
Modeling UASs for Role Fusion and Human
Machine Interface Optimization

TJ Gledhill, Eric Mercer and Michael A. Goodrich
Computer Science Department

Brigham Young University

Provo, UT

Abstract—Currently, a single Unmanned Aerial System (UAS)
requires several humans managing different aspects of the
problem. Human roles often include vehicle operators, payload
experts, and mission managers [1–3]. As a step toward reducing
the number of humans required, it is desirable to reduce operator
workload through effective distributed control, augmented auton-
omy, and intelligent user interfaces. Reliably doing this requires
various roles in the system to be modeled. These roles naturally
include the roles of the humans, but they also include roles
delegated to autonomy and software decision-making algorithms,
meaning the GUI and the unmanned aerial vehicle. This paper
presents a conceptual model which models the roles of complex
systems as a collection of actors, running in parallel. Results from
applying this model to the UAS-enabled Wilderness Search and
Rescue (WiSAR) domain indicate (a) it is possible to model the
entire WiSAR system at varying degrees of abstraction (b) that
building and evaluating the model provides insight into the best
practices of WiSAR teams and (c) a way to model human machine
interactions that works directly with the Java Pathfinder model
checker to detect errors.

Index Terms—model checking, human machine interfaces,
Java PathFinder, Unmanned Aerial Systems, Wilderness Search
and Rescue

I. INTRODUCTION

Most existing Unmanned Aerial Systems (UASs) require

two or more human operators[1, 2]. Standard UAS practice is

to have one human to control the aerial vehicle and another

to control the camera or other payloads. In addition to this a

third human is often responsible for overseeing task completion

and interfacing with the command structure. Although some

argue persuasively that this is a desirable organization [4],

there is considerable interest in reducing the required number

of humans and reducing human workload using improved

autonomy and enhanced user interfaces [3, 5, 6].

The broad research context driving this paper takes a

multistep approach: (a) model the roles for a specific UAS

and a well-defined set of tasks, (b) delimit assumptions and

abstractions used in the model, (c) verify properties of the

model, (d) use the model to explore ways of combining roles

in such a way that operator workload and the number of

humans is minimized, and (e) design vehicle autonomy and

user interface support to allow a real UAS team to operate

more efficiently. The focus of this paper is on the important

lessons learned in the first two steps.

The modeling used in this paper could be applied to a

number of tasks, but we focus on Wilderness Search and

Rescue for two reasons. First, the authors have done prior work

on UAS-enabled Wilderness Search and Rescue (WiSAR) [6];

and second, there is a host of modeling information about how

WiSAR is currently performed [7]. The UAS-enabled WiSAR

systems produced by this research requires three humans, two

GUIs, and a single UAV.

To gain insight into WiSAR we have chosen to model

the system as a group of directed role graphs (DiRGs). Each

human, GUI, and UAV represent a DiRG, allowing evaluation

of potential conflicts between and opportunities for unification

of the various roles. These DiRGs are referred to as Actors in

the models below.

Modeling is essentially a process of abstraction, choosing

which elements of a system are essential and which are not [8].

Since one of the goals of this paper is to use model-checking

to evaluate models, we choose a model class that is simple

enough that it allows us to clearly delineate between what

is modeled and what is not. Thus, we use DiRGs, which

can be expressed as Mealy state machines, to model different

WiSAR roles. These models explicitly encode key aspects of

the various actors, and collectively form a group of Mealy

machines that run in parallel. The model is encoded in Java

using a custom set of interfaces designed to simulate a discrete

time environment, facilitate input/output between roles, and

provide non-deterministic event handling.

Model checking is performed using Java Pathfinder (JPF).

This is convenient because JPF runs the model checking on

the compiled Java code generated by the modeling exercise.

The results of this modeling exercise indicate (a) it is

possible to model the entire WiSAR system using varying

degrees of abstraction and (b) that building and evaluating the

model provides insight into the best practices of WiSAR teams

and (c) a way to model human machine interactions that works

directly with the Java Pathfinder model checker to detect errors.

II. RELATED WORK

NASA Ames Research Center (NASA ARC) is using

Brahms, a complex and robust language, to model interactions

between operators and their aerial equipment [9]. To study

the Uberlingen collision, an in air collision of two commercial

2013 IEEE International Conference on Systems, Man, and Cybernetics

978-1-4799-0652-9/13 $31.00 © 2013 IEEE

DOI

1929

2013 IEEE International Conference on Systems, Man, and Cybernetics

978-1-4799-0652-9/13 $31.00 © 2013 IEEE

DOI 10.1109/SMC.2013.332

1929

passenger planes, Rungta and her colleagues produced a model

entirely in the Brahms language. This model correctly predicts

the collision and also reveals some of the difficulties intrinsic

to this type of system.

One critical aspect of NASA ARCs work carries over into

our own: variable task duration [10]. Task duration directly

influences whether the situation ends safely, barely avoids a

crash, or crashes. The biggest advantage Brahms has over

Java comes from its strict grammar. However, Brahms must

be translated into Java before using JPF, a step we avoid by

implementing our model in Java directly.

Bolton and Bass used the Enhanced Operator Function

Model (EOFM) language to create a model consisting of

the Air Traffic Controller, the pilot flying the plane, and

the pilot monitoring the equipment, as well as the interfaces

they used [11]. As they increased the number of allowable

miscommunications, their system had an exponential increase

of errors. EOFM facilitates the division of goals into multiple

levels of activities. These activities can then be broken into

atomic actions [12]. The main difference between this model

and our own is that EOFM is expressed in XML while ours is

expressed in Java. This allows us to perform model checking

directly using JPF.

Wilderness Search and Rescue is primarily concerned with

finding people who have become lost in rugged terrain. Re-

search has shown that UASs could potentially be used to

facilitate this work. Goodrich et al. tested the effectiveness of

these types of operations [1]. A key outcome of these field tests

is the speculation that effectiveness could be enhanced if the

roles of the UAV operator and video operator were combined.

In prior work, a goal-directed task analysis, a work domain

analysis, and a control task analysis were performed. [7].

These analyses modeled WiSAR as a collection of goals, work

domains, and tasks. While these studies proved valuable for

understanding the WiSAR processes they were less helpful in

suggesting improvements to the WiSAR processes. Indeed, the

limitations of such tools for informing the design of technology

to support existing processes has lead to new methods for

performing such analyses [13]; the work in this paper comple-

ments such work, using model-checking to perform analyses

on problems that do not lend themselves to answers using other

approaches.

III. WISAR UAS DOMAIN

Wilderness search and rescue often occurs in remote, vary-

ing, and dangerous terrains. According to [14], there are four

core elements of a WiSAR operation: Locate, Reach, Stabilize,

and Evacuate. The WiSAR UAS operates within this first

element so it is the focus of this paper.

During the Locate element, the incident commander (IC)

develops a strategy to obtain information. This strategy makes

use of the available tactics to obtain this information. The

WiSAR UAS is one of the tactics that the IC may choose

to use. A WiSAR UAS technical search team consists of

three humans: Mission Manager, Vehicle Operator, and Video

Operator. These constitute the three human roles in the team.

Supporting these human roles are two intelligent user inter-

faces, the Vehicle Operator GUI and the Video Operator GUI;

these constitute two other roles that must be modeled. The

final role is the aerial vehicle itself, which is equipped with

sensors and controllers that enable it to make decisions. Since

the WiSAR UAS technical search team must coordinate its

efforts with other members of the search team via the IC, we

embed the five UAS roles within a Parent Search model. The

parent search model represents the entire command structure

for the search and rescue operation.

In the next section, we model the WiSAR roles and the

interactions between these roles. Naturally, these roles will

need to take input from the environment, so we present a

simple model of the environment that emphasizes the key

environmental elements, probabilistic events and varying task

durations. Note that this model of the environment exists at a

higher level of abstraction than what is typically considered an

environment model in literature; typical models tend to focus

on environmental realism, encoding things like terrain, wind,

etc, but our model emphasizes events that affect the behavior

of the WiSAR roles.

IV. CONCEPTUAL MODEL

We have chosen to conceptualize the WiSAR UAS as a

group of DiRGs. A DiRG represents a sequence of tasks for

a single role. By conceptualizing WiSAR as a collection of

DiRGs running in parallel we hope to gain more insight into

the WiSAR processes with a goal of improving these processes.

In prior work, a goal-directed task analysis, a work domain

analysis, and a control task analysis were performed. [7].

These analyses modeled WiSAR as a collection of goals, work

domains, and tasks. While these studies proved valuable for

understanding the WiSAR processes they were less helpful

in suggesting improvements to the WiSAR processes. Indeed,

the limitations of such tools for informing the design of

technology to support existing processes occurs because they

discover conditions which may result in problems rather than

discovering system problems themselves. Performing system-

level task modeling, such as we are, is capable of discovering

such problems [15].

While we are using this technique to find such problems we

expand on it in several ways. First, this technique is most com-

monly used for analyzing a single human using an interface.

Our models involve a team of humans simultaneously using

multiple interfaces which naturally increases the state space of

the model, decreasing scalability. Second, we are using this

technique to analyze the workload of the system. Our goal

is the combining of human roles and interfaces. We hope to

gain insight into decreasing the system workload, and possibly

combining roles, by establishing metrics associated with the

task model and model simulation. These metrics can then be

used to determine if changes to the model represent a decrease

in operator workload.

As is common when modeling human-automation interac-

tion we have decided to model the DiRGs usings Mealy state

machines [15] This allows us to abstract the different WiSAR

19301930

roles into individual state machines that we call Actors. Actors

do not correspond to a single aspect of the WiSAR domain,

anything can be an Actor, thus providing the freedom to

flexibly model as many aspects of the domain as necessary

and at various levels of resolution. This freedom is important

and represents our primary method of reducing the state space

to manage scalability. Actors transition between states by

receiving inputs generated by other Actors and Events. Events

are also modeled as Mealy machines whose transitions are

triggered by a combination of simulation and Actor inputs.

Because Actors and Events may receive input from other

Actors and Events the combination of their transition matrices

define the wiring of the different DiRGs. A single wire is when

an output from one Actor is an input on another Actor. This

implies that the set of all inputs is the same as the set of all

outputs, however, in practice we do not treat these sets as the

same since unhandled input represents transitions returning to

the current state. We ignore these looping transitions except

when their behavior tells us something interesting.

Formally, the models are the following mathematical struc-

tures:

Actor = (S, s0,ΣA ∪ Σ,ΛA, T) (1)

Event = (S, S0,ΣA ∪ ΣS ,ΛA, T) (2)

T : S × Σ⇒ S × ΛA (3)

where S is a set of states, s0 the start state, ΣA the set of

all Actor inputs, ΣS the set of all Simulator inputs, ΛA the set

of all Actor outputs, and T a transition matrix which specifies

the outputs for any state transition. T may have multiple inputs

and multiple outputs.

At this point our conceptual model is implementation ag-

nostic. Indeed, the abstraction allows us to group Actors, break

Actors into sub-Actors, and use Actors to validate specific

behaviors. The model also allows for complex transitions

between Actor states and the ability to enter normally unreach-

able state spaces using Events. The model is also easily adapted

to code which can be verified using model checking tools such

as Java Pathfinder (JPF) which we will show in the following

sections.

V. SIMULATING THE WISAR UAS

Real WiSAR environments and UAV dynamics are complex

so full models of the environment and UAV can also become

extremely complex. However, many of the complexities are not

relevant to the decisions made by the various WiSAR actors.

Consequently, we propose a model that ”abstracts away” many

unessential details and encodes key aspects of the environment.

In order to simulate critical aspects of the WiSAR UAS

model it is necessary to represent communication between

Actors, concurrency, and task duration, concepts which are

outside the scope of a standard state machine. To do this

we constructed a basic simulation framework. The simulation

framework is encapsulated into a single Java class, called

Simulator. This section discusses the key components of this

simulation framework.

A. Core Simulator Objects

The Simulator is made up of the following objects: Team,

Actors, Events, States, Transitions, and Unique Data Objects

(UDO). We organize these objects in the following way. A

Team is a wrapper class representing the entire model which

contains a collection of Actors, Events, and shared UDOs.

Each Actor contains a set of private States. Each of these

States contains a set of Transitions. Each Transition contains a

set of input UDOs, a set of output UDOs, the outgoing Actor

State, and a reference to the Actors current State. This structure

is convenient because it naturally encapsulates the different

aspects of a Mealy machine.

Each UDO represents a unique piece of data, input or out-

put, and is flagged as active or inactive. A UDO is temporarily

set to active after it is sent as output. Each Transition can

easily determine if it is possible by checking to see that all

of its input UDOs are active. Each State can then return a list

of possible transitions. An Actor evaluates the list of possible

Transitions to determine how it should transition. If it is empty

then the Actor does not transition, otherwise the Actor chooses

a single Transition to occur. An Actor chooses a Transition

at the Simulators request. The Simulator tracks when this

Transition should occur, at which point the Transition will

set each output UDO to active and change the Actors current

state to the Transitions outgoing State. Because the UDOs

must exist before Actors can be initialized we have created the

Team class. The Team class wraps all of the Actors, Events,

and UDOs into single entity. This class first initializes each

UDO, afterwards each Actor and Event is initialized with a

list of input and output UDO references which it will use in

its transitions. This structure offers a few benefits. Code wise

it allows us to simulate the transfer of data without actually

transferring data which drastically simplifies the code. It also

forces us to explicitly define our model wiring in two places,

first at the Team level and second at the Actor Transition level

as mentioned above. Although the Transition set of inputs is

not limited to the set of global UDOs we can still compare the

set of global inputs and outputs an Actor receives with the set

of inputs and outputs defined by its transitions. Through this

we can validate that the set of Actor transitions is complete, as

defined in our Team, which is an important step in validating

the model. A simple example of the initialization of the Team

and its components is shown in the following example:

Team {
UDO A1Output = new UDO()
UDO E1Output = new UDO()

UDO Inputs[] = [E1Output]
UDO Outputs[] = [A1Output]
Actor A1 = new Actor(Inputs, Outputs)

UDO Inputs[] = [A1Output]
Actor A2 = new Actor(Inputs, [])

19311931

UDO Outputs[] = [E1Output]
Event E1 = new Event([], Outputs)

}

A1(Inputs, Outputs) {
State S1 = new State()
State S2 = new State()

S1.addTransition(this,
Inputs.E1_Output,
Outputs.A1Output,
S2)

}

A2(Inputs, Outputs) {
State S1 = new State()
State S2 = new State()

S1.addTransition(this,
Inputs.A1Output,
null,
S2)

}

E1(Inputs, Outputs) {
State S1 = new State()
State S2 = new State()

S1.addTransition(this,
null,
Outputs.E1Output,
S2)

}

While this is only a basic example it clearly shows how

the models have been implemented as code. The example

also illustrates the Event class. Events differ from Actors in

that Event transitions require an express command from the

Simulator before processing. This allows the Simulator to non-

deterministically trigger events which, when run in JPF, can

be setup to process events at different intervals or when the

system changes state. From this we can determine the effects

events have on the system in a very robust manner.

B. Communication Between Actors

To simulate a team of Actors working together it is neces-

sary to establish a communication medium within the model

and simulation which can represent the different forms of

communication. In the model this communication medium is

represented as inputs, outputs, and transitions.

Our initial attempts to simulate this communication resulted

in a PostOffice class attached to the Simulator. Actors sent

data along with the name of the recipient to the PostOffice.

Actors could then retrieve their input from the PostOffice,

much the way PO boxes work. Actors also had the ability to

make certain output observable through the PostOffice. This

meant that an Actor could place data into the PostOffice for

other Actors to observe, a public PO box. When we added

sub-Actors to the model code it became necessary to allow

Actors and sub-Actors to share both private and public PO

boxes. It was also necessary to store current and future output

separately to achieve concurrency which we explain in the next

section. Although this achieved the desired goal the results

were less than satisfactory. In addition to the added complexity

the design used implicit input and output connections making

it much harder to validate that the code represented the desired

model.

Our next iteration of the Simulator simplified this com-

munication medium with the use of the previously defined

UDOs. By initializing these UDOs and passing them as

references to the Actors and Events we greatly simplified inter-

Actor communication. This new design also requires explicit

declarations for each UDO connection allowing us to validate

the model code with the model and again with the transition

matrixes. The UDO is also capable of representing both direct

and observable communications which naturally allow sub-

Actors to link inputs with parents. Indeed, Actor relationships

are now irrelevant in regard to sharing input and output since

Actors only depend on the status of the UDOs. In the case

where it does matter which Actor generated the output then

a new UDO can be created representing that relationship thus

preserving Actor independence through explicit connections.

The Team initialization example above demonstrates the

use of UDOs. The example defines two UDOs, A1Output and

E1Output. Once defined these UDOs are passed by reference

to specific Actors and Events as inputs, explicitly defining the

connectivity implied by the UDOs. The Actors use the UDO

references for constructing their transition matrices which

results in the connecting of A2 to A1 and A1 to E1. If we

desired to change our model and allow A2 to transition on

E1Output the UDO would be added to the A2 input and

A2 would declare a transition for that input resulting in the

connectivity of A2 to E1.

C. Simulating Time

To simulate task duration the simulator uses the delta

time algorithm. Each Transition has a specified duration

range defined by the Actor or Event. The simulator has

five different duration settings for choosing a value within

a range: MIN , the minimum; MAX , the maximum;

MIN OR MAX , a random choice between one of these set-

tings; MIN MEAN OR MAX , another random choice..

When an Actor begins a Transition the Simulator chooses a

duration, the value of that duration is then converted to the

Simulator delta time. Basically if a transition is to finish in 30

time steps but another Transition finishes at 25 time steps then

the first Transition is placed after the second Transition and is

given a count of 5 which means it happens 5 time steps after

the prior Transition. Thus as the simulation progresses time

remains relative.

Slightly different from the use of transition durations is the

notion of simulating Events. The time range over which an

19321932

Event may occur is often much larger than the ranges defined

by tasks, also, Events are only possible in specific state spaces

thus preventing us from predicting the available time range

of the Event. This prevents us from simulating Event timing

in the same way as task durations because such large time

ranges cannot be accurately represented with with only 2 to

3 choices and we cannot select a min, max, or mean if the

range is unknown. We solve this problem in two ways. One

method is to trigger the Event at regular time intervals while

the Event is possible. Depending on the interval size this can

cause a dramatic increase in state space. While this increases

the possibility of exploring the possible effects an Event can

generate on the system it offers no guarantees. Another method

for triggering Events is to trigger the Event on each state

change within the system while the Event is possible. This

guarantees that the Event will be explored in each state space

that is presented during the simulation, however, this is also

likely dramatically increase the state space and is much more

difficult to implement. Since triggering an Event represents

a transition within the Event it is included in the delta time

algorithm used for progressing simulation time.

D. The Simulation Loop

It is now possible to describe the actual simulation. After

initialization we enter the simulation phase. This phase is used

to transition the Actors and trigger Events. One challenge

with transitioning the Actors is the need for concurrency. The

simulation must allow multiple Actors to transition without

interfering with one another. Previous versions of our Sim-

ulator placed each Actor within its own thread. We found

that threads complicate the conversion into JPF so instead

we chose to use transactions. In each transaction we allow

each Actor to make the changes required by its transition.

These transitions only modify a temporary value on the UDOs.

After all transitions are completed we finish the transaction by

moving each temporary UDO value into the actual value. The

entire simulation phase can be described thus:

Begin Transaction:
Foreach Actor

if (Transition duration reached)
Process Transition

End Foreach
End Transaction

Process Transaction

Foreach Actor
Transition = Get Next Transition
If Transition is not null

Convert Transition duration to delta time.
Update necessary Actor delta times.

End Foreach

When there are no longer any pending Transitions the loop

ends and the simulation is terminated.

VI. WISAR UAS MODEL

This section describes the models produced for the UAS-

enabled WiSAR process. We first discuss Actors and Events,

followed by a brief discussion of Java asserts and a case study

drawn from WiSAR.

This conceptual model uses Mealy state machines. This

allows us to abstract the different WiSAR roles into individ-

ual state machines that we call Actors. Actor states do not

correspond to a single aspect of the WiSAR domain, thus

providing the freedom to flexibly model as many aspects of the

domain as necessary and at various levels of resolution. Actors

transition between states are triggered by inputs generated by

Events and by other Actors. Events are also modeled as Mealy

machines whose transitions are triggered by a combination of

simulator and Actor inputs. A benefit of this state machine-

based conceptual model is the ability to convert the model into

code. The coded model can be verified using model checking

tools such as Java Pathfinder (JPF) to gain further insight into

the model. In the interest of space we will not describe the Java

simulation framework developed for JPF model checking.

A. Actors

Choosing the core Actors is critical since modeling UAS-

enabled WiSAR requires a level of abstraction that gives

useful results without adding unnecessary complexity. After

exploring several levels of abstraction, we selected a model

that treats as an Actor any core decision-making element of

the team, yielding the following Actors: parent search (PS),

mission manager (MM), UAV operator (VeOp), video operator

(VidOp), UAV operator GUI (VeGUI), video operator GUI

(VidGUI), and the UAV. We deliberately chose to not model

ground searchers, leaving this to future work.

The models of the human roles use specific states for

communication. We describe these states once and then refer

to them as a single communication state. Typically before a

human communicates he or she receives some signal that the

communication is being received. We model this as a POKE

state. When communicating, an Actor model of a human

enters the POKE state where it waits until it receives an

acknowledgement. If the acknowledgement is not received then

the communication does not occur. After the acknowledgement

the human moves into a transmit (TX) state whose duration

is based on the data being transferred. At the end of this

transfer the human enters an end (END) state and outputs the

transferred data to the receiver.

If the Actor model of the human receives a poke, then it

responds with a busy or an acknowledge. If the human ac-

knowledges the poke, then it enters the receive (RX) state. The

human will not leave this state until the end communication

input is received or until it decides to leave on its own. If

one of these communications is interrupted before completion,

then we consider that the data was not transferred. To better

facilitate communication interruptions we only transfer a single

piece of information per communication.

The next sections are dedicated to describing the Actor state

machines with a generalized description of their relative tran-

19331933

Fig. 1. UAV Operator DiRG. Excludes transition output.

Fig. 2. Video Operator DiRG. Excludes transition output.

sition matrixes. We omit several of the previously mentioned

Actors in the interest of space.

1) UAV Operator (VeOp): As illustrated in Figure 1,

the VeOp Actor has the following states: IDLE,

OBSERVING VeGUI, FLYBY VeGUI, OBSERVING UAV,

LAUNCH UAV, POST FLIGHT, and three communication

states: MM, VeGUI, and VidOp. Initially the VeOp is idle.

After receiving a new search command from the MM the

VeOp constructs a flight plan using the VeGUI. When this

is complete the VeOp will then launch the UAV. While in

the launch state the VeOp is observing the UAV, when the

UAV completes its take off the VeOp moves to observing the

VeGUI. While the UAV is airborne the VeOp will continually

move between observing the UAV and observing the VeGUI.

The VeOp will respond to any problems that are noticed while

observing the VeGUI or UAV.

During the flight the VeOp listens for input from the PS

and VidOp. If there are flyby requests on the VeGUI, then the

VeOp may choose to enter a flyby mode. This implies a high

cognitive load on the VeOp while positioning the UAV over

the specified anomaly. The VeOp will remain in flyby mode

until the VidOp specifies, through the GUI, that the flyby is

finished. During an operation the UAV will often land and take

off multiple times. The post flight state represents the work

necessary to get the UAV ready for flight, such as changing

the battery.

2) Video Operator (VidOp): As illustrated in Figue 2,

the VidOp Actor has the following states: IDLE, OBSERV-
ING VidGUI NORMAL, OBSERVING VidGUI FLYBY, and

three communication states: MM, VeOp, and VidGUI. Initially

the VidOp is idle. After receiving a target description and

the search information the VidOp moves to normal GUI

observation. While observing the VidGUI the VidOp watches

for anomalies, each time an anomaly is visible the VidOp

decides if the anomaly is seen. If it is seen the VidOp decides

if it is an unlikely, possible, or likely sighting. This is done

with probabilities related to the type of anomaly, true positive

or false positive. If the anomaly is classified as possible then

the VidOp makes a validate sighting request for the MM. If the

anomaly is a likely sighting then the VidOp requests a flyby

from the VeOp.

When the VeOp begins a flyby request the VidGUI signals

the VidOp to enter the flyby state. In this state the VidOp

watches for the anomaly. Due to the nature of the flyby the

VidOp can now make an informed decision about the nature

of the anomaly, gaining a much higher probability of being

correct. After deciding if it is the target the VidOp signals

through the VidGUI that the flyby is finished. If the sighting is

confirmed the VidOp reports to the MM, otherwise the VidOp

returns to normal GUI observation.

3) Operator GUI (VeGUI): The VeGUI Actor has two

states: NORMAL and ALARM. The VeGUI communicates di-

rectly with the UAV and VidGUI Actors. The default function

of the VeGUI is to observe the UAV. The VeGUI keeps internal

variables of all the UAV and VidGUI data that it tracks, all

of this data is available through observation of the VeGUI. If

it detects an error with the UAV outputs such as low battery,

no flight plan, low height above ground, or lost signal the

VeGUI will enter the alarm state. This state indicates that there

are visible warnings on the screen to alert the VeOp of the

problem. The VeGUI listens for VeOp input or changes in the

UAV output to signal that the problem has been dealt with

before moving into the normal state.

4) UAV: The UAV Actor has the following states: READY,

TAKE OFF, FLYING, LOITERING, LANDING, LANDED and

CRASHED. Initially the UAV is in the ready state. Upon

command the UAV moves to take off for a specific duration

and then to flying or loitering. The flying state is when the

19341934

UAV is following a flight plan. The loitering state is when the

UAV is circling a specific location. The UAV will automatically

enter the loitering state after completing its flight plans. While

airborne the UAV, upon command, moves to the landing state

for a specific duration before moving into the landed state.

Once landed the UAV must be moved into the ready state

before it can take off again.

The Actors in this model, thus far, represent a fairly

high level of abstraction. Fortunately, the DiRG conceptual

framework allows incremental extension of the models by

adding lower levels of abstraction. This is accomplished by

introducing sub-Actors into the model. We illustrate how the

Actor/sub-Actor hierarchy can be used by describing two UAV

sub-Actors. In these examples the sub-Actors receive all the

same input as the parent Actor and all sub-Actor output is sent

from the parent Actor.

The first UAV sub-Actor is the UAVBattery. It contains

the following states: INACTIVE, ACTIVE, LOW, and DEAD.

Initially the battery is inactive. The battery is assigned a

duration and a low battery threshold. When the UAV receives

the take off command the battery enters the active state. The

batteries next state is set to low at time current time +
battery duration − low battery threshold. When the bat-

tery enters the low state its next state is set to dead at time

current time+ low battery threshold.

A second sub-Actor is the UAVFlightPlan. This represents

the flight plan flown by the UAV. The flight plan requires a spe-

cific amount of time to complete. The UAVFlightPlan has the

following states: NONE, ACTIVE, PAUSED, and COMPLETE.

Initially the flight plan is set to none. After the operator creates

a flight plan using the VeGUI then the flight plan moves to

active. During a flight the UAV may loiter, land, or flyby; this

causes the flight plan to move to paused. When the UAV begins

following the flight plan again it returns to active. After the

UAV has flown the flight plan for the specified duration the

flight plan enters the complete state.

The results discussed below include four other UAV sub-

Actors: UAVHeightAboveGround, UAVSignal, UAVVidFeed,

and FlybyAnomaly. Details are omitted in the interest of space.

B. Events

We used the Event Abstraction for several different elements

of the UAS-enabled WiSAR problem. Adding this abstraction

allows humans analyzing the system to give a set of inputs to

the model and observe the consequences of the inputs.

The following Events were encountered in various UAS-

enabled WiSAR field trials and represent a sample of inter-

esting possible operating conditions for the Actors. In the

interest of space we list these events while omitting their de-

scriptions. NewSearchAOIEvent, TargetDescriptionEvent, Ter-

minateSearchEvent, LowHAGEvent, LostSignalEvent, True-

PositiveAnomalyEvent, FalsePositiveAnomalyEvent, and Bad-

VideoFeedEvent.1

1HAG = Height Above Ground, AOI = Area of Interest

C. Asserts

As a general rule in model-checking, the more complex

the model the more that can go wrong. Detecting flaws in

the model is extremely valuable because such flaws trigger

further evaluation. We present a case study in the next section

that illustrates how the evaluation can identify things that need

to change in the WiSAR process to avoid serious errors and

perhaps failure to find the missing person.

Unfortunately, it can be challenging to differentiate between

important flaws and coding bugs. To catch all errors, both

flaws and bugs, we use Java Asserts. JPF automatically halts

processing when it encounters a false assertion, allowing us to

determine if the error is a bug or a flaw.

The model uses asserts in two ways. The first is detection of

an undesired state. If an actor enters an undesirable state then

an assertion halts the simulation. An example of this is the

UAV CRASHED state. The second deals with inputs. Many

operations are sequential. They require a specific state and

input before the next task can be performed. By looking at

an Actors received inputs we are able to tell if an Actor is

out of sync with the other Actors. An example of this is the

VeOp TAKE OFF input for the UAV. If the UAV is already

airborne and it receives this input we know that the operator

is out of sync with the UAV.

Asserts are critical to debugging and verifying of the model.

We found that having too many asserts is preferable to having

too few.

D. Case Study: Anomaly Detection

The scenario illustrated in figure 3 represents a portion

of what should occur when the video operator believes a

target has appeared on the video GUI. Each vertical swimlane

represents an Actor/ DiRG. Periodically during a flight the

UAV will fly over an anomaly. An anomaly can be either a

false positive or a true positive, meaning that it is either the

desired target or it is not. If the video operator believes that it is

the target then a flyby request is made through the video GUI.

This request is then made visible to the operator through the

operator GUI. When the operator decides to perform the flyby

request he signals this through the operator GUI and begins to

manually direct the UAV to the location of the anomaly. While

the operator is directing the UAV the video operator closely

examines the video stream until the anomaly is visible again.

The video operator then decides if it is a true target sighting

or a false positive. The video operator communicates this to

the operator through the video GUI. If it was a target sighting

then the video operator passes the information to the mission

manager who then passes it to the parent search. This high level

view communicates the basic structure of the communication

between the different actors.

VII. RESULTS

In this section, we first discuss model-checking results and

then present insights from the modeling process.

19351935

Fig. 3. Anomaly Detection Model: Swim lanes represent actors. Arrows
represent input/output. Colored sections represent actor states.

A. JPF Results

Model checking constructs an exhaustive proof, by enumer-

ating every reachable state of a system, to establish a property.

The JPF model checker uses native Java as the modeling

language to describe a system, and implements a custom virtual

machine to systematically explore the reachable state space of

the compiled Java program. The reachable state space of a

sequential model is trivial to enumerate but the reachable state

space grows exponentially with the level of non-determinism

(i.e., random choice).

The source of non-determinism in the WiSAR model is in

timing. The model defines time bounds for different events

and tasks in the system. When the model is run, it non-

deterministically chooses delays from within those bounds.

For example, the time to land the UAV is a uniform random

variable bounded between 60 and 1,800 time units. In the

WiSAR model, there are 69 different tasks or events with

non-deterministic durations. As it is not feasible to enumerate

the entire reachable state space of such a large model, this

work implements several standard heuristics to limit the non-

determinism: minimum(maximum) time only; minimum and

maximum times only; and minimum, maximum, and mean

times only. As expected, the first heuristic using only the

minimum(maximum) time bound results in a sequential model

with no non-determinism.

The total number of meaningful lines of code, code within

methods, for the WiSAR model is 3,804. JPF is able to analyze

the model using the minimum heuristic in negligible time

only enumerating 124 states on a MacBook Air with 4GB of

memory and an Intel Core I7 1.6 Ghz processor. The maximum

heuristic also has negligible time but fewer behaviors with

only 16 states. The difference in states is due to the UAV

not needing to land several times to recharge its battery.

The minimum and maximum bounds heuristic in JPF

generates an important and interesting result. JPF finds a

combination of task durations that result in an infinite loop

using the heuristic. The same infinite loop can be recreated

outside of JPF by repeatedly running the model over and over

again as random trials until one of the trails goes into an infinite

loop. The power of using JPF is that it finds the infinite loop

every time without the need for the random trials. The root

cause of the infinite loop was a flawed communication protocol

that implicitly relied on specific delays in the interaction.

The protocol has since been corrected and JPF verifies the

model to now terminate under all combinations of minimum

or maximum delays: 3,911 states in 6 seconds of running time.

The greatest number of states enumerated by JPF comes

from using the minimum, maximum, and mean heuristic. For

all 69 points of non-determinism in the WiSAR model, JPF

exhaustively considers 3 distinct values for each point, and

checks every possible combination. JPF enumerates 51,344

states in around 52 seconds using the heuristic. None of the

states violate the current set of assertions in the model and

the model terminates under all the duration combinations.

The jump in the number of states between the minimum and

maximum bounds heuristic and this heuristic illustrates the

exponential state explosion inherent in model checking.

The JPF model checking does not prove the WiSAR model

is the desired model or even a correct working model. There is

considerable research yet to be completed in writing the system

level requirements of WiSAR and then having JPF verify each

of those requirements. If JPF finds a violation on any given

requirement, there is still considerable work to determine if

the requirement is correct (i.e., really what is desired from

the system), if the model has a bug, or if the protocols in the

model are fundamentally flawed and not able to implement

the requirement. These topics are future work for the WiSAR

model.

B. Lessons from Modeling

One of the goals of using model-checking with UAS-

enabled WiSAR is to discover problems and opportunities with

the structure of the organization. This section presents several

important lessons for UAS-enabled WiSAR that were obtained

through the modeling exercise.

First, while modeling the VidOp it became apparent that

there was a problem with the organization. This problem

occurs because, while the VidOp is marking an anomaly, the

video feed continues to run. This means that it is possible

19361936

that the VidOp may miss detecting the target. If the VidOp

pauses the video, the feed falls behind the live video feed

which makes flyby requests more expensive because the UAV

will have to backtrack to the anomaly sighting. We analyzed

why this problem was not discovered in the WiSAR field trials.

The answer is that the field trials included multiple video feeds

with multiple observers, a condition that is not likely to occur

in a resource-limited search. A lesson from this observation for

WiSAR is that technology needs to be developed that allows

the WiSAR team to manage this problem. A more general

lesson is that the modeling and model-checking process un-

covered a potential problem before it appeared in practice.

A second lesson was learned when performing model-

checking of a flyby. Our model showed two problems, resum-

ing a flight plan after a flyby and needing to keep a list of

flyby requests. We solved this in the model by adding visible

queues to the VeGUI and VidGUI and allowing the VeGUI

to store multiple flight plans. As before, we analyzed why

these problems were not discovered in the WiSAR field trials.

The answer is that these problems did occur but were not

documented. The lesson for WiSAR is that the VeGUI and

VidGUI need new features to support real searches. A broader

lesson is that the modeling exercise can be used to not only

detect problems but specify the requirements for fixing them.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented DiRGs expressed as Mealy state ma-

chines for the purpose of modeling WiSAR in a way that will

give insight into improving the WiSAR processes. In addition

we have coded these Mealy machines in Java and performed

model-checking using the JPF tool for the purpose of gaining

even more insight into our model by running it. This contrasts

with previous modeling attempts. Results show that additional

insight was gained, and that it was possible to introduce new

processes into the model and see the effect of those changes.

The result of the modeling and model checking processes

was the detection of problems within WiSAR that were not

seen during other analysis, or were seen but not documented.

The processes also gave insight, and in some cases specifica-

tions, for fixing the encountered problems.

Future work will use explicit declarations to formalize Actor

states and transition matrixes. By formalizing these properties

it will be possible to find transition errors immediately; it will

also make it possible to compare the model with the model

documentation for accuracy. This may also make it possible to

export the state machine into other model checkers.

We also plan to add sequential constraints to the model

using Actors. These Actor will embody the desired sequence

of tasks and transitions and will throw assertions if a sequence

is not executed in the desired order. This will help us verify

that the model is following the desired behaviors.

ACKNOWLEDGMENT

The authors would like to thank Neha Rungta of NASA

Ames Intelligent Systems Division for her help with JPF and

Brahms. The authors would also like to thank the NSF IUCRC

Center for Unmanned Aerial Systems, and the participating

industries and labs, for funding the work. Further thanks go to

Jared Moore and Robert Ivie for their help coding the model

and editing this paper.

REFERENCES

[1] M. A. Goodrich, B. S. Morse, D. Gerhardt, J. L. Cooper, M. Quigley,
J. A. Adams, and C. Humphrey, “Supporting wilderness search and
rescue using a camera-equipped mini UAV,” Journal of Field Robotics,
vol. 25, no. 1-2, pp. 89–110, 2008.

[2] R. Murphy, S. Stover, K. Pratt, and C. Griffin, “Cooperative damage
inspection with unmanned surface vehicle and micro unmanned aerial
vehicle at hurrican Wilma,” IROS 2006 Video Session, October 2006.

[3] M. L. Cummings, C. E. Nehme, J. Crandall, and P. Mitchell, Developing
Operator Capacity Estimates for Supervisory Control of Autonomous
Vehicles, ser. Studies in Computational Intelligence. Springer, 2007,
vol. 70, pp. 11–37.

[4] R. R. Murphy and J. L. Burke, “The safe human-robot ratio,” in
Human-Robot Interaction in Future Military Operations, M. Barnes and
F. Jentsch, Eds. Ashgate Publishing, 2010, ch. 3, pp. 31–49.

[5] P. M. Mitchell and M. L. Cummings, “Management of multiple dynamic
human supervisory control tasks,” in 10th International Command and
Control Research And Technology Symposium, 2005.

[6] M. A. Goodrich, “On maximizing fan-out: Towards controlling multiple
unmanned vehicles,” in Human-Robot Interactions in Future Military
Operations, M. Barnes and F. Jentsch, Eds. Surrey, England: Ashgate
Publishing, 2010.

[7] J. A. Adams, C. M. Humphrey, M. A. Goodrich, J. L. Cooper, B. S.
Morse, C. Engh, and N. Rasmussen, “Cognitive task analysis for
developing unmanned aerial vehicle wilderness search support,” Journal
of cognitive engineering and decision making, vol. 3, no. 1, pp. 1–26,
2009.

[8] G. E. P. Box, “Science and statistics,” Journal of the American Statistical
Association, vol. 71, no. 356, pp. 791–799, 1976.

[9] Aviation Safety: Modeling and Analyzing Complex Interactions between
Humans and Automated Systems, ser. ATACCS, 2013.

[10] A Synergistic and Extensible Framework for Multi-Agent System Verifi-
cation, ser. AAMAS, 2013.

[11] Enhanced operator function model: a generic human task behavior
modeling language, ser. SMC’09. IEEE Press, 2009.

[12] Evaluating Human-human Communication Protocols with Miscommuni-
cation Generation and Model Checking, 2013.

[13] C. M. Humphrey, “Information abstraction visualization for human-robot
interaction,” Ph.D. dissertation, 2009.

[14] T. J. Setnicka, Wilderness Search and Rescue. Appalachian Mountain
Club, 1980.

[15] Using Foirmal Verification to Evaluate Human-Automation Interaction:
A Review, 2013.

19371937

