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Abstract— Wilderness Search and Rescue can benefit from
aerial imagery of the search area. Mini Unmanned Aerial
Vehicles can potentially provide such imagery, provided that the
autonomy, search algorithms, and operator control unit are de-
signed to support coordinated human-robot search teams. Using
results from formal analyses of the WiSAR problem domain,
we summarize and discuss information flow requirements for
WiSAR with an eye toward the efficient use of mUAVs to support
search. We then identify and discuss three different operational
paradigms for performing field searches, and identify influences
that affect which human-robot team paradigm is best. Since the
likely location of a missing person is key in determining the best
paradigm given the circumstances, we report on preliminary
efforts to model the behavior of missing persons in a given
situation. Throughout the paper, we use information obtained
from subject matter experts from Utah County Search and
Rescue, and report experiences and “lessons learned” from
a series of trials using human-robot teams to perform mock
searches.

I. I NTRODUCTION

Wilderness search and rescue (WiSAR) is the process of
looking for a missing person in mountainous, desert, and other
sparsely populated natural environments. In this paper, we
identify a set of operational practices for using mini Unmanned
Aerial Vehicles (mUAVs) to support WiSAR operations. We
begin by introducing a fictionalized search scenario that helps
identify key variables influencing the use of mUAVs in a
WiSAR task. The scenario is motivated by a real situation,
but significant facts have been altered for privacy reasons.

A call comes to the Sheriff ’s office reporting a missing
person (MP). The MP’s family reports that the person has
been missing for approximately three hours. The family is
concerned because the MP was in poor health. The family
believed that the person was most likely to go to the Gate Cliffs
area, shown in Figure 1. A Sheriff ’s department officer drives
to a campground in the area and spots the MP’s motorcycle
in the bushes. At this point, the Sheriff ’s office calls out the
Gate County Search and Rescue team.

Of the members of the search and rescue team, only a
handful are trained to be incident commanders. One of these
trained commanders volunteers for this search. She conducts
a preliminary survey of area maps and makes the following
observations:

• The Gate Cliffs area is a relatively narrow area of rugged
but navigable terrain located on the side of William’s
Mountain.

• The terrain to the east, south, and southwest includes
many cliffs and is extremely steep and rugged. There is
only one dirt road through the area, and three or four

Fig. 1. View of the topology of the Gate Cliffs area facing south. To give a
sense of scale, the plateau is approximately 1500’ wide. The different shades
indicate the altitude of the terrain relative to the mUAV.

hiking trails in the area, but two of these require technical
rock climbing skills and equipment. Thus, mobility of
ground searchers in the area will be very limited.

• The vegetation is significant enough to limit the ability of
ground searchers to see around them, but sparse enough
to allow views from the air; unfortunately, the steepness
of the terrain limits the safe accessibility of the area for
manned search aircraft.

• Using the motorcycle’s location as the point last seen
and assuming that the MP travels around 3km/hr, the
search area is already approximately 28 mi2 and will
grow between eight and ten square miles each hour for
the next two hours.

Because of the rugged terrain and large search area, the
incident commander wants to use the mini-UAV team to
support the search effort.

The above scenario illustrates many of the factors that make
mUAVs a potentially useful tool for performing WiSAR: a
constrained by growing search area, rugged terrain, limitations
in a ground searcher’s field of view, and limitations on the use
of manned aircraft. The purpose of this paper is to present
efforts to support WiSAR search using mUAVs.

We assume a hierarchical organization typical of WiSAR
efforts [16]. Leading the search effort is an incident comman-
der who manages multiple search teams including several with
technical search specialities such as rock-climbing and medical
skills. The mUAV team is considered one such technical search
team, and it includes a mission manager, a mUAV operator, a
sensor operator, and ground searchers. Given this hierarchical



organization, we emphasize how information requirements
influence the coordination between humans and the mUAV.
We begin with a brief survey of related work.

II. RELATED L ITERATURE AND PREVIOUS WORK

The experimental UAVs used in this work are small and
light, with most having wingspans of approximately 42”-50”
and flying weights of approximately 2 pounds. The airframes
are derived from flying wing designs and are propelled by
standard electric motors powered by lithium batteries. The
autopilot is built on a small micro-processor, and is described
in [1]. The standard sensor suite of the aircraft includes: 3-axis
rate gyroscopes, 3-axis accelerometers, static and differential
barometric pressure sensors, a GPS module, and a video
camera on a gimballed mount. The test aircraft utilize 900
MHz radio transceivers for data communication and an analog
2.4 GHz transmitter for video downlink. The mUAV uses the
hierarchal control system described in [1].

Typically, UAVs engaged in a search task either require
two operators or a single operator to fill two roles: a pilot,
who “flies” the UAV, and a sensor operator, who interprets the
imagery and other sensors. It is sometimes useful to include
a third person to monitor the behavior of the pilot and sensor
operator; this third person helps protect the pilot and sensor
operator and helps provide greater situation awareness [2, 6].
Complementing such search-specific work is general work on
the human factors of UAVs [3, 5, 12] and on the number of
people required to manage an unmanned vehicle [10, 15].

The goal of this paper is to understand human factors issues
related to fielded missions [2, 4]. As a means of analyzing
some of the human factors issues, we have conducted both
a goal-directed task analysis [8] and a cognitive work anal-
ysis [19] of the WiSAR domain. These analyses are specific
examples of more general work in human factors, aviation,
situation awareness, etc. [7, 17].

In terms of search efficiency, literature related to manned
aerial search is particularly relevant [14]. This work suggests
that the goal of 100% target detection is in continual conflict
with the goal of searching the largest area possible. This
conflict means that resource allocation is a key problem in
human-robot teams for the WiSAR domain.

III. I NFORMATION REQUIREMENTS INWISAR

In introducing human-robot teams into a problem domain
that has previously been performed by human teams, it is
important to understand the way the task is currently handled
by humans. Since introducing mUAVs into the WiSAR domain
should complement and support existing teams, it is especially
important to understand the type of and timing of information
in WiSAR. To encapsulate this, we have previously performed
a goal-directed task analysis (GDTA) [8] and a partial cogni-
tive work analysis (CWA) [19] of the WiSAR domain [9].

Rather than present the GDTA and CWA details in this
paper, we can use this information to identify the central
information flow of the process and use this process model
to guide our analysis of human-robot WiSAR teams. As

shown in Figure 2, the search task involves gathering evidence,
utilizing that information to modify the understanding of the
search problem, and then directing further efforts at additional
evidence.

The information flow for WiSAR personnel begins with the
initial details given by the reporting party. Responders imme-
diately consider the urgency of the call based on the potential
danger to the missing person and other factors. Combining
prior knowledge and experience with information provided
by the reporting party, responders develop a model of high
probability sources of additional evidence. Potential sources
of evidence are geographic locations surrounding the missing
person’s point last seen, but also include people familiar with
the missing person or the missing person’s bedroom or other
property.

After evaluating initial sources of evidence, the WiSAR
team develops and executes a plan for acquiring additional
evidence. In the more challenging situations, the plan must
allocate human and mUAV search resources to efficiently
accumulate evidence from different sources. Such allocation
is governed by the probability that useful information will be
obtained, by the risks involved in gathering the information,
and by the capabilities of available resources for acquiring
information.

Time and additional evidence result in adjustments to the
probability model of possible sources of evidence; changes in
the model lead to changes to the search plan. All evidence
changes the expected utility of searching in different areas.
Incident command continually evaluates evidence and redirects
available resources in order to maximize the value of the
search.

Ideally, the search ends when the WiSAR team locates
the missing person (probability distribution moves to a single
spike). Work then proceeds on to rescue or recovery. However,
the process may also end if the search continues long enough
that the probability of the missing person actually being
within the search area falls below a certain threshold or if
dangers or other constraints (i.e., another incident) cause the
relative expected value of continuing the search to fall below
a threshold.

Given this information flow model, it is important to define
how human robot teams can efficiently function to gather
evidence given the capabilities and limitations of the team
members. In the next section, we present observations from a
series of field trials and simulation exercises on how human-
robot WiSAR teams should be organized.

IV. T HE MUAV T ECHNICAL SEARCH TEAM

The information flow model from the previous section sug-
gests that search is the process of removing uncertainty about
the location of the MP. This occurs either by finding signs that
focus probabilities to particular locations or by reducing the
probability in other regions by failing to find signs of the MP.
The presence or absence of signs allows search resources to be
shifted or refocused. To understand how human-robot teams
can efficiently perform this search, we begin by analyzing



Fig. 2. Information flow in the WiSAR domain.

team roles. We then present three paradigms of coordinating
these roles, describe scenarios where these paradigms were
appropriate in a field trial, and summarize principles for
selecting a paradigm given the circumstances in a search.

A. mUAV-Supported WiSAR Roles

WiSAR field tests, as well as similar tests from other
search-related domains [2, 6], strongly suggests that multiple
roles must be performed. In WiSAR, these roles include:
UAV operator, sensor operator, mission manager, and ground
support. These roles can theoretically be filled by one or more
people with varying levels of authority, often supported by
various autonomy algorithms and user interface technologies.

The UAV operator is responsible for guiding the UAV
to a series of locations that allow the camera to obtain
imagery of potential signs. The sensor operator is responsi-
ble for directing, for example, a gimballed camera and for
inspecting/interpreting imagery to detect potential signs of the
MP. The mission manager is responsible for managing the
progression of the search with an emphasis on processing
information, focusing search efforts, and re-prioritizing efforts.
Ground support involves people in the field confirming or
de-confirming signs by, for example, inspecting a brightly
colored spot to see if it is a man-made object discarded by
the MP. An operational assumption is that seeing a sign from
the ground removes more uncertainty than seeing a sign from
the air. An additional assumption is that the ground team can
give feedback to the mUAV operator that improves situation
awareness.

Fig. 3. Spatial and temporal relationships between people filling WiSAR
roles: U=mUAV Operator, S=Sensor Operator, M=Mission Manager,and
G=Ground Searchers.

The agents performing the roles can be located in three
different physical locations: (1) aboard the aircraft (e.g., a
program in the onboard computer), (2) at or near the lo-
cation of the operator control unit (referred to as thebase
of operations), or (3) in the search area itself (referred to
as the remote site). For this paper, we assume that basic
aviation and navigation abilities such as attitude control or
going to a waypoint are onboard the computer, and we omit
discussion of such things as onboard target detection. Instead,
we focus on how to organize people at the base of operations
and the remote site. As illustrated in Figure 3, the important



distinctions between the three operational paradigms discussed
below are in the physical locations of the people filling the
roles and the temporal sequence in which the roles are fulfilled.

B. Sequential Operations

Organization. In sequential operations, the mission man-
ager works with the sensor and mUAV operators to create
a search plan. The mUAV operator than executes this search
plan and the resulting video and telemetry information is given
to the mission manager and sensor operator. They evaluate
the information with the goal of searching for signs of the
MP. If a potentially valid sign is found, a ground support
searcher is dispatched to the location to evaluate the sign.
Information from ground searcher is then given back to the
mission manager, and a new plan is created.

Scenario.A field trial1 similar to the scenario used in the
introduction were performed. This scenario is a good exam-
ple of when sequential operations can be used. In planning
the field trial, it was obvious that typical (e.g., spiral and
lawnmower) search patterns were inappropriate for the terrain
because of the steepness in the east-west direction and because
of a prevailing north wind. A more efficient search was to fly
ellipses that tracked the mountain on one arch, curved away
from the mountain and returned to near the starting point.
During the return, the altitude and center of the ellipse was
adjusted so that contours of the side of the mountain were
searched. The major axis of the search ellipse fell along a
north-south direction and the minor axis fell along an east-
west direction.

Principles. Sequential search is appropriate when there
is limited ground mobility or when the probability of MP
locations is large and uniformly distributed. Sequential search
allows the team to gather data using the mUAV, cluster
signs, and then dispatch a ground search team to the highest
probability locations.

C. Remote-Led Operations

Organization. In remote-led operations, the mission man-
ager joins the ground team to perform a ground-based, hasty
search [9] such as tracking a footprint trail or using a canine
team to track a scent trail. The mUAV operator flies an orbit
that is centered on the location of the ground searchers while
the sensor operator controls the camera to gather imagery
beyond outside of what the ground searchers can see. Thus,
the mUAV effectively extends what can potentially be seen by
the ground searchers. This allows the mission manager greater
access to potentially relevant information to guide the hasty
search.

Scenario. In a field trial, we dispatched a ground team to
track a mock trail of footprints. The trail lead through limited
vegetation (sage brush and juniper trees) and over mildly hilly
terrain (roughly plus or minus 100 meter deviation from the
launch point altitude). As the ground searchers followed the

1There were some technical difficulties with the mUAV on this field trial,
so many of the field observations are supplemented by observations from a
simulator study and from thought experiments.

trail, the sensor operator looked for signs of the MP – signs
that the ground team could not detect because of the brush and
hills. Several false alarms were reported by the sensor operator
(and inspected and de-confirmed by the ground team). When
the ground team lost the trail of the MP, the mUAV operator
flew orbits that spiraled out from the last known position of
the MP. Doing this, the mUAV was able to locate the MP on
a hillside about 100 meters away from the ground searchers
but well beyond their field of view.

Principles. Remote-led operations are appropriate when
the mission manager has more awareness of search-relevant
information at some location in the field than at the base
station. This occurs when there is a cluster of signs that allow
the mission manager to rapidly update the model of the MP’s
location, such as might occur when tracking the individual.
The mUAV provides supplementary information that broadens
the scope of what the mission manager can include in his or
her model.

D. Base-Led Operations

Organization. In base-led operations, the mission manager
is located with the mUAV and sensor operators near the
operator control unit. As the sensor operator identifies possible
signs in the video, the mission manager adjusts his or her
model of the likely locations of the MP and instructs the
mUAV operator to focus flight time in high probability areas.
Ground searchers follow the center of the mUAV track so
that they are within a minimum distance from possible signs
detected by the sensor operator. When the mUAV records a
possible sign, the ground searchers can rapidly confirm or
deconfirm the sign.

Scenario.In a field trial, we used this paradigm to perform
a search. The mission manager translated the scenario descrip-
tion into a likely path taken by the MP. The mUAV operator
translated this likely path into a set of waypoints that were
placed in a queue. The mUAV then sequentially orbited the
waypoints while the ground searchers followed the waypoints.
When the sensor operator identified a sign, the ground team
immediately investigated. After several false signs were de-
confirmed by ground searchers, the sensor operator detected a
true sign that was rapidly confirmed by the ground team to be
the MP. The telemetry of the mUAV in this field test is shown
in Figure 4.

Principles. Base-led operations are appropriate when the
terrain allows for ground teams to be highly mobile but when
there is not enough information to perform a hasty search. The
ground team can position themselves at the center of a moving
search orbit so that they are within minimal expected distance
when the sensor operator detects a sign. Feedback from the
ground allows the mission manager to adapt the search plan
rapidly.

V. USING MODELS OFM ISSING PERSONLOCATION

In the previous section, we identified elements of search
scenarios that influenced the best way to use a mUAV in
WiSAR. Each of these scenarios relied heavily on information



Fig. 4. Telemetry from a base-led field test. The mUAV begins at the launch
point (0,0), and then performs orbits a series of waypoints as the mission
manager directs the search. The axes are meters to the north and east from
launch point.

about the likely location of the MP such as the direction of
travel of recent signs that the MP was in an area.

In any lost-person incident, efficient allocation of resources
requires some prior assumption concerning the areas likely
to contain the victim. Estimating the probability of area for
a specific individual then becomes a significant priority at
each stage of the search management. The probability of
area (POA) assigned to any region indicates the belief that
the lost person may be located within that region. As new
information is gathered, the beliefs are updated; revised POA
values are used to direct the continuing search effort until
the mission is completed or suspended. Several methods are
commonly used to generate initial probability distributions,
including the local case histories, statistical prediction, and
the Matson consensus method [16]. One approach which may
provide a more specific probability distribution for a given
incident involves simulation. Given a stochastic model of lost-
person behavior and a geographic description of a particular
region, a large number of simulations may be run. If the model
is well matched to a particular victim, the distribution of the
simulation agents at any time can be said to approximate the
actual probability distribution of the victim’s location. The
resulting distribution may then be incorporated into the search
planning and management resources.

A. A Formalization of the Model.

The basis of a general model may be constructed by
letting the particle velocity be dynamically influenced by the
environmental and motivational factors. We lump these factors
into an abstract state variable that includes, for example, the
local gradient. This model assumes that people tend to travel
in approximately the same direction, with small perturbations
influencing this direction of travel. This assumption reflects
a tendency for people to travel in what they believe is a
straight line, though this line tends to not be straight because

of influences of the environment and the psychology of being
lost [13]. Thus, the model is approximately a random walk,
but the randomness affects velocity rather than position.

In the model, the perturbations should not be uniform;
rather, they should be influenced by state or the characteristics
of the environment and attributes of the missing person. For
example, the most simple model presents perturbations biased
slightly in a downhill direction. Extensions of this model
provide directions influenced by vegetation density, trails,
experience, motivation, etc.

This random walk model on velocity must be bounded by
physical and natural constraints. The first constraint is that
the magnitude of the velocity cannot exceed the maximum
speed of a human on foot. Thus, the random walk on velocity
includes reflecting boundaries to keep the velocity below a
maximum. The second constraint is that people cannot traverse
slopes that exceed a certain threshold because they are too
steep to climb or too sleep to safely descend2. Thus, the
random walk on velocity includes reflecting points that make
certain directions of travel very rare – those directions that
exceed the slope threshold.

According to Hill [13], it is not uncommon for missing
persons to switch between various “reorientation strategies.”
Switching between strategies often includes a sudden change
of direction. It can also include stopping for a moment. These
strategy switches can be triggered by environmental stimuli,
such as coming across a trail or hearing a sound.

Mathematically, the following model can include the above
factors:

vt+1 = αt(s)(vt + ρt(s)) + (1− αt(s))ηt(s) (1)

In this equation,vt indicates the velocity (speed and direction)
at timet, ρt(s) is a perturbation on this velocity at timet as a
function of environmental states, αt(s) ∈ {0, 1} is a random
and state-dependent factor that represents a relatively rare
occurrence of suddenly switching from the current direction,
and ηt(s) is a state dependent and random new velocity that
results when the missing person changes direction. Note that
most of the timeαt(s) is unity, meaning that under nominal
conditions a random walk in velocity occurs with reflecting
boundaries‖ vt ‖= min (‖ vt ‖, ‖ vmax ‖) where‖ vmax ‖ is
the maximum velocity allowed.

By making the random variables state dependent, we can
include not only temporal random variations, but also environ-
mental triggers. For example, a nominal model of a missing
person would haveρt(s) distributed according to a normal
distribution with small variance and a mean pointing in the
direction of steepest slope. More generally, the behavior of the
MP is strongly influenced by the experience and personality
of the MP. Thus, it makes sense to allow the random variables
to be influenced by these personality attributes.

2Note that missing persons can fall down such slopes, so this possibility
needs to be considered in the model.



B. Toward Evaluating the Model.

In order to verify that a particular model is a good predictor
of actual victim behavior, the results of a collection of varied
simulations must be compared with the observed behavior of
actual victims. That is, we want to show that the positions
of a sample of simulation agents and that of a sample of
actual victims are distributed similarly. Our evaluation will be
based upon the goodness-of-fit of the simulated and observed
distributions. Two sources of observed distributions will be
used in the evaluation: distributions of locations where MPs
were found [18], and distributions generated by subject matter
experts for a particular situation.

We have performed a preliminary analysis comparing sim-
ulation models to observed distribution. The goal of this
analysis is to identify which parameters are most important
in the model. We use the rms value of the K-S statistic
during the simulation. This value facilitates comparison to
determine which model results in a distribution which is,
loosely, closest to the observed distribution for the longest
time. This is somewhat artificial since the distribution of actual
MP locations in [18] does not reveal any time history; the
various victims were found after different intervals from the
time they became lost.

Of the parameters in Equation (1), it seems that the prob-
ability of random changes and the maximum speed have
the greatest effect on model integrity over the ranges tested.
That is, it seems that the best results are obtained when the
probability of random change is very low and where maximum
speed is appropriately constrained.

C. Using the Model

The model can be used to select which operational paradigm
is appropriate, and to plan the mUAV’s or ground searcher’s
path. Many algorithms exist for mUAV path planning, but
fewer algorithms exist for performing prioritized search in
an efficient manner [11]. Future work should include path-
planning to do prioritized coverage searches.

VI. CONCLUSIONS

A team of humans and mUAVs can be used to support
WiSAR. Such a team can fit into the existing WiSAR infor-
mation flow model, but the organization of the human-robot
team roles depends strongly on situational factors, such as
the density of MP signs, the mobility of ground searchers,
and the ability of the mission manager to use information
from the mUAV to modify the probability model. Simulations
of likely MP behavior can help the mission manager form a
model of the likely locations of a MP, but the mission manager
should use simulation results as another source of information
that affects team decisions. Field and simulation trials indicate
that, based on the mission manager’s model, sequential search,
remote-led, or base-led operations can appropriately support
WiSAR efforts.
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