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Abstract

In the debate between simple inference heuristics and @ngsgcision mechanisms, we take a position
squarely in the middle. A decision making process that elddn both naturalistic and novel settings should
extend beyond the confines of this debate; both simple higrsnd complex mechanisms are cognitive skills
adapted to and appropriate for some circumstances butmatifers. Rather than ask “Which skill is better?” it is
often more important to ask “When is a skill justified?” Théestion and application of an appropriate cognitive
skill for a particular problem has both costs and benefitd, therefore requires the resolution of a tradeoff. In
revisiting satisficing, we observe that the essence offiatig is tradeoff. Unlike heuristics, which derive their
justification from empirical phenomena, and optimal solng, which derive their justification by an evaluation of
alternatives, satisficing decision-making derives itsifigation by an evaluation of consequences. We formulate
and present a satisficing decision paradigm that has itvatimin in Herbert Simon’s work on bounded rationality.
We characterize satisficing using a cost-benefit tradend gienerate a decision rule applicable to both designing

intelligent machines as well as describing human behavior.
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1 Introduction

While driving an automobile, many of us have experiencedetbing similar to the following. We have been
following a vehicle for an extended period of time even tHotigere is very little traffic on the road. Suddenly, we
realize that not only can we easily pass but also that we wapass because the lead vehicle is going slower than
our desired speed. We decide to pass, and act accordingly.

What are the factors that dictate our behavior in this ditn& Can a characterization of the corresponding
behavior-generation process be used to design better nes¢hiThis paper is written from two perspectives: first,
from the perspective of a designer charged with the task editorg a machine capable of some degree of goal-
directed autonomy and agency, and second from a perspettidescribing goal-directed human behavior gen-
eration. Inherent in the resolution of these problems isnibed to resolve tradeoffs. For machine intelligence,
who resolves the tradeoffs, the designer or the machine?hdioans, who resolves the tradeoffs, the human or
societal/evolutionary forces?

There appear to be two disparate approaches to solving pheblems. The first approach, a “top-down” ap-
proach, contends that intelligence is tantamount to novmaationality and optimality. Representatives from this
approach cite success in the philosophical foundation®ghitive science (a la psychology) and success in opti-
mal decision theory (a la design) as evidence for a top-dogatription of intelligence. The second approach, a
“bottom-up” approach, contends that intelligence emefgens ecologically adapted behavioral and cognitive skills
Representatives from this approach cite evidence fromgb&ilness of cognitive heuristics (Gigerenzer and Gold-
stein, 1996) (a la psychology) and the success of, for exanguological robotics (Brooks, 1986) (a la design).
In both design and description, the top-down approach tendsly on complex decision mechanisms whereas the
bottom-up approach tends to rely on simple inference higegisA marriage between these extremes is necessary to

ensure behavior that achieves a goal subject to enviroraneorstraints.

1.1 Problem Statement

From a machine intelligence perspective, goal-directeisam-makers capable of situated and continued existence
must have the ability to self-police their behaviors. Inled in self policing are the abilities to evaluate and apéitz
performance internally, and the ability to resolve decidgi@deoffs internally. These abilities can be accomptishe

to a limited extent by allowing a designer to specify commexision mechanisms capable of handling all but the



most subtle (and possibly most treacherous) situationgeridtively, the designer can specify or identify simple
inference heuristics and allow the machine to select amioesggt heuristics as afforded by the environment. From
a designer’'s perspective, the latter approach has theyaioilscale to larger domains and is thus a useful approach
but, unfortunately, this approach begs the question of I@sd heuristics are systematically created and managed.
Switching attention to descriptions of human decision mgkthe distinction between simple inference heuris-
tics and complex decision mechanisms appears to be somewttimial. Rational people can use either simple
heuristics or complex mechanisms depending on which is aygpeopriate for the circumstances, and it is an open
guestion as to how people select and obtain these skillsh Siotple inference heuristics and complex decision
mechanisms areognitive skills and a rational person naturally (either through instiakt@sponses, responses
learned through external feedback, or responses learnaatin goal-directed internal feedback) employs tradeoffs
and expected performance associated with each skill armses@ppropriately. The question of which skill is more
correct is misguided because, from an agent’s point of vilegrenvironmentally afforded “means” to reaching the
decision are subjected to the goal-contextualized “endsiycced by the decision, and any approach that efficiently
uses means to generate productive ends is justifiable. dirgptthis thought, prescriptive approaches to decision-
making should permit either simple heuristics or complexihamisms provided that the expected result is good

enough.

1.2 Solution Approach

Cognitive skills can be treated as agents and organizedaistaciety of Minskian agents (Minsky, 1986). Man-
agement of these skill-based agents is tantamount to a reeigiah problem that requires an appropriate notion of
rationality. By framing the problem as one of skill manageméhe decision maker formulates a control problem
wherein, given certain goals and a certain context, thesagtimaker controls which cognitive skill agent oper-
ates. This control problem is addressed by a meta agent,oettba problem becomes one of coordinating agents
in a multi-agent society. Multi-agent societies used toegate rational decisions that use cognitive skills require
meta-choices which serve to resolve tradeoffs and asstiveabagency.

An appeal to meta-rationality to settle a question of ratiity is always risky. Too often, such appeals result
in an endless chain of “how do | know that | know that | know” Fortunately, if meta-choices are justifiable
(from a prescriptive perspective) and produce a usefulst@tirule (from a descriptive perspective) then such an

infinite regression can be avoided. Although in a presemfdiesign sense it may be desirable, such meta-rationality



need not be explicitly possessed by the agent, but can cheiedand often is) imposed externally by a designer
or through evolutionary forces. Our objective is to idgntfdecision rule that, from a descriptive perspective, is a
useful heuristic in the spirit of Simon’s notion of satisfigiand that, from a prescriptive perspective, can be judtifie

by an appeal to meta-rationality. In the end, we present aenadtical characterization of satisficing, discuss how
Simon’s original notion is compatible with this charactation, and describe how this characterization is manifest

in observations of human decision making (including thefolowing example).

1.3 Outline

This paper is organized as follows. In Section 2, we desdhibezlements of a decision problem and discuss the
limits of both optimality and heuristics with an emphasiguastifiability and practicability. In Section 3, we discuss
a decision mechanism for resolving tradeoffs and presemcsidn theoretic characterization of satisficing. In
Section 4, we extend this characterization of satisficingsien making to include the interaction between two
independent decision forces and the resulting coordinaifdviinskian agents. Then, in Section 5, we discuss the
implications of this satisficing decision paradigm in thentext of the debate between simple inference heuristics

and complex decision mechanisms.

2 Elements of Decision Making

rxx INSERT FIGURE 1 ABOUT HERE ******

The elements of a decision problem are diagrammed in Figu@ven an observatiom € X that is a function
of the state of naturé € O, the decision task is to select an optiere U that produces acceptable (according to
values and preferences) consequences. In decision makerg,are two conventional approaches: complex deci-
sion mechanisms based on seelgngerlativedecisions using normative rationality, and simple infeesheuristics
based on seekingositivedecisions using empirically derived procedures. Supedatpproaches seek to identify
optionsU, estimate state® from sensory observation¥, determine consequences using some causal model, and
then extremize some performance metric that imposes arpnefe pattern on these consequences. By contrast,
positive approaches short circuit some of these stagelingsm, for example, rules of the form “it thenw.” The
optimality-based literature, particularly that of optineantrol theory and game theory, is overwhelmingly vast, re

flecting many decades of serious research and developmigletasf based on the superlative paradigm. The positive



paradigm, manifest in the form of heuristics, proceduredifonal decision making methods, and multitudinadls
hoctechniques, has also been well-represented in the comgatiggrce, social science, and engineering literatures.
There are alternatives to the superlative and positivediogmes. The most well known example of tliempara-
tive paradigm is Simon’s notion of satisficing (Simon, 1996; SmP55). A formally stated comparative paradigm,
however, has not been well represented in the literaturebasia for a viable decision-making concept for general
application. In this section, we first review the superkat@nd positive paradigms, and then discuss Simon’s notion
of satisficing to establish a foundation for our subsequevisitation of satisficing. In the following subsectiong w
refer to the utility of accepting a decision and a utility efacting a decision. This discussion includes probalailist
inference as a special case where the utility of acceptirgcsion is unity if the decision is correct, and zero other-
wise. Additionally, this allows us to treat optimality asttypical problem in normative rationality without loss of

generality.

2.1 Superlative Rationality: Optimal Decisions

When estimates of and/oré are distributed according to a known probability distribot then a decision problem

is said to be one of decision undisk (Luce and Raiffa, 1957). The conventional approach to aewsunder risk

is to define a utility function for each of the consequences then select an option that produces the maximum
expected utility (where the expectation is taken with respethe distribution of states of nature). The option that

maximizes expected utility is the optimal optief defined as
u* = arg gleag;v(%@)pwlw) 1)

wherew(u, 0) is the utility of selecting option: given state, andp(6|x) is the probability density function faf
given observatior:. By contrast to decisions under risk, when the probalsliiez andé are completely unknown
then the decision is said to be one of decision unmheertainty(Luce and Raiffa, 1957). The conventional approach
to decisions under uncertainty is to use a maximin approasgting

* _ : 0 2
u’” = arg max min v(u, ) (2)

where®’ is the set of feasible states given observatiormhe functionmingc o v(u, 8) is called the security level

for v and can be interpreted as an expectation with respect taafée@rable distribution of givenz. Therefore,
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u* is interpreted as the option that maximizes security.

These methods have been tremendously successful forcapplications. However, not all decision problems
are optimization problems, nor should they be. Recallingavgrb from control theory, performing a study of
nonlinear control problems is analogous to performing dystf “non-elephant animals”; there are simply many
more nonlinear control problems than linear control protde Similarly, there are many problems addressable
by “non-optimal” approaches that are not amenable to optapproaches. Although some may categorize the
practice of “non-optimal” choice as a species of irratitigathe quest for the successful development of intelligen
machines rests, to some degree, upon the assumption talligerice extends beyond naive optimization (Slote,

1989). Rationality is not tantamount to optimality.

2.2 Bounded Rationality: The Presence of Tradeoffs in a Supkative World

Many cognitive scientists recognize that insistence omrglity is a misplaced requirement in situations of lim-
ited resources and information, and that optimality inadeely describes observed behavior in naturalistic set-
tings (Gigerenzer and Goldstein, 1996; Zsambok and Kledd,7L For complex problems, there often exist in-
formation, memory, or computing limitations such that fimglia strictly optimal solution is not feasible because
(1) and (2) must be formulated and solved. Under these citamaes, a principle dfounded rationalityis often
recommended. Many such theories are based on Simon’s n@lk satisficing idea wherein a decision-maker uses
“experience to construct an expectation of how good a swiutie might reasonably achieve, and halting search as
soon as a solution is reached that meets the expectatiand(5i1990, Page 9). Satisficing thus becomes a means of
addressing when an option is “good enough” in the sensetthatility exceeds an aspiration level. Determination
of an aspiration level is based on experience-derived ¢afieas of possible consequences, and a search algorithm
is proposed that is compatible with limited computatiorsaurces and that terminates when an option is identified
that exceeds the aspiration level.

Dissatisfied with this under-specified algorithm, some aesgw®ers have proposed other satisficing-like notions
of bounded rationality such as augmenting the utility florcwith computational costs. Such methods are closely
related to constrained optimization (see, for examplend8alm and Lesser, 1997; Zilberstein, 1996; Kaufman,
1990)), and vyield optimal solutions according to a modifieledon. These algorithms appear to abandon Si-
mon’s original intention of comparing predicted conseqasnwith expected potential consequences to justify good

enough decisions. Instead, these procedures derive tisgiligation by an appeal to optimality with respect to a



modified performance criterion. Since no mention is madeogf b situated decision maker might choose such a
criterion, it appears that advocates of such approachesfaran satisficing from a consequence-based justification
to a procedure-based justification and thereby make a ®viotut of a necessity” (Levi, 1997, Page vii). However,
insofar as justification can be derived through the prockeptimization, these approaches are compatible with the
goals of the proponents.

Regardless of the details of how a boundedly rational datis obtained, it is clear that the ultimate rationale
for adopting a decision obtained in such a way is that it isrdsolution to a tradeoff between the goal-directed

capabilities of a decision-maker and the environmentalrdéfnces relevant to that goal.

2.3 Positive Rationality: Heuristics

Once defined, approaches based on both optimality and moarSlike bounded rationality find the best possible
solution (according to an implicit performance metric)egivcontext-dependent constraints and imprecise informa-
tion about the true state of nature. For real environmentgcésion maker must also be able to determine not only
the set of possible optiorig (the search space), but also something about the utility?) of taking actiont as well
as the set of relevant stat@s This can lead to intractable complexity, especially fa tkesigners of machines. For
example, control engineers sometimes use an explicit modgledict the consequences of a sequence of actions
using a method termed “model predictive control” (Michalsind Mayne, 1995; Sistu and Bequette, 1996; Richalet,
1993; Mayne and Michalska, 1990; Scokaert et al., 1997)p &ttent of the action sequence can be adjusted ac-
cording to a receding planning horizon, and must often bg lmtited because of the combinatorial complexity
of enumerating multiple action sequences. Often, wherdfadgeh such increasing complexity, the designer must
resort to heuristics (consider the success of heuristickdachniques).

In effect, heuristics are empirically derived cognitive shortcutsardecision problem.For example, under
particular sensory influencesa decision maker might use the rufe: thenu. A criticism of the use of heuristics
is that they are unjustifiable and lead to capricious reqdtause they are essentiadlgl hocin nature (Kahneman
and Tversky, 1996)Ad hocprocedures while producing good (maybe even very goodsubes, will not produce
decisions that can be reliably established as being adequetrms of performance, but are instead based on vague
notions of desirability or convenience without any defidtmeasures of quality. Fortunately, some heuristics appea
to be ecologically adapted to certain niches, and work isgeding on identifying these niches and comparing the

behaviors produced by these heuristics to more convenhtapm@oaches (see, for example, (Chase et al., 1998)).



The appropriate use of heuristics in machines and humanmcggase capacity and can help generate solutions to

non-optimal decision problems (Ho, 1999).

2.4 Interlude

The use of non-optimal decision mechanisms need not resall hocism For example, Lotfi Zadeh, the father
of fuzzy logic, can undoubtedly be included as someone wintésested in exploring non-optimal but justifiable
choice. Near the beginning of his career he wrote an essajedrWhat is optimal?” (Zadeh, 1958) and four
decades later revisited the theme in his paper “Maximiziats &nd Fuzzy Markoff Algorithms” (Zadeh, 1998). In
these papers, Zadeh questions the feasibility (and wisddsgeking for optimality given limited resources. How-
ever, in resisting naive optimizing Zadeh does not abandemtiest for justifiability, but instead resorts to modifica-
tions of conventional logic that are compatible with lingfi¢ and fuzzy understanding of nature and consequences.
Other researchers, including many who have contributeda@tea of optimal decision and control, have explored
non-optimal but justifiable solution methodologies as epified in work in suboptimal decision making, ordinal
optimization (Ho, 1994; Ho and Larson, 1995), probably ampnately correct algorithms (Greiner and Orponen,
1996), multi-resolutional intelligence (Albus, 1991; Msl, 1996), heuristic search, behavior-based/ecolbgica
robotics (Brooks, 1986; Brooks, 1991; Duchon et al., 1988ytime algorithms (Zilberstein, 1996), and satisficing
decision-making (Simon, 1996; Sen, 1998). It is interggstitat each of these approaches seeks to resolve a tradeoff

between the ultimate behavior of the agent or system andrétatigable methods for generating this behavior.

2.5 Comparative Rationality: Being “Good Enough”

The notion of being “good enough” is an underlying issue imlatision problems and is an inseparable companion
to the notion of a tradeoff. For example, under Simon’s feiing, rejecting an option that does not meet or exceed
the aspiration level derives its justification from the afvagion that the option is rejected in favor of an unknown

alternative that produces better consequences; we tradedhld-be consequences of the rejected option for the
expected consequences of an unidentified option. In madhiekigence, ensuring good enough performance has
conventionally been the responsibility of the designer. dytrast, in human intelligence ensuring good enough
performance is either the responsibility of the human og much broader sense, the responsibility of the species
subject to evolutionary forces. For an individual humamleating success in goal-directed behavior requires-ratio

nal self policing.



Restricting attention to goal-directed behavior, seligig becomes very important. Self policing must include
the ability to determine if a behavior produces good enougisequence and, if not, change or adapt behaviors.
As part of this evaluative phase, a decision-maker may ne@tkntify feasible alternatives, coherent beliefs, and
consistent values. Another aspect of self-policing is thiétg to, in the spirit of Simon’s expectation-based aspi-
ration level, anticipate the efficaciousness of an optioegdrdless of whether heuristic or optimal, self-policiag i
essential for robust goal-directed behavior generatiaif-@@licing allows a decision-maker to evaluate and adapt
(possibly context-dependent) “means” subject to (pogsdsk-specific) “ends” in an effort to produce good enough
performance.

Recall the example of following a vehicle for an extendedqukpf time even though passing it is a superior
alternative. Unless a driver is a voracious optimizer cégpablimitless attention, few would say that the behavior
is irrational (although we reflect on the situation with machusement). The point is that being good enough is

required, and being optimal is optional.

3 Satisficing and Tradeoff

Too often, in a quest to impart intelligence to a machine veeneto one of two extremes. We either require the
designer to have sufficient expertise to identify and ena@dienple and effectual task-specific algorithm, or to de-
termine and encode a complex context-free algorithm resplenfor solving any and all task-specific problems.
Similarly, in an effort to describe and prescribe human benave often resort to one of these extremes. Thus, we
are forced into an artificial and unhealthy separation d&-sgeecific/context-dependent (i.e., simple inferenceiseu
tics) and general-purpose/context-independent (i.eapbex decision mechanisms) methods. Both extremes tend to
ignore the interdependence of “means” and “ends” (Conn@®@9) as well as the requirement of simultaneously
efficient and robust behavior.

In (Simon, 1990, Page 7), Simon identifies the two factors dlieéermine effectual behavior, “Human rational
behavior .. .is shaped by a scissors whose two blades arértiotuge of task environments and the computational
capabilities of the actor.” Simon backs up this statemebgiaimplicitly, in his development of satisficing. The
computational capacities of the decision-maker are meanusthe consequences produced by these means, evaluated
in the context of overall goal-directed behavior, are eadd against the standard for good enough ends. We wish

to characterize the essence of satisficing as a cost-baaelioff using a justifiable decision theoretic standard for



performing rational self policing.

3.1 Some Related Characterizations of Satisficing

Satisficing facilitates the development of a decision tegomaradigm that differs from the de facto paradigm of
optimality. One application of the concept of satisficingnsmulti-attribute decision-making. “Aspiration levels
provide a computational mechanism for satisficing. An aliéive satisfices if it meets aspirations along all dimen-
sions.” (Simon, 1996, Page 30). Exploiting a parallelisntween multiple attributes and multiple relevant states,
this notion of satisficing has been mathematically fornealim (Mesarovic, 1970; Mesarovic and Takahara, 1972;
Matsuda and Takatsu, 1979b; Matsuda and Takatsu, 1979atstiakKl980; Takatsu, 1981). These developments
compare a utilityw(u, #), defined over the consequences of an optiagiven statef, to a decision threshold (or
aspiration level)p(#). Note that this decision threshold depends only on obsensiand not on decision conse-
qguences. An optiom is satisficing if and only ifs(u,8) > p(6) for all feasibled. Our approach is similar to these
other developments in that it is applicable to multiple esatbr attributes but, by contrast, compares two utilities
defined over the consequences of a decision whence our appmethematically generalizes these decision rules
(i.e., the decision threshole{ u, #) depends upon both control actions and the state of nature).

In this section, we characterize tradeoffs using two wtilitnctions: one to represent the payoff for accepting
an option and another for rejecting the same option. In oueldpment and examples, we demonstrate why this
generalization to an option-dependent threshold is us&fd then discuss two methods for combining these two

utility functions to resolve tradeoffs. In Section 4, wedaliss the applicability of each of these methods.

3.2 Epistemic Utility Theory: A Related Characterization

The philosopher Karl Popper made the following insightfolmement regarding the goals of scientific inquiry,
“...truth is not the only aim of sciencé/e want more than mere truth: what we look fonteresting trutt¥(Popper,
1965, Page 229). Although this statement is implicitly @ted by philosophers and scientists, most formal descrip-
tions of scientific inquiry only implicitly accommodate ghbbservation. By contrast, the epistemologist Isaac Levi
made explicit this observation in his characterizationational decision-making (Levi, 1980). A decision maker
seeking to increase its knowledge is not only trying to lgeuth but also trying to gain new and useful information.
Such a decision maker is simultaneously playing two gamganee to obtain useful information and a game to pre-

serve truth. Given a set of propositio$, closed under negation (that iszifis in the set than so is the negatia),
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information is gained whenever irrelevant or useless pitons« € U are rejected. This translates into a utility
for rejecting proposition: or, equivalently, retaining propositian On the other hand, identifying true propositions
is one of the goals of epistemology which translates intauthtbased utility of accepting propositian Given
these sometimes competing cognitive goals, the decisakemengages in inquiry to identify true but informative
propositions; stated simply, Levi asserts that error shdwgl avoided (that is, truth should not be compromised)
in the interest of adopting informative propositions. Theson we learn from Levi is that truth and information
are both essential elements of decision making and can be eaulicit in the construction of a tradeoff-centered

comparative rationality.

3.3 Comparing Values: Satisficing

Turning attention from the narrow world of epistemology be tbroad world of practical decision making, we
observe that truth is the epistemological manifestatiothefpractical decision-maker's goal of achieving success,
and that information is the epistemological manifestatibthe practical decision-maker’s goal of efficiently using
resources. In the practical decision-making arena, P&pjmgunction can be rephrased to become want more
than success — what we look for is efficient success

Building on Levi's work, tradeoffs can be thought of as a gdmetiveen competing values. For most decision
problems, there are not only reasons for accepting an qptitiralso reasons for rejecting an option. We need to
translate these “pros” and “cons” into a decision rule teabtves these tradeoffs. Thus, we have two independent
value functions: a payoff for selecting optiargivené, J; (u, §) similar to Levi’'s truth support utility, and a payoff
for rejecting optioru givené, J(u, #) (similar to Levi's informational value of rejection).

Returning again to Simon’s notion of satisficing, we cankhifi an aspiration level as the utility of rejecting
an option. In Simon’s formulation, the aspiration level exided from an expectation of possible consequences.
By rejecting optionu, the decision maker expects a payoff at least as great aspiratzon level. ThusJs(u, 6)
(which equals(#)) encodes the aspiration level when the aspiration leveldependent of the option. According
to Simon, a decision is good enough only/if(u, 8) > Jo(u,0) = p(6).

In the more general case when the payoff for rejecting arooglepends on the option, we can think of the
relationship ofJ; andJ, as a tradeoff. The conventional approach to resolving tffslés to combine the two
utilities into a single utility and then to maximize the ri#gg hybrid utility; we discuss some aspects of this

approach in the next subsection, but in this section we dssam alternative formulation. Recall that a decision
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is optimal if and only if, when compared to all other optiom& other option is superior whence optimality is
determined by comparing options against each other. Bya&stmtradeoffs are resolved not by comparing options
but rather by comparing values (defined over consequengeéiist each other, whence comparative rationality
requires the evaluation of consequences. This is in th& gpiSimon’s satisficing wherein the consequences of
an option, encoded in the option’s utility, are comparechtndonsequences of rejecting the option, encoded in the
expected utility of an unidentified option.

An alternative to the optimization of an aggregated utibt{o treat the resolution of a tradeoff as a meta-decision
problem. Note that, in general, heuristics are used as ffigstragal ways to produce decisions and are therefore not
decisions themselves but rather decision rules. Suchideaisles are produced through a meta-decision process,
sometimes the result of evolutionary forces, sometimesdbglt of external feedback, and sometimes the result of
self-directed internal feedback. We construct a satigfidecision rule as the resolution of the tradeoff betwégen
andJs in Appendix A. Switching from the awkward notion of utilityf cejectingu encoded inJ,(u, #), we instead
choose to think of the cost of choosingand the benefit of choosingencoded in, respectively,, (u; 6) = J;(u, 0)
andu4(u;0) = Ji(u,0). The satisficing decision rule, derived in Appendix A andsprged as Equation (11) is
repeated here for convenience

Sy = {(1,0) : pra(us0) > by (u; 0)}. (3)

Under this rule, the consequences of decisiogiven observatiord are evaluated without reference to other de-
cisions; an option is good enough if the consequences itusaxdare satisficing, and this characterization can be
determined without reference to other options.

From (3) we see that the essence of satisficing, as deterrfioeda tradeoff-centered resolution of indeter-
minate values, is a comparison. Intuitively speaking, ttugon of satisficing requires that the payoff of selecting
an option outweigh the payoff of rejecting that option. Tledimition of “good enough” is based on comparing an
option’s benefit against the option’s cost (and noting thatfayoff for rejecting an option is equivalent to a cost
for accepting the option). This permits an agent-centeretacterization of good-enough. An option is “good
enough” if benefit (as encoded jn,) outweighs cost (as encoded jin,). Satisficing therefore becomes a two-
attribute decision problem with a benefit attribute (operetlly termedAccuracy meaning conformity to a given
standard) and a cost attribute (operationally terradbility, meaning susceptibility or exposure to to something

undesirable). Simon likened situated rationality to smissvith one blade the structure of the task environments and
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the other the computational capabilities of the actor. Wiihese scissors operate, they produce two independent
evaluations of consequences (the set of consequences aréven):a success-based evaluation called accuracy, and
an efficiency-based evaluation called liability.

Given the satisficing decision rule, we can characterizes¢hef all states which are satisficing for a given

and those skills which are satisficing given the state ofreanespectively defined as

Sp(u) = {0:pa(u,0) > bur(u,0)} (4)

Sp(0) = {u:pa(u,0)>bup(u,b)}. (5)

In practice, a decision-maker will not identify all elememtf these sets, but will instead rely on the boundaries of
these sets to detect when a behavior modification is marydg8uppose a cognitive skill € U is being used to
solve a decision problem. Whehe Sy(u) then there is no need to resort to another approach. Howsben

0 ¢ Sy(u), the current skill is inadequate and must be switched tofardifit skill. Given the need to switch, any
skill «' € S,(0) can be employed. An evaluative algorithm can be outlinedrfdeoff-based skill management
as follows:1 f 0 € Sy(u) then v =u; Else u € Sy(#). This algorithm can be used to determine when a

switch is mandatory. In other words, whéis such that is not satisficing then a new skill # « must be selected.

3.4 Comparing Alternatives: Domination

Satisficing, as we have defined it, is a notion of rationaldtedmined by comparing two aspects of the consequences
of making a decision. Under this rationality, a decision t@nadmitted or rejected without reference to other
decisions. However, learning, memory, and the ability taledldhe world sometimes permits an agent to compare
the consequences of one decision against another. Thigsadladecision maker to compare the consequences of
alternative decisions in an effort to improve performariéa: everyu € U let

Ba(u;0) = {veU:pp(v;0) <pr(u;f)andua(v;b) = palu;0)}

(6)
Br(u;0) = {veU:pur(v;0) < pur(u;0)andpa(v;0) > pa(u;0)},

and define the set of actions that atectly betterthanu (i.e., set of actions that dominatg

B(u;0) = Ba(u;0) U Br,(u; 6); (7)
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that is, B(u; 8) consists of all possible actions that have lower liability bot lower accuracy tham, or have higher
accuracy but not higher liability tham If B(u;60) = 0, then no actions can be preferreditin both accuracy and

liability, andu is a (weakly) non-dominated action with respectt@ henon-dominatedcet

EO)={ueU:B(u;6) =0} (8)

contains all non-dominated actions. It is interesting tten@ee (Goodrich et al., 1998b)) that the &§é#) is
equivalent to the set of those options which maximize theeggged utilitya 4 (u; 0) — (1 — ) pr, (u; 6) for some

a € [0,1]. In other words£(A) = {u : Ja € [0, 1] for whichu = arg max,ecy apa(v;0) — (1 — a)ur(v;0)}.
This means that the set of non-dominated options is equivédethe set of maximizing options when the tradeoff
parametery is completely indeterminate.

It is important to note that the interpretation&®) as the set of optimal multi-attribute decisions is inadégt@
justify selection of an option. Observe from (8) tidgP) is not a function of the consequences of making a decision,
but rather a function of the state of nature. This distincti® important because decisions should be justified on
the basis of their consequences and not simply because rtheyperior to some other decisions according to an
arbitrary criterion. An element of (§) might be optimal with respect to some criterion, but it magogbroduce
unacceptable consequences. Thus, domination should adex®ndary criterion for determining the usefulness of
an option and not as the primary criterion whedoenination is discretionarywhich is a companion to the notion

that optimality is optional); it is a fact of life that someies the best option available to us is still unacceptable.

3.5 Postlude

To summarize the discussion of the preceding sections,haughts have emerged. First, decisions in the satisficing
set are justified by the consequences, and decisions in thdominated set are justified by the alternatives. Second,
satisficing is mandatory and domination is discretionaryne @ore point deserves mention before we end this
section. One advantage of the aspiration-based satisfappgoach is that multiple attributes (or, analogously,
multiple states) decreases the size of the set of optiohstaasatisficing. This implies that searching for a solution
that is satisficing may take longer. However, once a satigfioption is identified it is likely to be robustly applicable
under many circumstances.

Returning to our automobile driving example, following thehicle is satisficing because the benefits of follow-
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ing, relative to our goal of reaching our destination, oughethe costs of following, relative to time loss or risk.
The passing behavior dominates the following behaviorpbgsing is optional so we feel no mandated need to pass.
When cognitive resources permit, we may observe that gaskiminates, but we need not pass since the current
skill produces good enough consequences. Additionallgalise car following is a skill that is satisficing under
both heavy and light traffic densities, the skill is robusthat it affords safe but productive driving in many driving

environments.

4 Intelligence Through a Multiple Agent Society

A large step toward resolving the debate between simpledtmgrversus complex decision mechanisms is made
by realizing that for goal-directed choice there exist nattaice problems. For example, applying expected utility
theory requires a meta choice to determine the set of feasjitions, beliefs, consequences, and utilities. From a
machine intelligence perspective, the debate is oftencusiéson of whether these meta problems should be implic-
itly included in the choice problem (to produce complex diexi mechanisms), or if simple skills and heuristics can
be efficiently and explicitly (meta-)managed to produceghmme intelligent results. From a human intelligence per-
spective, the debate is concerned with prescriptive vatessriptive models of rational choice; prescriptive medel
require the decision-maker to solve the meta-problemsnally, and descriptive models suppose that these prob-
lems are solved through evolutionary or other externallpased conditions (although there is nothing unnatural
about learning to self-police our behaviors).

To justify the managed-skill hypothesis in describing harbahavior or to encode this hypothesis in designing
machine intelligence, we must address the theoretica¢ ismeta choices. Satisficing is a tradeoff-centered deci-
sion principle that applies to meta decision problems ardefore decreases the gap between mind and machine,
or in the quest to settle the debate between simple and crrdplgsion mechanisms. Given that the essence of
satisficing is tradeoff, the important issue is how, wheidl, lsppwhom should tradeoffs be resolved. These questions

are questions in meta-agency, that is, questions in sdliaian and self anticipation..

4.1 Situated Decision Makers

e INSERT FIGURE 2 ABOUT HERE *****

As we understand the philosopher Charles Peirce, meanmghanefore intelligence can only be present in a
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semiotic triad consisting of some kind of observation (fiess), some kind of consequent (secondness), and some
kind of mapping from observation to consequent (thirdneéisa) turns firstness into secondness. Goal-directed
agents capable of continued existence in real environnsdrisld have the capacity to respond to, interpret, and
evaluate observations in terms of their capacities antsskihe key to doing this is to allow lessons learned from
the past (in the form of values, models of causal behavior) &t turn observations from the present into acceptable
future consequences. As diagrammed in Figure 2, the pasin#ss) transforms the present (firstness) into the
future (secondness).

The lesson we learn from this triad of situated agency isrniath of reasoning is done in terms of either past
experiences or expected future experiences. This can benety complex unless effective coping strategies are
developed and used. A remarkably efficient coping strategy iorganize intelligence into modules appropriate
for commonly encountered circumstances. We call these lasawgnitive or behavioral skills and note that these
skills determine the behavior of a situated decision malserch a decision maker can reason about the world in
terms of the consequences afforded by these skills. Witketfergence of multiple skills including the capacity for
general-purpose problem solving, a decision maker can fiisbéa of very sophisticated behaviors.

*rxkkk INSERT FIGURE 3 ABOUT HERE *****

In this context, an expert is one who has a skill that will progl satisficing consequences for any state the
domain of expertis®. This is diagrammed in Figure 3. Each closed curve represesitill that produces satisficing
consequences for titethat it encloses. Note that multiple skills can be satisfidor a particula® and that the skill
set spans almost the entire domain of expefiisén general, an expert in one domainwill not be an expert in all

domains.

4.2 Multiple Agent Society

Although many behavioral skills can be organized into a shirs-response loop, cognitive skills require an appro-
priate organization. Borrowing on MinskySociety of MindMinsky, 1986), we can treat each cognitive skill as an
agent and organize these agents into a society. Recognimbghese agents must interact, we can include layers
of agents managing agents (i.e., meta agents), and agenégim@ agents managing agents, et cetera. These layers
form a multi-resolutional hierarchical society of cogwmitiagents. Within this society, multiple forces can influeac
decision. These forces include top-down forces from agasisonsible for accomplishing certain goals, bottom-up

forces from skilled agents responsible for acting in a paldir context, and lateral forces from neighboring agents
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interacting to accomplish tasks that accommodate sharad gorequire shared resources. Top-down forces evoke

success-based evaluations of skills, and bottom-up faweale efficiency-based evaluations of skills,

4.3 Decision Forces

Cognitive skills provide affordances for rational behavibhe termaffordanceis a term introduced by Gibson (Gib-
son, 1979) and extended by Norman to mean “those fundammoiaérties that determine just how the thing [skill]
could possibly be used” (Norman, 1988, Page 9). Skills wiadfeedances are compatible with top-down goals in-
duce an attractive potential commensurate with theiryikeslefulness. In terms of the values involved in a tradeoff,
J1(u; 0) represents this attractive potential. However, in additmtask specific goals there are also context depen-
dent constraints on the efficiency of these skills, and tlvesstraints induce a repulsive potential commensurate
with their likely inefficiency. The function/,(u, 8) represents this repulsive potential.

Two independent descriptions of consequences can be thofigis the interplay between the two potential
fields. Given the analogy of; and J; as attractive and repulsive potentials, we can use thiogypdb interpret
the notion of satisficing. An option (skill) is satisficing aihd only if the attractive potential is greater than the
repulsive potential. Partitioning evaluations of consames into these attributes recalls the generalized paltent
field (GPF) approach to path planning and obstacle avoidéems for example, (Nam et al., 1996; Guldner and
Utkin, 1993)). In the GPF methodology, a goal is represeatedn attractive potential, obstacles are represented as
repulsive potentials, and the path along the negative gnadif the combined potentials is selected as a collisian fre
path. Although GPF approaches have traditionally been tsplain a feasible path (with a corresponding sequence
of actions), the basic idea has been extended to dynamimbenvents wherein individual actions are identified as
a function of current and projected future dynamic statesniMt al., 1996). Unlike such GPF approaches which
produce a unique best path (or unique best option), howaveadeoff is resolved once a single skill is identified
with attractive potential greater than repulsive potént2y contrast, non-dominated options are best in the GPF
sense.

In this way, satisficing is a companion to a resolved tradenferging from independent values. The interac-
tion between meta-agents resolving meta problems andeslagients resolving choice problems involves inherent
indeterminacy. Simply put, a meta-agent does not know (spe@ally care) what option a choice-agent will select,
nor is it appropriate for the meta-agent to speculate albmuexpected choices of the choice-agent (doing so shifts

all responsibility to the meta-agent and relegates thecehagent to a vacuous role). The meta-agent is responsi-
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ble for abductively framing the problem, and the choicerage responsible for inductively solving the problem.
Since the consequences of framing a problem are different the consequences of solving a problem, there is an
indeterminate mapping from the consequences evaluateaehyéta-agent and the consequences evaluated by the
choice-agent. This indeterminacy requires that the mgésiadeal with sets of options and produces a decision rule

used by the choice-agent to identify “good enough” consecgs

4.4 Two Stages of Self-Policing: Evaluation and Anticipatin

As diagrammed in Figure 2, a minimum requirement for ingellice is a relationship between past, present, and
future. To facilitate this relationship, there must be ¢hphases for any choice problem: anticipating consequences
the “moment of truth” when choice is made, and evaluatingsegnences. Anticipating future and evaluating past
consequences are necessary stages in rational selfrgoliBly evaluating past consequences a decision-maker is
evaluating its past choices, and is thus performing a therdgn (meta) evaluation of a “past self.” If performance
is inadequate or if superior alternatives are manifest therdecision maker should adapt its future behavior. By
anticipating future consequences, a decision maker isiatiag its future states, and is thus performing a third
person (meta) evaluation of a “future self.” If expectedfpenance is inadequate or if superior alternatives are
recognized then the decision maker should act accordingly.

Unless anticipation and evaluation are simply re-enactsnefithe moment of truth, the decision maker should
be seeking to identify feasible options. This is done in twaysv by identifying options that resolve tradeoffs and
by identifying options that are non-dominated. In orderrafreasing complexity and necessity, satisficing-based
rationality must be satisfied first (unless, for a particularld, non-domination guarantees satisficing) and then, if

resources permit, domination-based rationality can hefteat.

4.5 Problem Solving

Let us now turn attention to a timeline for making rationatidens. Assume that the decision maker is situated,
meaning that the decision maker has a known goal and exigtgarticular context. A rational decision-maker
should begin by identifying the set of possible states ofirea®. By identifying relevant states, a process aided
by familiarity with the situation or previous exposure tmgar situations, the decision-maker is able to identify th
goal-driven affordances from the suite of cognitive skifiat it has available. Additionally, the decision-maken ca

recognize contextual factors that restrict the applidghif particular skills.
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*kk INSERT FIGURE 4 ABOUT HERE *****
Given an observatiom and a subsequent understanding of the state of néjuhe decision maker then enters the
three phase process of decision making. This process t®wsithe two self-policing phases of anticipation and

evaluation, and the moment of truth (i.e., choice) phase.

Anticipation

Given the state of nature, the meta-agent can determinexpiexted payoffs:4 and i, of each skill through a
deliberation process, through an experience-based fidation process, or through a stimulus-response mechanism
The meta-agent initiates a search for an appropriate gldthaps beginning at a default skill and the proceeding
to other skills using some practiced procedure. Each plessHil is analyzed to see if its expected consequences
resolve the tradeoff between goal-driven payoffs and ctiitependent costs. If the decision maker has ample
time and memory or a wealth of experience, multiple satisfi@ptions might be identified yielding C S;(0).
Furthermore, past experience may help the decision madetifg non-dominated options via lateral decision forces

whence the search can be restricted to non-dominated apttn

Moment of Truth

Atthe moment of truth, any € G can be applied. Selecting among the alternatives can be(dpwia a constrained
optimization policy such as selecting = arg max,cq pua(v;0) — bur, (u; 6), (b) via an exploratory policy wherein

an unexplored option: € G is randomly selected, or (c) through an arbitrary processragih anyu € G is
randomly selected. The policy can be adapted to reflect thaass present in the moment of truth. Regardless of
the policy, the skill is expected to produce satisficing eguences and thus resolve the decision tradeoff because of
the anticipation phase. In terms of modeling human behaigrimportant to note that not all behavioral variability

is a result of noise and uncertainty. Instead, a portion isfuariability results because, for a particular contexd an

a particular task, many behaviors may be satisficing. Thygest that constrained optimization, though possibly

appropriate for design, may not be readily applicable tedleing the moment of truth in naturalistic settings.

Evaluation

Following the moment of truth, the consequences of the ehaie evaluated. Any mismatch between anticipated

and observed values can be used to tune these values fog fugar Additionally, the meta-agent determines if
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the consequences are satisficing. If they are satisfiaing 6,(¢)) and if cognitive resources are available, then
the meta-agent mighttompareu to other (remembered) options to refine the set of feasibiermgs, or bias the
search mechanism to useagain. If the consequences are not satisficingZ(.S;(#)) then the meta-agent might
spawn a new search to find a skill e S,(0) that is expected to produce satisficing consequencestdf,afploring
and evaluating all known options, = () then the tradeoff is not resolvable given current optionke Tecision
maker must then either adjust its expectations (decr&ase acquire a new skill that will be appropriate for the

circumstances.

5 Discussion and Examples: Simple Inference Heuristics VComplex Decision

Mechanisms

Satisficing rationality provides a simple but justifiablethusl for determining when simple inference heuristics and
or/complex decision mechanisms are justified. This alldvesdecision maker to perform cognitive and behavioral
tasks with an appropriate mechanism by turning the metaidegoroblem into one of controlling the selection of an
appropriate skill. In this section, we give examples thapsut the hypothesis that intelligent behavior is orgaahize

into cognitive and behavior skills, and discuss how satigfienanifests itself in decision making.

5.1 Heuristics and Biases: the Existence of Cognitive Skl

In studies of human cognitive performance, Daniel Kahnearath Amos Tversky have led the way in identify-
ing several heuristics and biases that systematicallgrdiforn standards of normative rationality (Kahneman and
Tversky, 1979; Gardner, 1985). Among other observations, deem most relevant to our discussion. The first
observation is that people use and misapply cognitive stisrtin inappropriate situations. The misapplication of
cognitive shortcuts (i.e., heuristics) is evidence thaipte have and use these heuristics, and the fact that some
cognitive biases disappear when the problem is reframgd (Be overconfidence bias can be overcome when data
are presented as frequencies rather than probabilitigge(@izer, 1996; Kahneman and Tversky, 1996)) indicates
that cognitive skills are ecologically adapted to certaimdins. Additionally, the presence of robust but simple
heuristics such as “take the best” demonstrate that thegésties can be very effective (Gigerenzer and Goldstein,
1996). The second observation is that untrained peoplecaneery good at applying methods of normative rational-

ity. One logical conclusion from the heuristics and biagesdture is that if researchers want to fool subjects, they
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can probably succeed by inducing an incorrect cognitivi. ski

5.2 Experts and Naturalistic Decision Making: Non-Optimal Choice

The naturalistic decision making community has emergedspanse to dissatisfaction with using normative models
of rationality in descriptions of expert behavior (Zsamlawid Klein, 1997). A characteristic of naturalistic deamsio
making descriptions of human intelligence is that experggoize intelligence into cognitive skills. The majority
of time spent in expert decision making is spent searchimyuenterstanding the state of nature. Once the state
space is accurately deciphered, an appropriate skill akes and the problem is efficiently solved. From (Dreyfus
and Dreyfus, 1985), “[Experts] reflect upon the goal or pectipe that seems evident to them and upon the action
that seems appropriate to achieving that goal.” They reabont the world in terms of afforded actions, and select
action according to their stated goal. Experts do not reasorg context independent and general purpose problem
solvers, but rather with cognitive skills spanning the eod relevant states of nature (see Figure 3). Developing
expertise is the process of spanning the states of naturleamdng how to recognize and use the appropriate skKill.
Since acquiring a set of skills that sp&nis done during the process of becoming an expert, the majafrigxpert

time is not spent in complex decision making but rather imiiiging a skill appropriate for the circumstances.

5.3 Human Interaction with Automation: Detailed Example of Explicit Skill Management

In this subsection, we give a detailed example of skill managnt in the context of human interaction with au-
tomation. Automation is ideal for illustrating skill marement because when a human initiates automation they are
consciously delegating a skill to the machine, and when theyinate automation they are consciously appropriat-
ing a skill from the machine. Both of these skill transitigmevide a means to demonstrate how humans can manage
skills. This section is largely taken from previously pshid work or from work currently in review (see (Goodrich

et al., 1998a) for a summary of the work under review).

A mental model is an internal representation employed t@@mcpredict, and evaluate the consequences of
perceived and intended changes to the system operatorsntwtate within the dynamic environment. Humans
interpret and respond to sensory input according to theegbettablished by a mental model through task-specific
filtering of the external world. Skilled action is organizetio behavioral quanta that correspond to separate mental
models each with their own perceptually delineated opamatidomain (Goodrich et al., 1998a). Many aspects of

cognitive decision-making have been described in termsaitad models (Johnson-Laird, 1988; Minsky, 1986).
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Formally, a mental modeM is a triple consisting of the perceived state of the envireni®, a set of decisions or
actionsU, and a set of ordered consequencethat result from choosing € U when#f € © obtains. According

to this specification, a mental model not only encodes thatiogl between the input-action phiff, ) and the
predicted consequenag but also induces an evaluation of preferences among coesegs (see Figure 5, and
compare to related figures in (Meystel, 1996; Sheridan, 1298us, 1991)). In words, the mental modét
provides the context for meaningfully interpreting segdnformation and generating purposeful behavior and thus
represents and encodes past experience within a decisbtepr.

ek INSERT FIGURE 5 ABOUT HERE *****

w3 INSERT FIGURE 6 ABOUT HERE *****

Human behavior can be organized into a set of skilled aigs/ithat are applied when afforded by the envi-
ronment (Gibson and Crooks, 1938; Norman, 1988). In thiseodnthe termactivity* means the human’s actions
on the system (e.g., a behavioral activity is pushing th&eémedal or turning the steering wheel, and a cognitive
activity is adding two numbers or making a simple deductidrrmally, askill can then be defined aslearned
sequence of human activitieIhe human must map environmental cues into selected tegtivan efficient way
to perform this mapping is to employ a pattern of activitipeafic for a particular task, and then implement this
skill when appropriate. This approach uses a task-spec#ittathmodel to determine which skill is appropriate for
the circumstances. Switches between skills are mandated vanget perceptual states are not achievable by the
currently enable skill-based behavior or when enabledisskik not satisficing for the given state.

Human cognition can be described using multiple mental fsoffeeated as agents) which can be organized
into a society of interacting agents. This societal stngchot only determines which agents contribute to human
behavior, but also which agents can employ attentionaluress. A three level multi-resolutional society of in-
teracting mental models organized into a hierarchicalctire (see Figure 6) can be constructed corresponding to
Rasmussen’s knowledge-based (KB), rule-based (RB), alichaked (SB) behavioPs(Rasmussen, 1976; Sheri-
dan, 1992). At the KB level of this hierarchy, the agent relsupervisory; at the RB level, the agent role is task
management; and at the SB level, the agent role is task eésecltuitively speaking, the KB, RB, and SB agents
think, monitor, and control, respectively. These mentatiel@gents operate within the context of overall complex
human behavior. SB agents are akin to cognitive skills, aB@é&ents are akin to meta agents.

Automobile driving is a mix of cognitive and behavioral $&ilWhen a driver delegates a task to automation, the

vehicle assumes responsibility for a behavioral skill. ld@er, the driver retains (meta) responsibility to detertin
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the limits of the automation and responding appropriatéle conducted an experiment in which human subjects
were placed in a driving simulator with a cruise control eystengaged. At random intervals, a vehicle cut in
front of the subject’s vehicle and compelled the subjectei@dnine if the automation can safely perform the skill
or if the driver needed to intervene. Empirical estimates@furacy and liability can be obtained as described
below. Figure 7 presents the resulting empirical estimatesthe best fit curve to these estimates. Note that for

this example, the ecologically valid state variab®s= [1},, 7. ', v], (time headway, time-to-contact, and velocity,
respectively) suffice to describe the domain of exped&oodrich and Boer, 1998).

% INSERT FIGURE 7 ABOUT HERE *****

Empirical Estimates

To identify u 4 andy;,, our objective is to find substates that trigger active limgkiVe therefore distinguish between
nominal behavior € {SR, TR} and active braking behaviar = BA. Our goal is thus to find whefirg & Sp(u)

for u € {SR, TR}. Nominal operating conditions occur when the brake pedabtspressed. For both nominal
and braking conditions, we select representative sampigspfom each experimental trial and create two sets of
[T, T,]" points: one set for nominal conditions, deno@M, and one set for braking conditions, denoBfRIK.

For trials when subjects actively brake, the sub-statd(s), 7},]’ when braking is initiated is included BRK,

and the sub-state($Y,!,7,]” when braking is terminated is included MOM; for trials when subjects do not
brake, the initial sub-statd’. !, 7},]” in the trial is included ifNOM; and for trials where subjects only brake (by
anticipating the cut-in and then coming to a stop), theahiub-staté7, !, 7,]" in the trial is included irBRK.

For notational purposes in the subsequent sectionsy (&t = 7|CONDITION) denote the cardinality of the
set of pointsT’ = 7 given CONDITION. For example,N(7,"! = 7|NOM) is the number of points in the set
{6 € NOM : T, ! = 7}. Under nominal conditionsd(c NOM), relative velocity must be considered acceptable to
the driver whence the distribution @f ' under nominal conditions is an observable entity that glesinformation
about what is accurate. Clearly/lif ' = 7, is accurate, them < 5 must be at least as accurate. This monotonicity

property facilitates the computation of the accuracy fiamcas the cumulative distribution function

pa(T. ' =7) = 1—Fp1(7INOM)
N(T, ' < 7|NOM)
N(T: ' < oo|NOM)’

23



For classification purposes, we fit (via least squares) aasigimction of the forml/e(*‘”“’) to 4 () yielding the
function shown in Figure 7(a).

When braking is initiatedd € BRK), time headway values must be considered unacceptablecetiea dis-
tribution of time headways when the driver initiates bragkis an observable entity that provides information about
what is rejectable. Clearly, if, = 7 is rejectable them; < 7, must be at least as rejectable. This monotonicity

property facilitates the computation of the rejectabifitpction as the cumulative distribution function

NR(Th - 7') - 1-— FTh(T|BRK)

N(T}, < 7|BRK)
N(T}, < oo|BRK)’

For classification purposes, we fit (via least squares) aasigimction of the forml/e(~7+%) to ;i (-) yielding the

function shown in Figure 7(b).

Classification Results

For the driver to switch from one skill to another, it is nesay to identify when: ¢ Sy (). Usingu 4 (7, ') and
pr(Ty) from Figure 7, we can construct the set of staSgs= {6 : pa(7.') > bu.(T,)} that support nominal
behavior, and the set of staté§ = {6 : pa(T, ') < bur(1,)} (superscriptc denotes complement) that do not
support nominal behavior. i € {TR,SR} and# € Sf then® ¢ Sy(u). Thus, the lingua (T, ) = bur(Tp)
determines when behavior must be switched from nominala&ibg. In other words, the line is the boundary of
Sy(SR).

ek INSERT FIGURE 8 ABOUT HERE *****

Given the empirically derived functions, we can determimetioundary between nominal and braking behaviors
as a function ob by finding the perceptual staté@sor which p4 (7, ') = bu (T},). This is illustrated in Figure 8
for the data gathered in the simulator experiment, wheralicatesd € NOM and x indicates# € BRK. To the
northwest of the line, BA is satisficing but TR and SR are not @ the southeast of the line TR and SR (and,
perhaps, BA) are satisficing. Classification can be perfdrime finding the value ob that optimally separates
braking from nominal behavior. Consider the following thigerformance indicesl; (b) is the percentage of trials
that are incorrectly classified (i.e., the total numbes’sfabove the line plus the total numberx® below the line) ,

Jo(b) is the percentage of nominal trials that are incorrectlgsiféed as braking (i.e., number @6 above the line),
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and.Js;(b) is the percentage of braking trials that are incorrectlgsifeed as nominal (i.e., number gfs below the
line). The valueb = 0.53 is the minimax valué = arg min,>, max{.J; (b), Jo(b), J3(b) } which attempts to balance
the percentage of misclassifications (b)), false alarms.{; (b)), and missed detectionds(b)). The valueb = 0.20
minimizes the number of samples misclassifted: argming>q.J/;(b). The classification results for the different

values ofb are shown in Table 1 and indicate that, on the average, o@érddSamples are correctly classified.

| b [ % misclassified] % false braking| % missed braking|

0.20 10.04 1.95 8.09
0.53 13.25 8.37 4.88

Table 1: Classification accuracies for different values. of

These results were validated in a separate experiment psirigssional drivers in real vehicles responding to
cut in events on a closed test track. To perform the clasditgu (7, ') andur,(T,) were estimated, and tite
that minimizes the misclassification error was determiridte experiments generated one false alarmbjove the
line) and no missed detectiong pelow the line) in fifty trials at varying speeds. The resbk$ween the test track
experiments and driving simulator experiments are verylaimThe test track results produce a slightly smaller
value ofb (b = 0.21 for the test track versus an average valué ef 0.53 for the driving simulator) and a slight

change in the liability functich

5.4 Automobile Driver Behavior and Navigation: Implicit Skill Management

We can now return to the driving example given in the intrdaiuc While driving an automobile, we have been
following a vehicle for an extended period of time even thoulgere is very little traffic on the road. Because
following the vehicle is satisficing, we do not feel a needdasider changing our behavior but rather rest content
with following the vehicle. Suddenly, we realize that we easily pass and that we want to do so because the lead
vehicle is going slower than our desired speed. Once we wbsleat an alternative behavior is still satisficing but
dominates our current behavior, we select this behavioraahdccordingly. This is possible because much of the
behavior associated with speed management can be dedgyilteee simple skills: speed regulation, car following,
and active braking. Speed regulation applies in the absehother traffic, and is a simple perceptual regulation
task where we manage the vehicle’s speed to produce an apticfinsistent with our calibrated estimate of the

vehicle’s speed. Car following applies in the presence béwotraffic, and is a simple perceptual regulation task
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where we manage the relative rate of optical expansion yosgtain a threshold (Lee, 1976). Active braking is less
sophisticated , and is tantamount to detecting an anomaltuation and defaulting to a safe behavior. Coordinating
these behavioral skills is an exercise in meta-rationalith multiple satisficing skills overlapping for a givén

Navigation problems can be precisely solved by appealingegdopological layout of the city and a sense of
direction. However, only a portion of the population aclyiabvigates this way (Aginsky et al., 1997). Many drivers
use landmarks extensively; they maintain their coursd améindmark triggers a behavioral response. Although the
first method is more robust to errors for a well-informed drjvit requires complex representations of city and
geography. By contrast, the landmark method is remarkdftyent in producing effective navigation, and requires
minimal representation of the city. If the landmark is salithe driver can succeed with minimal knowledge of the
street topology (Aginsky et al., 1997). Both skills are ifiesble for most of driving, and one is a simple heuristic
method while the other is a complex decision method.

Both of these examples illustrate that simple heuristicslmused in dynamic operation of automobiles. Both
are remarkably efficient in the required use of cognitiveoveses, and current evidence suggests that they are
effective in producing desired behavior. Moreover, we amaing how these different skills are managed, and pre-
liminary evidence suggests that satisficing meta-ratiypnatovides a useful mechanism for skill management (Boer

and Goodrich, 1998; Boer et al., 1998).

6 Conclusions

The essence of satisficing is tradeoff. Based on this themegomstructed a decision-theoretic characterization
of satisficing as a comparison of two independent evalust@diconsequences: the consequence of accepting the
option and the consequence of rejecting the option. Simaomggnal descriptions of satisficing fit nicely within
this framework, but many variants of his ideas appear to @arthis comparative rationality in favor of variants

of superlative rationality via constrained optimizatid®ince, as we have discussed, optimality is optional (and its
companion domination is discretionary), satisficing, viliEa mandatory evaluation of the consequences of a deci-
sion, deserves prominent attention in the decision-magamymunity because being the best among the alternatives
may not be acceptable, attainable, nor unambiguously déénAdditionally, satisficing provides a mechanism for
spanning both simple inference heuristics and complexsetimechanisms; the satisficing decision rule manifests

itself as a simple heuristic but has a meta-rationalityifjestion.
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We have presented several examples of satisficing and c@gskill management. The most engaging example
referred to automobile driver behavior in interacting watther traffic. The example illustrated why we consider
it rational to do non-optimal things. In automobile drivinghen the driver has limited attentional resources their
superlative rationality is bounded and optimality is pueleld — even for voracious optimizers. Nevertheless, the
driver’'s comparative rationality permits the justificatiof rational driving behaviors. Extending from driving to
other domains of goal-directed decision making, we obstratskills (be they heuristic or complex) are justified

only if satisficing.

A A Characterization of Satisficing Through Meta-Rationality

Resolving a tradeoff is not a decision itself, but rather eigien about how to decide, that ism@eta decisioror
decision rule In words, we want to identify conditions under which thedeaff is resolved. We do this by deriving
the satisficing decision rule by comparing all possible sleairules that combine a payoff for accepting and a payoff
for rejecting an option. The result of this derivation is @id®n rule which obtains its justification by an appeal to
superlative meta-rationality, but which manifests itgedfcomparative rationality.

Let¢ : © — B, whereB is sigma-algebra associated with denote a decision rule that maps the set of states
of nature® to the subsety € B of possibilities. To resolve a tradeoff we must find the optirecision rulep
subject to the constraint thatanda cannot simultaneously be accepted. The resulting decisierrepresents the
resolution of the tradeoffs in valuegs and.J;. We can identify the utility of the decision rulgas an aggregation of

the two payoffs

H(p,x) = Ep[J(¢(0),0)]

_ EM,{ 3 [onl(u,H)p(u € ¢(9))

uelU

(1~ a) (@, 0)p(i € 4(0))] } ©)
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wherep(u € ¢(0)) represents the probability that optiane U is an acceptable resolution to the tradeoff with
p(u € ¢(0)) defined conversely, wheredenotes a tradeoff parameter, and whejyg, (H) denotes the expectation

of J with respect to the conditional probabilipf6|x), that is

B, (H((0),0) = > H($(6),0)p(6]z).

€O

By choosing the decision rulg we effectually choose(u € ¢(6)) andp(uzs € ¢(0)). Our objective is to find a

decision rulep that maximizes (9) keeping in mind that the rglés a resolution betwees, and.J,. Let

pa(uiz) = Z:h(uv@)p(@l:v)

/e

pr(uiz) = ZJ2(ﬂ,9)p(0\x)

/e

Maximizing (9) over all possible tradeoffs yields the demisrule

u apausa) > (1 - a)ug(uo)
p(x) = . (10)

U otherwise

Without loss of generality, let observatianuniquely determine statéwhence we drop the dependencezornThe

set of consequences that survive the resolution of thedfudecalled thesatisficing seand is given by

So = {(u,0) : apa(u;0) > (1 — a)ur(u;0)}

or, equivalently,

Sp = {(u,0) : pa(u;0) > bur(u;0)}, (1))

whereb = ]*TO‘ Thus, we see that resolving a tradeoff by maximizing ovessyiide decision rules produces a

weak rationality that eliminates obviously bad choices adthits good enough choices. Intuitively speaking, a
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tradeoff does not produce unique best decisions but ratlseispension of judgment between decisions that are
“good enough.” A tradeoff is resolved if and only if at least one skilcan be identified whose expected benefits

outweigh the expected costs, that is if and onlgit (.

No1thes

Is can be determined directly by anticipating consegegma a model and then ranking the consequences, or ifgitsctising a

value function over state-action pairs (as in Q-learningsome contribution of both.

2Note that this approach of continuing to search if resuléssatisficing is not observed in studies of the design pra@&sdbet al., 1996)
because, simply put, if the results are good enough thee therery little motive to continue dedicating resources étedmining another
option.

3A decisionu is often treated as a mapping fraininto the set of consequences(Fishburn, 1981).

“There are many uses of the term activity in pattern recagnitind design literature (see, for example, Bobick97,Na88x For our
purposes, we use activity to mean low-level movements wisigiet another use of the term.

5These layers correspond not only to Sarigliganization coordination andexecutionlevels, respectively, for intelligent machine de-
sign (Saridis, 1989), but also the strategic, tactical, gwetational levels of decision-making (Boer et al., 1998).

blet Tex = argy, >o(pL(Th) = 1). For the test track]},"** > 0 whereas for the driving simulatdr,"** < 0. These differences
simply indicate that the costs of error are higher when reblates are used; in other words, a real collision on thettask is much more
costly than a simulated collision in the driving simulatdhough the subjects were sincere and well-motivated, iseinply no substitute
for the fear of death to motivate a driver. Additionally, fls@ctional representation (obtained through least sgyarfethe empirical liability

measure introduced a bias in the simulator study becaugarbdeadway space was not uniformly sampled.

References

Aginsky, B., Harris, C., Rensink, R. A., and Beusmans, J97)9 Two strategies for learning a route in a driving

simulator. Journal of Environmental Psycholog¥7(4):317-331.

Albus, J. S. (1991). Outline for a theory of intelligenc=EE Transactions on Systems, Man, and Cybernetics

21(3):473-509.

Ball, L. J., Maskill, L., and Ormerod, T. C. (1996). Satidfigiin Engineering Design: Causes, Consequences and

29



Implications for Design Support. IRroceedings of the First International Symposium on Desive Models

of Design pages 317-332, Istanbul.

Boer, E. R. and Goodrich, M. A. (1998). Mental models in miwarlds: Situated representations for the navigation-
ally challenged. IrProceedings of the 1998 IEEE International Conference ateBys, Man, and Cybernetjcs

San Diego, CA, USA.

Boer, E. R, Hildreth, E. C., and Goodrich, M. A. (1998). Tlerof mental models in a driver’s interaction with
traffic. In Proceedings of the 17th European Annual Conference on Hubearsion Making and Control '98

Valenciennes, France.

Brooks, R. A. (1986). A robust layered control system for dit@robot.IEEE Journal of Robotics and Automation

2:14-23.

Brooks, R. A. (1991). Intelligence without reason. TechhiReport A.l. Memo 1293, Massachusetts Institute of

Technology Artificial Intelligence Laboratory.

Chase, V. M., Hertwig, R., and Gigerenzer, G. (1998). Visiohrationality. Trends in Cognitive Scienc2(6):206—

214,

Connolly, T. (1999). Action as a fast and frugal heuristinds and MachinesThis edition.

Dreyfus, H. L. and Dreyfus, S. E. (1985). From socrates teexgystems: The limits and dangers of calculative
rationality. In Mitcham, C. and Huning, A., editorBhilosophy and Technology II: Information Technology

and Computers in Theory and Practjd@oston Studies in the Philosphy of Science. Reidel.

Duchon, A. P., Warren, W. H., and Kaelbling, L. P. (1998). legaal robotics.Adaptive Behaviqre(3/4):471-505.

Fishburn, P. C. (1981). Subjective expected utility: A esviof normative theoriesTheory and Decisignl3:139—

199.

30



Gardner, H. (1985)The Mind’s New Science: A History of the Cognitive Revahythapter 13. Basic Books, Inc.,

New York.

Gibson, J. J. (1979)The Ecological Approach to Visual Perceptiaddoughton Mifflin, Boston.

Gibson, J. J. and Crooks, L. E. (1938). A theoretical fieldhgsis of automobile-drivingThe American Journal of

Psychology51(3).

Gigerenzer, G. (1996). On narrow norms and vague heurigicsply to Kahneman and Tversky (199@sycho-

logical Review103(3):592-596.

Gigerenzer, G. and Goldstein, D. G. (1996). Reasoning theafad frugal way: Models of bounded rationality.

Psychological Reviewi03(4):650—669.

Goodrich, M. A. and Boer, E. R. (1998). Semiotics and mentadiels: Modeling automobile driver behavior. In
Joint Conference on Science and Technology of Intelliggsiteths ISIC/CIRA/ISAS’98 ProceedinGsithers-

burg, MD.

Goodrich, M. A., Boer, E. R., and Inoue, H. (1998a). Brakdation and braking dynamics: A human-centered
study of desired ACC characteristics. Technical Report9BRs, Cambridge Basic Research, Nissan Research

and Development, Inc., Cambridge, MA 02142, USA.

Goodrich, M. A., Stirling, W. C., and Frost, R. L. (1998b). W predictive satisficing fuzzy logic control. Technical
Report CBR TR 98-3, Nissan Cambridge Basic Research, NiReaearch and Development, Inc., Cambridge,

MA USA.

Greiner, R. and Orponen, P. (1996). Probably approximaiptymal satisficing stragiesAtrtificial Intelligence

82:21-44.

Guldner, J. and Utkin, V. 1. (1993). Sliding Mode Control for Obstacle Avoidance Strategy Based on an Harmonic

31



Potential Field. IrProceedings of the 32nd Conference on Decision and Comiagles 424—-429, San Antonio,

Texas.

Ho, Y. C. (1994). Heuristics, rules of thumb, and the 80/28ppsition. IEEE Transactions on Automatic Contyol

39(5):1025-1027.
Ho, Y.-C. (1999). The no free lunch theorem and the humanhimadnterface IEEE Control Systempages 8-10.

Ho, Y. C. and Larson, M. E. (1995). Ordinal Optimization Apach to Rare Event Probability Probleni3iscrete

Event Dynamic Systems: Theory and Applicatidn281-301.

Johnson-Laird, P. N. (1988T.he Computer and the Mind: An Introduction to Cognitive Scee Harvard University

Press, Cambridge, Massachusetts.

Kahneman, D. and Tversky, A. (1979). Prospect Theory: Aryaigof decision under risk.Econometrica

47(2):263-291.
Kahneman, D. and Tversky, A. (1996). On the reality of cagaitllusions. Psychological Reviewl93(3):582-591.
Kaufman, B. E. (1990). A new theory of satisficinghe Journal of Behavioral Economi|ck9(1):35-51.

Lee, D. N. (1976). A theory of visual control of braking basedinformation about time-to-collisiorPerception

pages 437-459.
Levi, I. (1980). The Enterprise of KnowledgdMIT Press, Cambridge, Massachusetts.

Levi, I. (1997). The Covenant of Reason: Rationality and the Commitmenthadfight Cambridge University

Press.
Luce, R. D. and Raiffa, H. (1957¥sames and Decisiongohn Wiley, New York.

Matsuda, T. and Takatsu, S. (1979a). Algebraic properfiestisficing decision criterionlnformation Sciences
17(3).

32



Matsuda, T. and Takatsu, S. (1979b). Characterization tigfistng decision criterion. Information Sciences

17(2):131-151.

Mayne, D. Q. and Michalska, H. (1990). Receding horizon mrdf nonlinear systemslEEE Transactions on

Automatic Contrgl 35:814-824.

Mesarovic, M. D. (1970). Systems theoretic approach to &brtheory of problem solving. In Banerji, R.
and Mesarovic, M. D., editorsTheoretical Approaches to Non-Numerical Problem Solvpeges 161-178.

Springer.

Mesarovic, M. D. and Takahara, Y. (1972). On a qualitativeotly of satisfactory controlinformation Sciences

4(4):291-313.

Meystel, A. (1996). Intelligent systems: A semiotic pextpe. InProceedings of the IEEE International Sympo-

sium on Intelligent ContrglDearborn, Michigan.

Michalska, H. and Mayne, D. Q. (1995). Moving horizon obsesvand observer-based conti®EE Transactions

on Automatic Contrgl40(6):995-1006.

Minsky, M. (1986). The Society of MindSimon and Schuster.

Nam, Y. S., Lee, B. H., and Ko, N. Y. (1996). A View-Time Baseoté¢htial Field Method for Moving Obstacle

Avoidance.SICE pages 1463-1468.

Norman, D. A. (1988)The Design of Everyday ThingSurrency Doubleday. Previously publishedlé® Psychol-

ogy of Everyday Things

Popper, K. R. (1965).Conjectures and Refutations: The Growth of Scientific Kedgé Harper and Row, New

York.

33



Rasmussen, J. (1976). Outlines of a hybrid model of the gopkant operator. In Sheridan, T. B. and Johannsen,

G., editors Monitoring Behavior and Supervisory Contrglages 371-383. Plenum.

Richalet, J. (1993). Industrial applications of model ldgseedictive control Automatica 29:1251-1274.

Sandholm, T. and Lesser, V. (1997). Coalitions among coatiomally bounded agentsAtrtificial Intelligence

94(1):99-137.

Saridis, G. N. (1989). Analytic formulation of the prinaipbf increasing precision with decreasing intelligence for

intelligent machinesAutomatica 25(3):461-467.

Scokaert, P. O. M., Rawlings, J. B., and Meadows, E. S. (19Di8crete-time stability with perturbations: Applica-

tion to model predictive controlAutomatica 33(3):463—470.

Sen, S., editor (1998%atisficing ModelsStanford, California. AAAI Spring Symposium. Technicadport SS-98-

05.

Sheridan, T. B. (1992)Telerobotics, Automation, and Human Supervisory Conttlll Press.

Simon, H. A. (1955). A behavioral model of rational choi€guart. J. Economicss9:99-118.

Simon, H. A. (1990). Invariants of human behavidnnu. Rev. Psycholog¢1:1-19.

Simon, H. A. (1996).The Sciences of the ArtificiaMIT Press, 3rd edition.

Sistu, P. B. and Bequette, B. W. (1996). Nonlinear modethptere control: Closed-loop stability analysi8lChE

Journal 42(12):3388-3402.

Slote, M. (1989) Beyond OptimizingHarvard University Press.

Takatsu, S. (1980). Decomposition of satisficing decisimblems.Information Science2(2):139-148.

Takatsu, S. (1981). Latent satisficing decision criteriofiormation Science5(2):145-152.

34



Zadeh, L. A. (1958). What is optimallRE Transactions on Information Theo#(1):3.

Zadeh, L. A. (1998). Maximizing sets and fuzzy markoff alfons. IEEE Transactions on Systems, Man, and

Cybernetics—Part C: Applications and Revig@8(1):9-15.

Zilberstein, S. (1996). Using anytime algorithms in ing@Eht systemsAl Magazine pages 73-83.

Zsambok, C. E. and Klein, G., editors (199Mlaturalistic Decision MakingHillsdale, N.J. Lawrence Erlbaum

Associates.

35



Figure 1: The decision problem. Arrows indicate either pe#ed (by the decision maker) or actual influence. For
example, a consequence is the result of taking aatiah U whenf € © obtains. Not all decision methodolo-
gies explicitly account for all influences. Typically, colap decision mechanisms seek to make all elements and
influences explicit, whereas simple inference heuristissatd some of the influences or omit some of the elements.

Figure 2: Interface between past, present, and future.eRpstience, through explicit causal models or through util
ity elicitation, allows a decision-maker to map presentepbations and options into desirable future consequences.

Figure 3: For a specific domain of experti®g an expert has skills spanning the space that produce saitisfi
consequences. For any state, multiple skills can suffice.

Figure 4: Three phases of the situated decision making. dghsithemoment of trutifor a choice agent, and
anticipation and evaluation are elements of (meta) ratieel&policing.

Figure 5: Working specification of a mental model. The arrosgmesent perceived or real influence. Consequences
are a function of states and actions; behavior is generhteddgh the operation of a mental model, but the mental

model is constrained by the set of behavioral affordanced;sensory observation influence the mental model, but
the mental model dictates active sensing of the environment

Figure 6: Interaction within a society of mental model agenEP=sensor perception, MM=mental model, and
BA=behavior actuation. The horizontal arrows are expliimethe caption to Figure 5, and the vertical arrows
indicate interaction of low level sensors/high level gaaith high level representations/low level actions.

Figure 7: Actual (dashed line) and approximated (solid)lfa@ctions as a function of perceptually feasible obser-
vations: (a) accuracy as a function of time to collisiGn! and (b) liability as a function of time headw&.

Figure 8: Scatter plot of nominal and braking perceptuakstaThe line represents the boundary of the nominal
skill (states to the northwest of the line are unacceptaflleg boundary of the braking skill is not identified in this
plot. Compare this figure to Figure 3.

Table 1: Classification accuracies for different values. of
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