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Abstract – Information about the driving state can be
conveyed to automobile drivers through force feedback
signals sent via the pedals and steering wheel. Because
the set of possible haptic signals and driver responses is
huge, it is desirable to automatically learn which signals
are most useful to drivers. Thus, it is instructive to ex-
plore how machine learning techniques can be used as a
step in the design of a haptic interface system. In this
paper, we present a learning algorithm that learns use-
ful haptic feedback and apply the algorithm to learning
feedback for automobile drivers. We present evidence to
show that the algorithm is sensitive enough to learn use-
ful feedback under some circumstances, but that its scope
may be limited by people’s ability to act as admittance
controllers.
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1 Introduction
In this paper, we present a machine learning approach

to discovering haptic signals that inform automobile
drivers about driving risks. Because of the enormous
complexity of human perception and motor control, it
is important to explore how to create a good mapping
from haptic stimuli to driver response selection without
constructing a precise model of each possible perceptual
controller used by a driver.

The two fundamental activities and obligations in
highway driving are lateral (steering) and longitudinal
(speed) control. It is desirable to design haptic feedback
systems that support drivers in fulfilling these obliga-
tions. Such active feedback systems require people to
expand the set of roles that they naturally assume as
they interact with a vehicle. These interaction roles can
be described in various ways.

• Position control (regulation). In this role, people
suppress disturbances in forces that naturally oc-
cur by keeping the pedal or wheel in the desired
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position. For example, when drivers experience the
vibration caused by an antilock brake system, they
may choose to keep the pedal in the same position
by damping the vibrations and thereby controlling
the pedal’s position.

• Position control (tracking). In this role, people
move the pedal or wheel to a desired position de-
spite forces in the environment. For example, the
gas pedal has a spring that returns the pedal to the
neutral position. To speed up, people overcome this
force to move the pedal to a desired position. Stiff-
ness forces imposed by the pedal or wheel can be
used to inform the estimate of the position.

• Admittance control. In this role, people govern how
pedal or wheel forces affect position. For example,
mechanical forces on the front wheels of a vehicle
induce a “return-to-center” force when the steering
wheel is deflected from the straight-ahead position.
When completing a turn, drivers may admit this
force to straighten the steering wheel in a controlled
way.

• Force control. In this role, people do not care about
the position of the pedal or wheel, but just care
about generating maximal movement. For exam-
ple, in an emergency, people sometimes generate
dramatic forces to slam on brakes or swerve sharply.

Both the gas pedal and steering wheel are primarily po-
sition devices, meaning that people control acceleration
and velocity by changing the positions of these of these
devices.

Two key questions arise in using haptic signals to
support drivers: what type of haptic signal should be
used (i.e., admittance, position, force), and how should
this signal be shaped. We speculate that adding forces
sometimes requires people to expand the range of condi-
tions under which they will adopt an admittance control
strategy. Such adaptation complicates the identification
of useful systems and can increase design times. We pro-
pose that machine learning can be used to interactively
learn acceptable haptic cues.

2 Using Machine Learning
Machine learning is a broad field that tries to develop

algorithms which adapt their behavior to some specifi-
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cation. Reinforcement learning is a subfield of machine
learning that tries to generate control laws/policies that
lead to desired states. The idea of a reinforcement learn-
ing algorithm is to identify a sequence of actions that
lead to a desired reward.

In this sense, both reinforcement learning and opti-
mal control theory have much in common; both try to
find a sequence of actions that maximize expected re-
ward. Optimal control theory requires a detailed model
of the system to be controlled and then uses the calcu-
lus of variations to find a control law that maximizes a
performance metric subject to the model. By contrast,
some reinforcement learning algorithms do not require
a model of the system to be controlled, but rather learn
through experience the sequence of behaviors that max-
imizes expected reward. The algorithm that we will use
is based on a variation of Q-learning, a popular rein-
forcement learning algorithm [4].

2.1 Q-Learning: A Brief Review

The Q-learning algorithm assumes the decision pro-
cess consists of states, actions, rewards, and utilities.
Formally, let Θ denote the set of possible states, A de-
note the set of possible actions available to an agent, and
R(θ, a) denote a reward that the agent receives when
action a ∈ A is taken from state θ ∈ Θ. Q-learning
is a technique for learning a mapping π : Θ → A that
maximizes the expected discounted reward experienced
by the agent. This mapping is called a policy, and the
objective is to find an optimal policy.

Formally, the Q-value for a state and action, denoted
Q(θ, a), is defined as the expected discounted reward
that occurs from state θ if the agent chooses action a
at time t, and then chooses optimally thereafter. This
means that we can write the definition of the Q-value
as[4]

Q(θ, a) = R(θ, a) + γ
∑
θ′

P (θ′|θ, a) max
a′∈A

Q(s′, a′),

where P is a probability describing transitions from one
state, θ, to another state, θ′, given a particular action,
a; and γ ∈ (0, 1) is a discount factor.

This equation is the basis for the Q-learning algo-
rithm. Before stating the algorithm, note that because
the world is stochastic, choosing action a in state θ does
not always lead to a reward. We use R(θ, a) to denote
the average value of the reward that occurs for choosing
a from θ, and r(θ, a) as the reward that occurs on a par-
ticular trial. The Q-learning algorithm keeps a guess of
the true Q-values, and updates this guess through ex-
perience according to the following equation:

Q̂(θ, a)← (1−αi)Q̂(θ, a)+αi

[
r(θ, a)+γ max

a′∈A
Q̂(θ′, a′)

]
,

where Q̂ denotes the estimate of the Q-value, αi ∈ (0, 1)
denotes the learning rate at time i, and θ′ is the state

that actually occurs when action a is chosen from state
θ. In words, this equation creates a new estimate of the
Q-value that is a convex blend of the old estimate with
the outcome of an experiment; this experiment produces
a reward r(θ, a) and a new state θ′, so this reward and
the Q-value of the new state are used to update the
estimate.

As the agent experiences the world, information about
which actions lead to a reward or penalty slowly prop-
agate to other Q-values. Provided that (a) the agent
visits every state infinitely often, (b) the agent tries ev-
ery action from every state infinitely often, and (c) the
learning rate αi decreases fast (but not too fast) [4], then
it can be shown that Q̂(θ, a)→ Q(θ, a) for all states and
actions. Condition (c) simply means that over time,
new experiment outcomes are gradually suppressed un-
til eventually just the average value is considered.

2.2 Dichotomous Attributes

In practice, Q-learning works well without satisfying
the technical convergence conditions because a correct
policy can be learned even if the estimate of the Q-
values is not perfect. We can exploit this practical side
of Q-learning to create an algorithm that learns a satis-
ficing [6] policy very quickly in worlds that have dichoto-
mous reward attributes. In practice, reward functions
frequently have two dichotomous attributes: one at-
tribute which encourages goal seeking, and one attribute
which discourages risky actions. For some worlds, it is
easier to discover which actions lead to collisions than
it is to discover which actions lead to the goal. Why?
Because it is often easier to find a path that hits a
wall than a path that reaches the goal. In this case,
penalties influence the Q-values faster than the rewards
because information from nearby obstacles propagates
back faster than information from far-away goals. The
satisficing Q-learning algorithm exploits this frequently
encountered characteristic to dramatically speed learn-
ing in both penalty-rich and reward-rich worlds.

2.3 Satisficing Q-Learning

Rather than keep a single Q-value that represents
both goal-achieving and risk-avoiding values, satisfic-
ing Q-learning keeps two values: G(θ, a) and L(θ, a).
The first function represents the goal-achieving rewards,
and the second function represents the risk of incurring
losses. We update these functions separately via the
following variants of the Q-learning equation:

G(θ, a)← (1−α)G(θ, a)+α(max(0, r(θ, a))+γG(θ′, a′))

L(θ, a)← (1−α)L(θ, a)+α(max(0,−r(θ, a))+γL(θ′, a′)),

where a′ is an action chosen at the next decision point.
These equations simply assign all reward information
(e.g., r(θ, a) > 0) to the G-function, and all penalty
information (e.g., r(θ, a) < 0) to the L-function. If the
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1. Initialize G = L = 1 for all a and s.
2. Repeat the following until force is stable.
3. Calculate µA and µR from G and L.
4. Select a ∈ S(θ) in two ways:

(a) with a uniform probability for a while
(b) according to some selection rule for a while

5. Execute a for at least 1/4 second until θ
changes (≥ 2/3 sec during training to reduce
consequence overlap).

6. Update G and L, tremble L, and decay tremble.

Figure 1: The application of the satisficing learning al-
gorithm to learning force feedback.

L-function can quickly learn which actions lead to prob-
lems, then we should be able to exploit this to avoid
risky choices while learning to choose actions that pro-
duce rewards.

Avoiding risky choices can be accomplished by using
a satisficing decision rule: actions which are more likely
to lead to a goal than to expolse the agent to risk are
“good enough.” Since L and G are determined by differ-
ent rewards and depend on different discount values, it is
necessary to make them comparable. We do this by nor-
malizing the utilities as follows: µA(θ, a) = G(θ,a)∑

a
G(θ,a)

and µR(θ, a) = L(θ,a)∑
a

L(θ,a)
. The subscript A denotes

reasons to Accept an action, and the subscript R de-
notes reasons to Reject an action. An action is sat-
isficing if the reasons to accept it outweigh the rea-
sons to reject it. This decision rule can be character-
ized by listing the set of all actions that are satisficing,
S(θ) = {a : µA(θ, a) ≥ µR(θ, a)}.

3 Satisficing Q-Learning in the
Driving Context

This section describes parameter settings and results
from applying machine learning to the design of driver
support systems. The goal is to learn how to support
force, position, and admittance control. A key element
of accomplishing this goal is to “first do no harm.” As
such, we invoke the following:

The burden of proof principle. There should be
a compelling reason to give information to the human
or to take action. If the driver is using a behavior that
is satisficing, do not intervene or inform. The formal
statement of the algorithm that attempts to do this is
shown in Figure 1. We now present the specifics of this
algorithm for both steering and speed control.

3.1 Steering

States. The state representation must be expressive
enough to represent deviation from ideal driving behav-

ior. This was implemented by creating a simple looka-
head PD controller that mapped vehicle orientation and
velocity into steering wheel angle. This PD controller
was tested in the simulator and produced reliable steer-
ing behavior.

Part of the state was then defined as the difference
between the observed steering wheel position and the
position specified by the PD controller. This latter po-
sition is referred to as the ideal position, even though
the controller was imperfect1. This difference was then
discretized into five sets, corresponding to negligible de-
viations from ideal, minor deviations left and right of
the ideal, and major deviations left and right of the
ideal. We refer to this state dimension as error.

The urgency of the situation was also included in
state. Urgency was represented by time to lane crossing
(TLC) and discretized into five sets, corresponding to
negligible urgency, minor urgency to the left or right,
and major urgency to the left or right. TLC was mea-
sured using the distance between the side of the ve-
hicle and the lane boundary, denoted by δ, as follows
TLC = (δ)/(dδ

dt ).
Actions. The philosophy of selecting actions is to

generate forces that inform drivers of the correct action
to take. Five forces were considered, corresponding to
a large force to the left or right, a small force to the left
or right, and no extra force. This approach uses forces
to nudge the steering wheel in directions that would
suggest a correction in steering wheel position. When
an action was selected, it was applied for at least 0.25
seconds and lasted until the state changed.

We submit that much of steering is position-based
implemented by commands such as “Move the wheel
position to a desired angle,” albeit with admittance-
based exceptions such as “Allow the return-to-center
force of the wheel to move the wheel until the posi-
tion reaches a desired angle.” It is desirable to exploit
such admittance-based exceptions to communicate the
need to change behaviors by indicating an incorrect po-
sition through haptic signals. To do this, an error in
wheel position can be indicated by generating a force in
the direction of the correct position. This can be done
by increasing or decreasing wheel stiffness, changing the
“zero-point” of the wheel to communicate a missed posi-
tion, or generating a “nudge” force that lasts for a brief
interval of time and that pushes the wheel in the cor-
rect position. It is interesting to note that wheel forces
generated by any of the above means produce the same
initial behavior on the wheel; the differences in these
forces can only be perceived as the wheel starts moving.
This suggests that if forces are applied for only brief
duration then any of the above approaches can be used.

Because of its compatibility with the learning al-

1Since Q-learning works in stochastic domains and since errors
in the PD controller were approximately zero mean, the non-ideal
nature of the controller was ignored.
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gorithm and because of limitations of our force feed-
back steering wheel, we adopt the latter perspec-
tive. As mentioned previously, the set of actions
was limited to five discrete actions. Thus, calg ∈
{cLL, cSL, cZ , cSR, and cLR} corresponding to Large
nudges Left and Right, Small nudges Left and Right,
and Zero nudge.

Rewards. The satisficing Q-learning algorithm as-
signs rewards and penalties for an action given a state.
This requires us to specify what actions are rewarded
and what actions are penalized. Intuitively, an action
is good if it enhances comfort. We selected two first
order estimates of comfort: workload and impedance.
Workload was estimated using Boer’s steering entropy
metric [5] applied over a 2 second sliding window.

We used a heuristic estimate of impedance that min-
imized computations. Rather than explicitly estimat-
ing human impedance, we instead used the notion that
impedance is a measure of human effort expended to
oppose the forces of the wheel. This effort is approx-
imately given by the difference between the observed
wheel position and the position that the force would
have generated if the human had not impeded it. When
this difference is small it indicates that the human al-
lowed the force to change the position of the wheel.
This, in turn, indicates that the human is not expending
effort to oppose the wheel, which suggests that the hu-
man is comfortable with the wheel’s behavior. Heuristic
thresholds were selected for levels of acceptable differ-
ences. Anecdotal evidence suggests that the behavior of
the learned policy is not sensitive to the precise selection
of the threshold.

Penalties. An action is bad if it exposes a driver to
risk; in lateral control, a bad action tends to lead to a
lane departure. Two factors determine this risk expo-
sure: lane position, δ, and drift, dδ

dt . Lane position is
an objective assessment of risk, and drift is an assess-
ment of the urgency of the situation. As illustrated in

Safe
Region

Lane position

Drift

Thresholds

Figure 2: Thresholds for penalizing an action in lateral
control.

Figure 2, threshold lines were empirically chosen, and
states and actions were penalized that lead the vehicle
outside of these thresholds or did not significantly bring
the vehicle closer to the safe region.

3.2 Speed Control

The motivations of how rewards, penalties, and states
are chosen under speed control are similar to those of
steering. We therefore omit much of the discussion in
the interest of space.

States. The state representation is obtained by not-
ing that ideal driver following has infinite time to col-
lision and a time headway on the order of 1.5 to 2 sec-
onds [3]. In this context, time headway represents the
exposure to risk and time to collision represents urgency.

Because ideal time to collision is infinite, it is very dif-
ficult to discretize this state space. In keeping with [3],
therefore, we defined the state space as time headway
and inverse time to contact. This state space was dis-
cretized into nine headway values and nine inverse time
to contact values.

Actions. The philosophy of selecting actions is to
generate forces that inform drivers of the correct action
to take. Three forces were considered, corresponding to
a large extra force toward the neutral position, a small
extra force toward the neutral force, and no extra force
beyond that provided by the passive pedal spring. When
an action was selected, it was applied for at least 0.25
seconds and lasted until the state changed.

Rewards. Workload was estimated using Boer’s
steering entropy metric extended to the pedal and ap-
plied over a 2 second sliding window. The discretiza-
tion of the prediction error distribution was empiri-
cally chosen to correspond to the subjective thresholds.
Impedance was heuristically estimated as in the previ-
ous section, and subjective thresholds were set so that
actions were rewarded if both workload and impedance
were low.

Penalties. In longitudinal control, a bad action
tends to lead to a collision. We penalized a state ac-
tion pair if it caused the vehicle to enter into the least
safe discretization region of the THW-ITTC state space.

4 Experiment Results
In this section, we present results from a study of

lateral and longitudinal control. The driving simulator
consisted of a CRT, a force feedback steering wheel, a
force feedback pedal, and a computer running a simu-
lated driving environment.

In the experiment, drivers are asked to perform a pri-
mary driving task while simultaneously performing a
secondary math task. The primary task for the lat-
eral control experiment is to guide the vehicle through
a curvy course at high speeds. The primary task for
the longitudinal control experiment is to maintain an
acceptable following distance behind an erratic lead ve-
hicle.

The math task is to perform a two-digit addition or
subtraction problem, and then to determine if the an-
swer is greater than or less than a supplied target value.
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Subjects press buttons on the steering wheel to indi-
cate whether the value is greater than or less than the
target value. This secondary task experiment is a vari-
ant of one that we have used extensively in work on
human-robot interaction [1]. Rapidly performing two-
digit arithmetic places a high cognitive load on most
subjects.

The experiment consisted of two phases: training the
force feedback algorithm and validating the resulting
forces using human subjects. To expose the learning al-
gorithm to a wide variety of driving conditions during
training, it is necessary to passively drive the vehicle
as an admittance controller. Such driving allows the
algorithm to experience consequences of actions under
states that lead to lane departures, collisions, and near
collisions. Currently, training was done only by a single
operator but consistent results were obtained over sev-
eral training episodes; future work should extend this to
include training with multiple operators.

4.1 Lateral Control Results

Using the techniues described in previous sections,
the algorithm required approximately twenty minutes
of training to find a useful policy where the agent would
have enough experience to apply corrective forces to the
steering wheel only when a truly dangerous situation
occurred.

Subjects were required to perform three sessions of
simulator driving while simultaneously performing sim-
ple arithmetic comparisons. Each session lasted for ap-
proximately ten minutes and used a different control
policy for the force-feedback steering wheel. The poli-
cies, which were presented to the subjects in random
order, were as follows:

1. Nominal steering wheel. The wheel applied a
conventional stiffness-based return-to-center force
when deflected from the center position.

2. “Non-dominating” reactive control policy. The sat-
isficing action that produced the largest difference
between reward and penalty was applied on the
steering wheel.

3. Non-intrusive reactive control policy. This policy
selected the satisficing action that produced the
smallest force possible. This was done by choos-
ing the action with maximum reward from the set
of satisficing actions.

12 subjects participated in the experiment. All sub-
jects were college aged students with valid driver’s li-
censes. After having experienced all three control poli-
cies, subjects were asked to name their favorite. Seven
of the twelve test subjects preferred to have corrective
forces superimposed on the wheel, while the others pre-
ferred the standard return-to-center behavior. The en-
thusiasm of some users was counterbalanced by the frus-
tration of other users, both in subjective evaluations and
objective performance metrics. As a result, the results

of this experiment did not indicate a clear benefit for
haptic feedback. However, the nearly even split between
subjects who liked the feedback and those who were
frustrated with the feedback indicates that the learn-
ing algorithm produced a policy that matched nominal
performance.

Secondary task performance, measured as the average
percentage of arithmetic problems answered correctly by
the entire pool of subjects, was almost identical for the
control policies. The order in which the policies were
tested seemed to be more related to task performance
than the policies themselves, and by choosing the poli-
cies in random order, the performance differences almost
completely averaged out.

Interestingly, some drivers significantly improved
their driving with the system enabled, indicating that,
for some users, the system was helpful in maintaining
vehicle position and reducing lane position drift. Other
drivers fought against the system and performed poorly.
This suggests that some drivers are more amenable to
shifting between position-based and admittance-based
control than others.

4.2 Longitudinal Control

Training the algorithm consisted of starting with
a uniform Q-table and passively driving (admitting
forces) the simulator for approximately fifteen min-
utes. The agent quickly learned to avoid impeding the
trainer’s pedal actions by collecting high rewards when
it did not increase the pedal resistance, and eventually
learned to actuate the pedal to avoid collisions.

Subjects were required to follow a lead car whose be-
havior was quite erratic and unpredictable, simulating
the difficulties of rush-hour traffic on a freeway. The
nominal cruise speed of the lead car was adapted to the
speed of the subject-driven car in such a way that the
THW between the lead car and the subject-driven car
was almost constantly between 0 and 4 seconds. This
adaptation occurred with lag so that the linking be-
tween subject behavior and lead car did not confound
the data. If a subject dropped too far behind the lead
car, “Speed up!” was printed in large letters across the
screen. As a result, subjects were motivated to operate
in the difficult region between an overly safe following
distance and a dangerously close “tailgating” situation.
Subjects were also asked to perform the same style of
comparative arithmetic problems as in the lateral con-
trol experiment.

The agent learned to increase pedal resistance in
boundary states that border regions of certain disas-
ter and regions of no risk. Interestingly, the agent did
not learn to activate the pedal motor when disaster
was imminent, resulting in a control policy where the
pedal resistance was only given on the threshold be-
tween “no risk” and “certain disaster.” This critical
dividing line represents the “point of no return” beyond
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which the benefits of haptic information diminish. The
exact placement of the dividing line is naturally depen-
dent on the driving style demonstrated to the agent
by the human trainer. The pedal was trained multi-
ple times and consistently converged to similar policies,
even under a variety of discretization schemes.

Subjects were asked to drive two 10-minute segments,
once with the active haptic forces and once with only
the passive spring resistance of the pedal. The order
of the control policies was randomized for each user.
Nine of the twelve formal preferred the pedal forces. A
representative comment was, “I noticed that with the
second pedal I didn’t feel as pressured, and it seemed
like I didn’t have to work as hard to keep tract [sic] of
both the math problems and the driving. I felt more on
‘auto-pilot.’ ”

Those subjects who did not prefer the pedal forces
seemed to miss the point of the haptic channel: “It was
annoying, I didn’t understand it,” one subject said. Like
the lateral control trials, such reactions possibly repre-
sent a direct conflict between the driving style of the
trainer and the test subject, and not necessarily a fail-
ure of the algorithm or interface.

The ability of the pedal algorithm to help the driver
avoid crashes was well supported by the data. When a
time headway value of 0.7 seconds was set as an “im-
minent danger” threshold, drivers spent 45% less time
in the “imminent danger” zone with the haptic signal
on the pedal versus without the signal. This large dif-
ference is the major advantage provided by the pedal
forces.

The average NASA TLX score only decreased from
70.65 to 70.47 indicating that the system increased
safety without altering comfort; both average headway
went up and minimum headway went up, but subjective
workload estimates remained the same.

Since the number of subjects was small, it is diffi-
cult to determine whether the differences were caused
by a preference for the haptic system of by random
deviations. Fortunately, there is additional qualitative
evidence to suggest that the system learned something
useful. This evidence is obtained by viewing the regions
of the THW/TTC state spaces where forces were ap-
plied and where forces were not applied. We compared
these regions to data from a study of where drivers ini-
tiate braking in response to a “cut-in” [2]. The learned
force regions correspond to locations where braking oc-
curs with high probability, and the learned no-force re-
gions correspond to locations where drivers rely on en-
gine braking with high probability. This suggests that
the learned profile supported humans in their ideal sys-
tem behavior.

5 Discussion
We presented the satisficing Q-learning algorithm and

showed how it could be applied to learning forces for

both lateral and longitudinal control. We analyzed data
from two secondary task studies: one for lateral control
and one for longitudinal control. We showed that the
learned forces for lateral control could match but not
exceed unsupported performance. Two technical obsta-
cles prevent better results. First, the number of actions
and number of states that we used is too small. Second,
and probably more importantly, our simulator does not
allow damping effects and mass effects to be included in
the learned force profile, and these effects appear neces-
sary to support lateral control.

By contrast, the learned forces for longitudinal control
show good improvement. People followed at a higher
headway, and they had far fewer near collisions. Fur-
thermore, this effect was obtained without increasing
people’s perception of workload. This means that the
learned forces enhanced safety without reducing com-
fort. We believe that these results could be improved
by adding more states, more actions, and damping/mass
effects.
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