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Abstract—In this paper, we formalize the problem of human
interaction with bio-inspired robot teams (HuBIRT). The formal-
ism applies to a large class of bio-inspired team dynamics and
uses simple algebraic graph theory representations to distinguish
between interagent influence, environmental influence, and opera-
tor influence. These representations lead to metrics for interagent
cohesiveness and responsiveness to human input. We then select
two different classes of team dynamics, physicomimetics which
encodes dynamics using artificial physics, and a biomimetic
structure which encodes dynamics using a model of fish behavior.
We then demonstrate the relevance of the metrics by conducting
a series experiments that demonstrate differences between leader
and predator styles of human influence, and conclude with
a comparison of nearest-neighbor topologies to metric-based
topologies.

Index Terms—human-robot interaction, biologically-inspired
robotics

I. INTRODUCTION

Two current research areas are receiving considerable atten-
tion in the recent literature: human-robot interaction (HRI) and
bio-inspired robot teams (BIRT). HRI emphasizes the design of
robot behaviors that support humans including when humans
manage remote robots [1], [2].

BIRT research includes identifying principles and prac-
tices of biological societies [3], and then abstracting and
encoding these principles in robots [4]. The resulting teams
demonstrate so-called collective intelligence wherein simple
robot behaviors produce colony-wide behaviors that appear
collectively purposeful and goal-directed. Typical behaviors
include swarming, flocking, foraging, and colony-building.

Steinberg has identified human-interaction with bio-inspired
systems as an important research area of responsive, robust
systems for complex surveillance and reconnaissance prob-
lems [5]. Research that combines elements of HRI with BIRT
should allow humans to design robot teams that are both
responsive and robust, yielding teams that can be efficiently
managed by humans but that retain robust qualities in the
presence of unreliability. Such research has been called coop-
erative robotics and human-swarm interaction, but we will call
the work in this paper human-BIRT (HuBIRT) to emphasize
human-centered BIRT design.

We will use an abstract information foraging task to eval-
uate HuBIRT performance. This information foraging task
abstracts several reconnaissance and surveillance problems that

are of current interest, including convoy protection [6] and
contaminant tracking [7]. An information foraging problem is
one where there are multiple tasks, represented as abstract re-
sources, that appear at unknown locations in a spatial domain.
Agents must discover the tasks and then assign a subset or
subteam of the agents to perform the task. Each task takes time
to complete, meaning that multiple agents must persist in the
task for a satisfactory period of time before moving to another
task. The resource size depletes at a rate based on the density
of the number of assigned agents, that is, resource 𝑗 depletes
according to 𝑆𝑗(𝑡+ 1) = 𝑆𝑗(𝑡)− �̂�𝑠 where �̂� represents the
number of agents within 𝑟𝑠 meters of the resource location
and 𝑠 > 0 represents the amount of resource to be reduced per
agent. For the experiments, we used 𝑠 = 0.001 and 𝑟𝑠 = 5.
New tasks can appear anywhere in the domain at any time.
Bio-inspired agents are capable of performing some aspects of
this task by themselves, but are generally inefficient at the task
without having some kind of human input.

The main contribution of this work is not a collection
of mature algorithms and designs, but rather (a) formalizing
the HuBIRT design problem for a large class of bio-inspired
team models, (b) demonstrating the relevance of cohesive-
ness and responsiveness metrics, and (c) empirically study-
ing cohesiveness and responsiveness properties for leader-
based and predator-based human-BIRT interactions for both
neighborhood-based and metric-based topologies. We perform
experiments using two different types of BIRT teams: one
physicomimetic and the other biomimetic.

II. RELATED LITERATURE

There are several approaches to HuBIRT design. Central-
ized control of very large teams of agents has been called
human-swarm interaction (HSI). Bashyal and Venayagamoor-
thy [8] presented an HSI approach that provided a human with
a partial plan and global information, and then allowed the
human to adjust the autonomy of a small subset of swarm
members to influence swarm behavior. The GUARDIANS
project is an example of practical HSI and uses swarm robotic
technology to support firefighters using either proximate or
remote operators [9].

Miller et al. advocate a playbook-style approach to human-
robot teaming [10], wherein a human calls plays that trigger
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predictable patterns of behavior. Simple plays, like grouping
and searching, have been used to manage several large, sim-
ulated teams (50-200 robots) [11]. More complicated plays,
like coordinated rendezvous or formation-following, have been
applied to smaller teams [12]. The most obvious way to include
a human in these approaches is for a human to control a leader
agent who then influences other agents through conventional
or bio-inspired means [13]. Managing patterns of behavior is
another useful way to think about human interaction with bio-
inspired teams. Recent work [13]–[16] explores centralized
methods for influencing these patterns so that a human can
guide the team to accomplish effectively some human-specified
mission.

In addition to these centralized methods of HuBIRT design,
there are approaches that take a more decentralized approach.
For example, Barnes et al. explored how to modify potential
fields in response to directions from a human operator [6].
Similarly, simulations have been performed of robots herding
animals [17], [18], producing an ad hoc collection of obser-
vations, such as the fact that herding a flock using a single
sheepdog requires very different behaviors than using a team.

III. DESIGNING FOR HU-BIRT

In this section, we present principles of bio-inspired in-
teraction, formalize the principles, and identify some metrics
associated with robust and responsive HuBIRT performance.

A. Bio-Inspired Principles

Sumpter identified several principles that describe biological
systems which exhibit collective behavior [3]. In this section,
we briefly describe and label a subset of Sumpter’s principles.
In the next section, we will use these brief descriptions to
identify a discrete-time state space dynamical model.

Positive feedback is “imitation or recruitment behaviour
[which] continues [until an] isolated behaviour is quickly
subsumed by a mass of similar behaviors .. [yielding a set
of] collective patterns.”

Negative feedback is a counterbalance to positive feedback
in that “positive feedback builds up a collective pattern ... [and]
negative feedback ... stabilizes it. ... Negative feedback leads
to ... stable output in the face of varied input.”

Inhibition is negative feedback from other robots rather
than the environment in that members “of a group exhibiting
one type of behaviour can inhibit the behaviour of others.”

Individual integrity means that each “... of the animals in
a group is different, in terms of their ... previous experience
[which can produce] ... different levels of response.”

Response thresholds make allow agents to change “...
behavior in response to a stimulus reaching some threshold.”

B. Formalism

Sumpter’s principles provide descriptive guidelines for what
to look for in a system that exhibits collective intelligence,
but they lack a formalism that could help HuBIRT design.
Sumpter’s principle of integrity suggests a state-space dynamic
model where an agent’s state is an encoding of previous

“experience.” Denote agent i’s state at time 𝑡 as 𝑥𝑖
𝑡, and the

vector of 𝑁 > 1 agent states as x𝑡. The precise encoding of
state varies from model to model, but typical models include
some notion of position and perhaps velocity [19]–[21].

Sumpter’s principles of positive feedback and inhibition
encode how the states of other agents affect agent i, and
negative feedback and response threshold encode how external
signals affect agent i. Thus, we adopt a state-space model that
treats these two categories as two different functions. With
some loss of generality, we will assume that the two categories
are additive. Note (a) that this additive assumption is consistent
with the physicomimentic and biomimetic models discussed
below and (b) that this additive assumption is sufficient for
swarming and flocking behaviors of homogeneous agents.

If we let 𝑢 denote an external signal, then we can write the
state dynamics model as

x𝑡+1 = 𝑓(x𝑡) + 𝑔(x𝑡, 𝑢𝑡). (1)

In terms of Sumpter’s principles, Equation 1 represents positive
feedback and inhibition in 𝑓(x𝑡), and negative feedback and
response thresholds in 𝑔(x𝑡, 𝑢𝑡).

A key element of bio-inspired teams is that collective
intelligence emerges as a function of local interactions. This
manifests itself in a set of sparseness properties on 𝑓 and 𝑔.
Consider agent 𝑖 and let ¬𝑖 denote all agents other than agent
𝑖. Taking the 𝑖th row from Equation 1 and partitioning x𝑡 into
𝑥𝑖
𝑡 and x¬𝑖

𝑡 yields,

𝑥𝑖
𝑡+1 = 𝑓 𝑖(𝑥𝑖

𝑡,x
¬𝑖
𝑡 ) + 𝑔𝑖(x𝑡, 𝑢𝑡). (2)

Since collective intelligence emerges from local interactions
in BIRT, we will assume that the set of agents that affect
agent 𝑖 is small, that is, only a handful of agents in x¬𝑖

𝑡

affect 𝑥𝑖
𝑡+1. We call this assumption the locality assumption.

Let 𝐴𝑖
𝑡 represent the adjacency matrix of the graph induced

by 𝑓 𝑖(𝑥𝑖
𝑡,x

¬𝑖
𝑡 ). We call 𝐴𝑡 the cohesiveness matrix because

it represents the interagent dynamics that determine the way
collective intelligence of the team changes over time. Note
that the performance of both artificial and biological systems
depend critically on the structure of 𝐴𝑡 [22], [23].

The vector 𝑢𝑡 denotes all external signals, both those that
come from the environment and those that may be specified
by an operator. Thus, we separate 𝑢𝑡 into two components:
a subvector from the operator, 𝑢op

𝑡 , and a subvector from the
environment, 𝑢env

𝑡 . In keeping with the biomimetic and physi-
comimetic models, we again assume that these components
add. We call this assumption the influence assumption because
it separates human influence from environment and inter-agent
influence.

We next assume that 𝑔𝑖(x𝑡, 𝑢𝑡) is a function only of state
𝑥𝑖
𝑡, that is, that external signals affect the next state of agent 𝑖

only as a function of 𝑥𝑖
𝑡 and the external signals 𝑢𝑡. We call

this the autonomy assumption because it says that agents can
autonomously make decisions as a function only of their state
and the signals that they receive independent of what other
agents are doing. Thus, 𝑔𝑖(x𝑡, 𝑢𝑡) = 𝑔𝑖(𝑥𝑖

𝑡, 𝑢𝑡) = 𝑑𝑖𝑡(𝑥
𝑖
𝑡, 𝑢

op
𝑡 )+

2860



𝑒𝑖𝑡(𝑥
𝑖
𝑡, 𝑢

env
𝑡 ). This paper will consider only operator and inter-

agent influences; influences from the external environment will
be treated in future work.

Let 𝐵𝑡 denote the adjacency matrix induced by
{𝑑𝑖𝑡(𝑥𝑖

𝑡, 𝑢
op
𝑡 ), 𝑖 = 1, . . . , 𝑁}. We call 𝐵𝑡 the management

matrix because it encodes the graph that represents which
agents can be directly influenced by the actions of the operator.
Note that 𝐵𝑡 will often be sparse because decentralized control
makes it unlikely that a human will be able to influence all
agents simultaneously.

C. Performance, Cohesion, and Responsiveness

This paper takes an empirical rather than a theoretical
approach to evaluating HuBIRT performance. Thus, we mea-
sure properties of (𝐴𝑡, 𝐵𝑡) and correlate those properties to
HuBIRT performance. One of the main results from decen-
tralized control theory is that a fully connected group of
agents often possesses strong collective properties like stability
and cohesion [22]. Connectivity, in this context, refers to the
connectivity encoded in the cohesiveness matrix and not in the
management matrix.

Although connectivity in 𝐴𝑡 appears to be necessary for
cohesive behavior, it is not sufficient for HuBIRT. Cohesive
and robust behavior must also be responsive to human input
so that a human can direct collective behavior, which means
that HuBIRT performance depends on both 𝐴𝑡 and 𝐵𝑡.

According to Sumpter, leadership means that “key individ-
uals ... catalyze and organize the group.” In bio-inspired robot
teams, two leadership models have been studied by others:
lead-by-attraction and lead-by-repulsion. Lead-by-repulsion is
more commonly referred to as predation. In this model, the
leader is a predator and agents are prey, so the leader influences
the behavior of the agents by pursuing them. By contrast,
lead-by-attraction is often associated with the colloquial use
of the word leadership, meaning that a leader is one that gets
ahead of a group and the group follows. For simplicity, we
will call lead-by-repulsion models predator models and lead-
by-attraction models leader models.

In our usage above, 𝐵𝑡 captures the relationship between
human input and the set of agents, and 𝐴𝑡 captures interagent
relationships. This raises the modeling question of whether
we should (a) treat the leader/predator as a special type of
agent whom the human influences through 𝐵𝑡 and who then
influences other agents through 𝐴𝑡, or (b) suppose that the
human uses the leader/predator agent as an intermediary and
then model how this intermediary influences the other agents
through 𝐵𝑡, allowing 𝐴𝑡 to encode interactions just between
nominal agents. In this paper, we will adopt the latter because
it allows us to distinguish between how the leader influences
the agents and how that influence propagates throughout the
collective; see Figure 1.

Many approaches to HuBIRT-related problems assume a
communication channel that allows the human to broadcast and
receive signals from all agents simultaneously. A more realistic
model would allow a human to observe and communicate with
only a subset of agents. In this model, the human is remote

Fig. 1. Leader-mediated HuBIRT

from the collective and the communication channel between
human and the agents is bandlimited and may be subject to
dropouts. We make two simplifying assumptions but note that
future work should address these. First, we assume that local
communication between agents is perfect. Second, we assume
that the human can always observe the all agents’ locations.

As shown below, leader models have the desirable property
that they tend to make the 𝐵𝑡 matrix vary slowly in time;
agents near the leader are attracted to and tend to stay close
to the leader. This allows the leader to sustain influence over
the collective.

By contrast, predator models tend to make the 𝐵𝑡 matrix
vary quickly in time; agents near the predator are repelled by
the predator and try to get away from the predator’s sphere of
influence. Thus, as the predator moves, many agents escape
from the sphere of influence, making it difficult for a predator
to sustain influence over the collective.

D. Performance Metrics

We consider robustness, cohesion, and manageability.
Under HuBIRT, neighborhoods of any agent can be very

dynamic. We are interested in how the influence of one agent
is felt by other agents. Consider the time history of 𝐴𝑡 over
some temporal window,

𝒜𝑡 =

𝑇∑

𝑘=0

𝐴𝑡+𝑘. (3)

The 𝑖th row of 𝒜𝑡(𝑖) is a histogram of which of agent 𝑖’s
neighbors influence agent 𝑖 during the time interval [𝑡, 𝑡+ 𝑇 ].

𝒜𝑡 encodes a time-varying histogram of the cohesion matrix
𝐴𝑡. To support HuBIRT, a subset of agents should be influ-
enced by the human, and this subset should exert sustained
influence over their neighbors, and so on until the entire
collective is influenced. Cohesiveness manifests itself in 𝒜𝑡 in
two ways: First, if all agents interact with most other agents
almost all the time, then 𝒜𝑡 will be “tall and uniform”. Second,
if each 𝐴𝑡 is sparse, indicating just local interactions, then 𝒜𝑡

should be “lumpy”, meaning that agents tend to influence the
same neighbors for multiple time steps.

Since 𝒜𝑡 is only a function of the cohesiveness matrix,
𝐴𝑡, it doesn’t explicitly represent the responsiveness of a bio-
inspired team; rather, it represents the potential to be collec-
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tively responsive. In order for this potential to be fulfilled, the
collective must also be responsive to the human’s input. Since
responsiveness is a function of 𝐵𝑡, let

ℬ𝑡 =
𝑇∑

𝑘=0

𝐵𝑡+𝑘 (4)

denote the histogram of what agents the human is directly
influencing. Sustained influence of a human over agents will
be indicated by a “lumpy” or “pointy” visualization of ℬ𝑡.

IV. PHYSICOMIMETICS

Physicomimetics is a distributed control law that uses
physics-based forces to control a swarm [24]. All agents are
treated as point masses, all neighbors within the radius of 𝐶
units influence behavior of agent 𝑖, and all agents outside of
this radius have no influence. Each agent calculates the force
acting on it by summing the forces from every other agent.

Since these agents are not goal-driven, efficient collective
behavior requires human influence. We allow a human to
influence agents by creating attracting or repelling forces on
the agents. Human influence on any given agent depends only
on the state of that agent and the human’s influence, not on
the state of any other agent, so the assumptions in Equation 2
hold.

A. Virtual Leader Management (VLM)

In VLM, the operator deploys a virtual agent that attracts
all agents within a radius of attraction. Once the agents are
attracted, the operator drags the virtual agent to the resource;
once the resource is depleted the agents return to their nominal
agent autonomy and re-distribute throughout the environment.
Since the leader agent is virtual, the operator must continually
broadcast to the agents to maintain influence.

B. Physical Leader Management (PLM)

In PLM, the operator can only communicate to a limited
number of leader agents. A leader agent will recruit a number
of agents and pull them to the resource location. The radius of
attraction and the location of the resources is assigned to the
leader by the operator. Leaders autonomously guide agents to
resources; once a resource is consumed the agents redistribute.

The key difference between the PLM and VLM is the
presence of delegation. In PLM, the human needs only to
communicate remotely with the leaders through 𝐵𝑡, and all
local interactions are propagated through 𝐴𝑡. By contrast, in
VLM, the human needs to remotely communicate with all
agents in its sphere of influence.

C. Virtual Predator Management (VPM)

VPM works similar to VLM but the virtual predator agent
repels the agents inside its radius of influence. By repulsion,
the virutal agent can push the agents towards the targets.

V. BIOMIMETICS

In this section, the scenario consists of 100 fish in a 120×
120 area. Fish behavior is based on prioritized behavioral rules
that tell a fish to change its desired direction as a function of
the distance and direction of neighbors within a specified “zone
of repulsion,”, “zone of orientation,” “zone of attraction”, and
“blind zone” [20]. Forces for agents are summative and include
both attraction and repulsion components.

We consider leader- and predator-based human control, both
of which are compatible with Equation 2.

A. Predator Management

The first control method involves using a single predator to
steer groups of aligned fish. Fish are repelled by the predator
if the predator is within a given radius. The predator moves
slightly faster than the fish and can turn much more sharply.

Model parameters are set so that the fish are clustered in a
small group, but if a predator gets close then they are repelled
by this predator. Since the fishes’ radius of mutual attraction
exceeds the predator’s radius of repulsion, the fish tend to stay
close together even when the predator “chases” them.

B. Leader Management

The leader model is similar to the predator-based model
above, but the fish are now attracted to the leader producing a
tendency for fish to follow the leader.

VI. RESULTS

In this section, we explore performance, cohesiveness, and
management properties using simulations. Since the results
do not include real robots, it is useful to briefly summarize
the ecological validity of the experiments. The following
assumptions apply to real robot systems: the robots are con-
nected using a time-varying local topology with limited inter-
agent communication, real human operators influence a small
subset of agents, and additive dynamics allow for swarming
and flocking behaviors. The following assumptions are not
applicable to real robots: the human can observe the state of
all agents, dynamics are noise-free, and data is obtained from
only three human operators (all authors).

We begin by comparing the models in terms of task perfor-
mance, measured as the time taken by a team to deplete the re-
source to zero, and of robustness, measured as the rate at which
completion time increases as a function of the probability of
communication loss or variations in resource distribution. We
then explore characteristics of the cohesion and management
matrices that correspond to good performance.

A. Cohesiveness and Manageability: Metric-Based Topologies

In this section, we explore how cohesiveness and man-
ageability influence performance. We assume that agents are
influenced by all other agents within a fixed distance of them,
that is, the topology is metric-based.
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(a) (b)

Fig. 2. 𝒜 for (a) leader model and (b) predator model

Fig. 3. Human influence through leader or virtual agent for different models

1) Cohesiveness: For the biomimetics model, we ran four
experiments with each of the topologies for two minutes and
gathered data. We recorded the 𝐴𝑡 and 𝐵𝑡 matricies at 1
second intervals. We performed a set of scenarios including
an autonomous zig-zag leader and zig-zag predator through
group. We also used a real human to lead the team.

We computed 𝒜 as the sum of the 𝐴𝑡 matrices over the
entire two minutes of the simulation. As shown in Figure 2,
the 𝒜 matrix, which was computed over 120 time steps, is
approximately 120 units tall. This indicates that the agents
tended to stay close enough to each other that most agents
were influenced by almost every other agent. This suggests
strong cohesiveness. Moreover, the average values for the
leader model are slightly higher than for the predator model,
indicating that the predator model can cause “pockets” around
a predator where agents are far enough apart that coherence
decreases. Results from physicomimetics are similar.

2) Manageability: Manageability is reflected in how well
humans maintain influence over agents. Under the physi-
comimetics model, we measured the ℬ matrix by recording
the number of time steps the human was able to influence the
agents. Figure 3 shows that the agents using the PLM model
have sustained human influence through the leader agents
and hence their influence magnitude is higher compared to
that of VPM model which has very low sustainable human
influence through the virtual agent. The VLM model performs
in between PLM and VPM models. The ℬ matrices under
biomimetics exhibit similar trends.

To reinforce how leader models sustain influence we com-
puted a power spectral density for how the topology changed.
For each agent, we created a time series of the number of
new agents with whom the leader interacted plus the number
of agents with whom the leader no longer interactedat each
time index. We then computed the power spectral densities
for these time series; see Figure 4. Note how the scales of

(a) Leader (b) Predator

Fig. 4. Power spectral density of ℬ (biomimetic model) for (a) leader model
and (b) predator model .

(a) Leader (b) Predator

Fig. 5. Power spectral density for nearest-neighbor topologies of ℬ
(biomimetic model) for (a) leader model and (b) predator model .

the two plots are different, indicating that the number and
frequency of changes for predator models is much higher
than for leader models. Simply put, predators cause agents
to scramble, making it more difficult to sustain influence.

B. Cohesiveness and Manageability: Nearest-Neighbor
Topologies

Ballerini noted that some flocks of birds appear to have
local connections that are based on a handful of their nearest-
neighbors rather than all birds within a fixed distance [23].
Thus, we repeated the above simulations but used nearest-
neighbor topologies rather than metric-based topologies. The
results for the bio-mimetic and physico-mimetic agents were
similar, so we just present results for the former.

In comparing Figure 4 to Figure 5, note that the scale of
the latter is much smaller. This indicates that neighborhoods
change much less often for neighborhood-based topologies
than metric-based. Simply put, neighborhood-based topologies
are more cohesive, which is consistent with Ballerini’s obser-
vation from nature [23].

C. Correlation with Performance

The temporal behavior of 𝐴𝑡 and 𝐵𝑡 indicate differences
between leader-models and predator-models, and between
metric-based and nearest-neighbor topologies. What is most
interesting is that cohesive and manageable teams are more
robust and responsive than less cohesive/manageable teams.

In the interest of space, we can only present a summary
of performance and robustness results. Without fail, however,
the performance of the HuBIRT teams for leader models was
substantially better than predator models. Unsurprisingly in
physicomimetics, physical leader models exhibited more robust

2863



Fig. 6. Average response time for different models with varying communi-
cation probabilities.

performance than virtual leader models in the presence of
communication failures, indicating that it is easier for a human
to maintain influence over a single leader than over a large
subset of agents in the presence of communication problems
(see Figure 6). Moreover, subjective evaluations (note that
this is only for three operators, all authors) strongly indicate
that leader-based control of nearest neighbor topologies is
substantially easier than predator-based control and marginally
better than control of metric-based topologies.

VII. CONCLUSIONS AND FUTURE WORK

This paper created a graph-based description for human
interaction with bio-inspired robot teams (HuBIRT) based
on biological principles. The model was encoded using two
matrices, cohesiveness (𝐴𝑡) and management (𝐵𝑡), which were
then used to characterize the performance of two different
bio-inspired models. Cohesiveness is important because it
allows agents to influence each other despite perturbations.
Responsiveness means that agents can be managed effectively
by a human via the management matrix. Using empirical
studies, we provided evidence that a sufficient condition for
HuBIRT to be responsive and robust is when (a) coherence is
maintained through the connectivity of 𝐴𝑡 and (b) influence is
sustained through 𝐵𝑡; this may not be a necessary condition.

Future work should include exploring other communication
models between the human and the agents, as well as among
the agents themselves. Additionally, authority relations should
be explored, perhaps by encoding interagent interactions as
a directed graph. Issues of decoherence should also be con-
sidered, such as when it would be appropriate for a predator
to split a collective into two subteams. Finally, multi-operator
HuBIRT could be explored as a graph partitioning problem.
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