11Mb/s wireless ethernet. We first focus on our
robot control algorithms, which are built on util-
itarian voting schemes. After discussing these
control algorithms, we will discuss how we have
used these algorithms to support adjustable au-
tonomy in robot systems.

3.2.1 Utilitarian Voting Scheme for Nav-
igation

Our utilitarian voting scheme uses three be-
haviors: a goal-achieving behavior, an obstacle-
avoiding behavior, and a vetoing behavior.

The Goal-Achieving and Obstacle-
Avoiding Behaviors At each iteration of our
algorithm, eight voters are selected. Initially,

an input vector (which can come from a variety
of sources, depending on the current autonomy
mode) is given to the robot. This input vector is
considered an initial vote that proposes a mag-
nitude and a direction for the robot to travel.
The robot interprets this initial vote as a sugges-
tion, and selects seven of its sonars to cast “vote”
as well. These seven votes, along with the ini-
tial vote, determine the “best” direction for the
robot to travel.

The way in which the seven other voters are
selected is as follows: each sonar is assigned an
angle value that is based on the angle it forms
from the center of the robot, with, for example,
sonar 0 corresponding to 90 degrees and sonar
12 corresponding to zero degrees (see Figure 2).
We find the sonar for which the absolute value
of the sonar angle minus the angle of the input
vector is the smallest. In the case of figure 2,
this sonar is sonar 14. This sonar and the three
sonars adjacent to this sonar on both sides are
the sonars that will affect the direction the robot
chooses to take. The indices of these sonars are
then put into an array S of voters. Continuing
the example from the diagram, our array would
have the following values: S = (1, 0, 15, 14, 13,
12, 11).

Next we define a rejection array R = (Rp,
Ri, R2, R3, Ry, R5, Rg) and a pull array P =
(Po, P1, Py, P;, Py, Ps, Pgs), where each element
of R and P have magnitudes between 0 and 1.
These arrays designate the voting priorities that
the voters have for rejecting or accepting a direc-
tion of travel. The votes V that each of the seven
sonars casts in determining the “best” direction
is obtained in the following way:

For all S; ¢ S
If (S; <= WarningDist)

Vi = Spltumingbit g
else if (S; > SafeDist)
Vi=F
else
Vi=0

where SafeDist and WarningDist are predefined
distances.

Figure 2 shows the regions of how the voter
casts its vote. In effect,

- ~
N
(N
\
\ - - - = ~ ~ \
\ Sonar 0 N \
SafeDist Input Vector \ \
\
\ \
| I
12 I |
/
~ /
N /
N /
N/

WarningDist N\,

Figure 2 The circle with 16 small circles within
it represents and abstract view of the robot with
its sonars. The input vector is a vector indicating
the general direction the robot should attempt
to go, or the initial vote cast. The dotted part-
circles represent the boundaries for what kinds
of votes the sonar readings will cast. If the sonar
reading falls within the “WarningDist” section,
the sonar votes in opposition to its direction. If
the reading falls between the “WarningDist” and
“SafeDist” dotted part-circles, a neutral vote is
cast, and if the reading falls beyond “SafeDist,”
a vote in favor of the sonars direction is cast.

each voter (sonar) casts a vote on how good
its direction is. Let d; represent the sonar read-
ing for sonar i. if d; > SafeDist, the voter casts
a “goal-achieving” vote. This vote is cast in a
way to help the robot find an opening to reach its
goal(s). The strength of the vote cast depends on
the priority of the voter. If d; <= WarningDist
the voter casts an “obstacle-avoiding” vote.
The vote is cast in a way to help the robot
to avoid obstacles that are near it. The strength
of this vote depends on both the priority of
the voter and d;. As d; approaches zero, the
vote cast by this voter approaches R;. If
WarningDist <= d; < SafeDist, then the
voter casts a neutral vote, and the voter has no
effect on the outcome.

After the above calculations are performed,
we have an array of votes V (note that each
assigned vote V; corresponds to a sonar and,
therefor, an angle as well) plus the input vector
(the initial vote). Thus in all, we have eight vec-
tors which will determine the “best” direction 6
the robot should take. The x and y components
of the “best” direction vector are then computed:

6
x =1V % Mag * cos(¢) + Z Vi % cos(Sonar Ang;)
i=0
6

y =1V x Mag * sin(¢) + Z Vi * sin(Sonar Ang;)
i=0
where IV is the weight the intial vote receives,
Mag is the magnitude of the input (together,
1V and Mag constitue the priority of the initial
vote), ¢ is the angle of the input vector, and
SonarAng is an array that maps each weight W;
to an angle. We then compute 6: § = tan’lg.

As should be noted, we have left many
of the variables with undefined values in the
description of the voting scheme. Our cur-
rent implementation sets the vector R to
(0.1,0.4,0.7,0.8,0.7,0.4,0.1), the vector P to
(0.1,0.45,1.0,1.0,1.0,0.45,0.1), SafeDist to 65
inches, WarningDist to 40 inches, and IV to 1.4.
In our future work we will analyze why these val-
ues tend to work well, and what improvements
can be made.

The Vetoing Behavior The “best” direc-
tion @ is the direction the robot selected. How-
ever, the algorithm doesn’t guarantee that this
direction is “safe.” To guarantee that the robot
will not collide with any object that it can see, we
have also added a feature that supports guarded
motion [8, 10]. We use a simple algorithm in
which a “safe” region is defined by the sonar
readings. By predicting where the robot will be
at some future time ¢, the robot can determine
if it will leave this region anytime in the near fu-
ture if it continues the course it has selected. If
the robot would leave this “safe” zone anytime
in the near future, the “best” direction is vetoed
and a different initial vector must be selected.

4. Adjustable Autonomy

The input vector mentioned previously can be
found in a number of ways and, loosely, consti-
tutes the goal of the robot. This allows us to use
the same algorithm to direct the robot with dif-
ferent autonomy modes, since we can change the
autonomy modes simply by obtaining the input
vector in a different way. We have used this util-
itarian voting scheme to implement three robot
control programs. These control programs rep-
resent three different levels of autonomy.
Teleoperation This is a shared control sys-
tem. We use a Microsoft sidewinder joystick to
obtain the desired input vector. This assisted
teleoperation appears to relieve a lot of the work-

load from the human operator. Future work will
validate this claim.

Waypoints and Heuristics — The input vec-
tor can be obtained by goals and heuristics that
a human controller assigns to each robot. The
human controller may drop icons on the map of
the environment to influence the decisions that
the robot makes. In our system, we have goal
icons that indicate a robot’s destination, arrow
icons that tell the robot the general direction it
should go when it is in a certain location, and
rejection icons that indicate to the robot places
that it should avoid. The vector obtained by the
summation of these forces is the input vector for
the robot in this mode.

Autonomy — If we assume that the input
vector is always pointed straight ahead, the robot
becomes an autonomous wanderer. This prim-
itive wandering mode has shown to be quite
remarkable for random exploration in the real
world. Influencing a robot operating on this au-
tonomy level with some kind of goal would give
this mode added usefulness.

human
controller

IA - Interface Agent
RS - Robot Server
M - Control Modules

Figure 3 Diagram of the communication archi-
tecture of the human-robot system. The inter-
face agent serves as the communication link be-
tween the robots and the human controller. Any
number of control modules can be loaded onto
each robot. The lines between nodes represent
TCP/IP socket connections, while the dashed
line indicates communication between human
and machine. This architecture provides easy
use of the principles of adjustable autonomy as
the user may access the various autonomy loads
of each robot through the mediating interface
agent.

5. Communication Architecture

To facilitate improved communication between
a human and robots in a human-robot system,
we have developed an architecture that incorpo-
rates a human operator, robots, robot control
programs, and an interface agent. This architec-
ture is useful for robot systems that provide ad-
justable autonomy. Figure 3 provides a diagram
of our architecture.

5.1 Interface Agent

Communication between the various robots and
human operator in our human-robot system
takes place through the mediating interface
agent. Since communication between human and
robot must be two-way, the interface agent must
be able to transfer information in a sensible and
understandable form from human to robot and
from robot to human. This communication of
information is done through a graphical user in-
terface.

As we mentioned earlier, the object of a good
robot and interface agent design is to move the
knee of the neglect curve from Figure 1 as far to
the right as possible. To do so, the human op-
erator must be able to easily sense what is going
on with the robots in his or her system. Addi-
tionally, he or she must be able to communicate
as naturally as possible with them.

Figure 4 is a screen shot of the interface
agent’s GUIL. The bottom left corner of the GUI
provides a list of the robots in the system and the
tasks that have been assigned to each of them.
In the bottom middle, the “cockpit” of the robot
currently being serviced is displayed. The cock-
pit includes the readings from a digital compass,
a video image captured from the robot, and a
graphical display of the robot’s sonar readings.
The bottom right corner of the GUI displays the
general state information of the robot currently
being serviced. This part of the GUI provides
the human controller with the ability to queue
tasks on that robot. For example, if a robot
is currently performing a certain task, but its
help is temporarily wanted elsewhere, the hu-
man controller may assign the robot a new task.
Before completing the old task, the robot per-
forms the more urgent task. The old task is put
into a queue to be performed at a later time.
The center of the GUI is a grid that contains a
2-D “god’s eye” view of the environment that
the robots have explored. This view contains

Ao

i LI

CurentRobot @ |

Global Scope
Hods = 0.2
i

===iF"3
|

Figure 4 A screen shot of the Interface Agent’s
GUI The GUI includes sensor readings from the
robots, robot state, job queuing, and a ”god’s-
eye” perspective of the environment the robots
are exploring.

graphical information of the current location
of each robot, the map the robots have built and
the goals, waypoints, and heuristics that have
been assigned to the robots. Additional features
of the GUI include drop down menus, dragable
icons and buttons.

Although this user interface has proved use-
ful and has many good features, improvements
are needed to improve natural communication.
Future work will include these improvements [9].

5.2 Robot Server

The robot server on each robot is the center of
communication for that robot. This program
controls the robot after receiving commands from
other programs, and sends information to the
interface agent. Several basic functioning au-
tonomy levels are made available on the actual
robot server so as to always provide the human
user with some levels of autonomy on each robot.
Additional autonomy levels can be loaded onto
the robot online through additional program con-
trollers.

5.3 Control Programs

In addition to having a good communication sys-
tem, the robots must have the ability to perform
at many levels of autonomy. The human opera-
tor must be able to direct the robots at various
levels of autonomy so as to be able to keep a bal-
ance between helping individual robots to carry
out very complex tasks, and not loosing “sight”
of the rest of the robot team.

For this purpose, our human-robot commu-
nication architecture allows the human operator
to load up various common and special purpose
controller programs at startup and during run-
time. When these controller programs are loaded
onto the robot, the human controller can select
them and switch between them through the in-
terface agent.

As can be seen in Figure 3, the controller
programs on each robot communicate, with the
robot server on that robot. This is done through
a simple text protocol in which the controller
program receives information about the state of
the robot, and directs the robot server to carry
out commands on the robot.

This architecture is effective in providing ad-
justable autonomy to the robot system because
of the ability it gives the human controller to
use robots at any level of autonomy the robot
is capable of performing. Controller programs
for various autonomy levels need only be loaded
onto a robot, and the human can easily access
the autonomy modes.

6. Conclusions

We have built a system that supports adjustable
autonomy. Adjustable autonomy in a robot sys-
tem is facilitated by an interface agent, which
mediates between a human controller and the
robots in the system. The robots must have the
ability to perform at many autonomy levels, and
the human controller must be able to access these
modes.

References

[1] J. S. Albus. Outline for a theory of intelligence.
In IEEE Transactions on Systems, Man, and
Cybernetics 21(3):473-509, 1991.

[2] J.S. Albus. 4-d/rcs reference model architecture
for unmanned ground vehicles. In Proceedings
of the 2000 IEEE International Conference on
Robotics and Automation, 2000.

[3] R. C. Arkin. Behavior-Based Robotics. Cam-
bridge, Massachusetts: MIT Press, 1998.

[4] R. A. Brooks. A robust layered control system
for a mobile robot. In IEEE Journal of Robotics
and Automation 2:14-23, 1986.

[6] L. Conway, R. A. Volz, and M. W. Walker.
Teleautonomous systems: Projecting and co-
ordinating intelligent action at a distance. In

IEEE Transactions on Robotics and Autonoma-
tion 6(2), 1990.

[6] G. A. Dorais, R. P. Bonasso, D. Korenkamp,
B. Pell, and D. Schreckenghost. Adjustable
autonomy for human-centered autonomous sys-
tems on mars. In Proceedings of the First Inter-
national Conference of the Mars Society, 1998.

[7] T. Fong, C. Thorpe, and C. Baur. Collabora-
tive control: A robot-centric model for vehicle
teleoperation. In AAAI 19999 Spring Sympo-
sium: Agents with Adjustable Autonomy. Stan-
ford, CA: AAAT, 1999.

[8] T. Fong, C. Thorpe, and C. Baur. A safe-
guarded teleoperation controller. In IEEE In-
ternational Conference on Advanced Robotics

(ICAR), 2001.

[9] Michael A. Goodrich, Dan R. Olsen Jr., Ja-
cob W. Crandall, and Thomas Palmer. Experi-
ments in adjustable autonomy. In Proceedings of
the IJCAI-01 Workshop on Autonomy, Delega-
tion, and Control: Interacting with Autonomous
Agents, 2001.

[10] E. Krotkov, R. Simmons, F. Cozman, and
S. Koenig. Safeguarded teleoperation for lunar
rovers: from human factors to field trials. In
IEEE Planetary Rover Technology and Systems
Workshop, 1996.

[11] J. C. Lane, C. R. Carignan, and D. L. Akin.
Advanced operator interface design for complex
space terobots. In Vehicle Teleoperation In-
terfaces Workshop, IEEE International Confer-
ence on Robotics and Automation, 2000.

[12] R.R. Murphy. Introduction to AI Robotics. MIT
Press, 2000.

[13] R. R. Murphy and E. Rogers. Cooperative assi-
tance for remote robot supervision. In Presence

5(2): 224-240, 1996.

[14] J. K. Rosenblatt. Damn: A distributed archi-
tecture for mobile navigation. In Proc. Of the
AAAI Spring Symp. On Lessons Learned from
Implemented Software Architectures for Physi-
cal Agents, 1995.

[15] Thomas B. Sheridan. Telerobotics, Autonoma-
tion, and Human Supervisory Control. The MIT
Press, 1992.

[16] M. R. Stein. Behavior-Based Control for Time-
Delayed Teleoperation. Ph.D Dissertation, Uni-
versity of Pennsylvania, 1994.

