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Abstract

In the debate between simple inference heuristics and complex decision mechanisms, we take a position

squarely in the middle. A decision making process that extends to both naturalistic and novel settings should

extend beyond the confines of this debate; both simple heuristics and complex mechanisms are cognitive skills

adapted to and appropriate for some circumstances but not for others. Rather than ask “Which skill is better?” it is

often more important to ask “When is a skill justified?” The selection and application of an appropriate cognitive

skill for a particular problem has both costs and benefits, and therefore requires the resolution of a tradeoff. In

revisiting satisficing, we observe that the essence of satisficing is tradeoff. Unlike heuristics, which derive their

justification from empirical phenomena, and optimal solutions, which derive their justification by an evaluation of

alternatives, satisficing decision-making derives its justification by an evaluation of consequences. We formulate

and present a satisficing decision paradigm that has its motivation in Herbert Simon’s work on bounded rationality.

We characterize satisficing using a cost-benefit tradeoff, and generate a decision rule applicable to both designing

intelligent machines as well as describing human behavior.�Computer Science Department, Brigham Young University, Provo, UT, and Nissan Cambridge Basic Research, Cambridge, MA.yElectrical and Computer Engineering Department, Brigham Young University, Provo, UT.zNissan Cambridge Basic Research, Nissan Research and Development, Inc., Cambridge, MA.
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1 Introduction

While driving an automobile, many of us have experienced something similar to the following. We have been

following a vehicle for an extended period of time even though there is very little traffic on the road. Suddenly, we

realize that not only can we easily pass but also that we want to pass because the lead vehicle is going slower than

our desired speed. We decide to pass, and act accordingly.

What are the factors that dictate our behavior in this situation? Can a characterization of the corresponding

behavior-generation process be used to design better machines? This paper is written from two perspectives: first,

from the perspective of a designer charged with the task of creating a machine capable of some degree of goal-

directed autonomy and agency, and second from a perspectiveof describing goal-directed human behavior gen-

eration. Inherent in the resolution of these problems is theneed to resolve tradeoffs. For machine intelligence,

who resolves the tradeoffs, the designer or the machine? Forhumans, who resolves the tradeoffs, the human or

societal/evolutionary forces?

There appear to be two disparate approaches to solving theseproblems. The first approach, a “top-down” ap-

proach, contends that intelligence is tantamount to normative rationality and optimality. Representatives from this

approach cite success in the philosophical foundations of cognitive science (a la psychology) and success in opti-

mal decision theory (a la design) as evidence for a top-down description of intelligence. The second approach, a

“bottom-up” approach, contends that intelligence emergesfrom ecologically adapted behavioral and cognitive skills.

Representatives from this approach cite evidence from the usefulness of cognitive heuristics (Gigerenzer and Gold-

stein, 1996) (a la psychology) and the success of, for example, ecological robotics (Brooks, 1986) (a la design).

In both design and description, the top-down approach tendsto rely on complex decision mechanisms whereas the

bottom-up approach tends to rely on simple inference heuristics. A marriage between these extremes is necessary to

ensure behavior that achieves a goal subject to environmental constraints.

1.1 Problem Statement

From a machine intelligence perspective, goal-directed decision-makers capable of situated and continued existence

must have the ability to self-police their behaviors. Included in self policing are the abilities to evaluate and anticipate

performance internally, and the ability to resolve decision tradeoffs internally. These abilities can be accomplished

to a limited extent by allowing a designer to specify complexdecision mechanisms capable of handling all but the
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most subtle (and possibly most treacherous) situations. Alternatively, the designer can specify or identify simple

inference heuristics and allow the machine to select among these heuristics as afforded by the environment. From

a designer’s perspective, the latter approach has the ability to scale to larger domains and is thus a useful approach

but, unfortunately, this approach begs the question of how these heuristics are systematically created and managed.

Switching attention to descriptions of human decision making, the distinction between simple inference heuris-

tics and complex decision mechanisms appears to be somewhatartificial. Rational people can use either simple

heuristics or complex mechanisms depending on which is moreappropriate for the circumstances, and it is an open

question as to how people select and obtain these skills. Both simple inference heuristics and complex decision

mechanisms arecognitive skills, and a rational person naturally (either through instinctual responses, responses

learned through external feedback, or responses learned through goal-directed internal feedback) employs tradeoffs

and expected performance associated with each skill and chooses appropriately. The question of which skill is more

correct is misguided because, from an agent’s point of view,the environmentally afforded “means” to reaching the

decision are subjected to the goal-contextualized “ends” produced by the decision, and any approach that efficiently

uses means to generate productive ends is justifiable. Extending this thought, prescriptive approaches to decision-

making should permit either simple heuristics or complex mechanisms provided that the expected result is good

enough.

1.2 Solution Approach

Cognitive skills can be treated as agents and organized intoa society of Minskian agents (Minsky, 1986). Man-

agement of these skill-based agents is tantamount to a meta decision problem that requires an appropriate notion of

rationality. By framing the problem as one of skill management, the decision maker formulates a control problem

wherein, given certain goals and a certain context, the decision maker controls which cognitive skill agent oper-

ates. This control problem is addressed by a meta agent, whence the problem becomes one of coordinating agents

in a multi-agent society. Multi-agent societies used to generate rational decisions that use cognitive skills require

meta-choices which serve to resolve tradeoffs and assure rational agency.

An appeal to meta-rationality to settle a question of rationality is always risky. Too often, such appeals result

in an endless chain of “how do I know that I know that I know: : :” Fortunately, if meta-choices are justifiable

(from a prescriptive perspective) and produce a useful decision rule (from a descriptive perspective) then such an

infinite regression can be avoided. Although in a prescriptive/design sense it may be desirable, such meta-rationality
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need not be explicitly possessed by the agent, but can instead be (and often is) imposed externally by a designer

or through evolutionary forces. Our objective is to identify a decision rule that, from a descriptive perspective, is a

useful heuristic in the spirit of Simon’s notion of satisficing and that, from a prescriptive perspective, can be justified

by an appeal to meta-rationality. In the end, we present a mathematical characterization of satisficing, discuss how

Simon’s original notion is compatible with this characterization, and describe how this characterization is manifest

in observations of human decision making (including the car-following example).

1.3 Outline

This paper is organized as follows. In Section 2, we describethe elements of a decision problem and discuss the

limits of both optimality and heuristics with an emphasis onjustifiability and practicability. In Section 3, we discuss

a decision mechanism for resolving tradeoffs and present a decision theoretic characterization of satisficing. In

Section 4, we extend this characterization of satisficing decision making to include the interaction between two

independent decision forces and the resulting coordination of Minskian agents. Then, in Section 5, we discuss the

implications of this satisficing decision paradigm in the context of the debate between simple inference heuristics

and complex decision mechanisms.

2 Elements of Decision Making

***** INSERT FIGURE 1 ABOUT HERE ******

The elements of a decision problem are diagrammed in Figure 1. Given an observationx 2 X that is a function

of the state of nature� 2 �, the decision task is to select an optionu 2 U that produces acceptable (according to

values and preferences) consequences. In decision making,there are two conventional approaches: complex deci-

sion mechanisms based on seekingsuperlativedecisions using normative rationality, and simple inference heuristics

based on seekingpositivedecisions using empirically derived procedures. Superlative approaches seek to identify

optionsU , estimate states� from sensory observationsX, determine consequences using some causal model, and

then extremize some performance metric that imposes a preference pattern on these consequences. By contrast,

positive approaches short circuit some of these stages resulting in, for example, rules of the form “ifx thenu.” The

optimality-based literature, particularly that of optimal control theory and game theory, is overwhelmingly vast, re-

flecting many decades of serious research and development ofideas based on the superlative paradigm. The positive
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paradigm, manifest in the form of heuristics, procedurallyrational decision making methods, and multitudinousad

hoc techniques, has also been well-represented in the computerscience, social science, and engineering literatures.

There are alternatives to the superlative and positive paradigms. The most well known example of thiscompara-

tiveparadigm is Simon’s notion of satisficing (Simon, 1996; Simon, 1955). A formally stated comparative paradigm,

however, has not been well represented in the literature as abasis for a viable decision-making concept for general

application. In this section, we first review the superlative and positive paradigms, and then discuss Simon’s notion

of satisficing to establish a foundation for our subsequent revisitation of satisficing. In the following subsections, we

refer to the utility of accepting a decision and a utility of rejecting a decision. This discussion includes probabilistic

inference as a special case where the utility of accepting a decision is unity if the decision is correct, and zero other-

wise. Additionally, this allows us to treat optimality as the typical problem in normative rationality without loss of

generality.

2.1 Superlative Rationality: Optimal Decisions

When estimates ofx and/or� are distributed according to a known probability distribution, then a decision problem

is said to be one of decision underrisk (Luce and Raiffa, 1957). The conventional approach to decisions under risk

is to define a utility function for each of the consequences and then select an option that produces the maximum

expected utility (where the expectation is taken with respect to the distribution of states of nature). The option that

maximizes expected utility is the optimal optionu� defined asu� = argmaxu2U X� v(u; �)p(�jx) (1)

wherev(u; �) is the utility of selecting optionu given state�, andp(�jx) is the probability density function for�
given observationx. By contrast to decisions under risk, when the probabilities ofx and� are completely unknown

then the decision is said to be one of decision underuncertainty(Luce and Raiffa, 1957). The conventional approach

to decisions under uncertainty is to use a maximin approach yieldingu� = argmaxu2U min�2�0 v(u; �) (2)

where�0 is the set of feasible states given observationx. The functionmin�2�0 v(u; �) is called the security level

for u and can be interpreted as an expectation with respect to a least favorable distribution of� givenx. Therefore,
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u� is interpreted as the option that maximizes security.

These methods have been tremendously successful for certain applications. However, not all decision problems

are optimization problems, nor should they be. Recalling a proverb from control theory, performing a study of

nonlinear control problems is analogous to performing a study of “non-elephant animals”; there are simply many

more nonlinear control problems than linear control problems. Similarly, there are many problems addressable

by “non-optimal” approaches that are not amenable to optimal approaches. Although some may categorize the

practice of “non-optimal” choice as a species of irrationality, the quest for the successful development of intelligent

machines rests, to some degree, upon the assumption that intelligence extends beyond naive optimization (Slote,

1989). Rationality is not tantamount to optimality.

2.2 Bounded Rationality: The Presence of Tradeoffs in a Superlative World

Many cognitive scientists recognize that insistence on optimality is a misplaced requirement in situations of lim-

ited resources and information, and that optimality inadequately describes observed behavior in naturalistic set-

tings (Gigerenzer and Goldstein, 1996; Zsambok and Klein, 1997). For complex problems, there often exist in-

formation, memory, or computing limitations such that finding a strictly optimal solution is not feasible because

(1) and (2) must be formulated and solved. Under these circumstances, a principle ofbounded rationalityis often

recommended. Many such theories are based on Simon’s well-known satisficing idea wherein a decision-maker uses

“experience to construct an expectation of how good a solution we might reasonably achieve, and halting search as

soon as a solution is reached that meets the expectation” (Simon, 1990, Page 9). Satisficing thus becomes a means of

addressing when an option is “good enough” in the sense that its utility exceeds an aspiration level. Determination

of an aspiration level is based on experience-derived expectations of possible consequences, and a search algorithm

is proposed that is compatible with limited computational resources and that terminates when an option is identified

that exceeds the aspiration level.

Dissatisfied with this under-specified algorithm, some researchers have proposed other satisficing-like notions

of bounded rationality such as augmenting the utility function with computational costs. Such methods are closely

related to constrained optimization (see, for example, (Sandholm and Lesser, 1997; Zilberstein, 1996; Kaufman,

1990)), and yield optimal solutions according to a modified criterion. These algorithms appear to abandon Si-

mon’s original intention of comparing predicted consequences with expected potential consequences to justify good

enough decisions. Instead, these procedures derive their justification by an appeal to optimality with respect to a
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modified performance criterion. Since no mention is made of how a situated decision maker might choose such a

criterion, it appears that advocates of such approaches transform satisficing from a consequence-based justification

to a procedure-based justification and thereby make a “virtue out of a necessity” (Levi, 1997, Page vii). However,

insofar as justification can be derived through the process of optimization, these approaches are compatible with the

goals of the proponents.

Regardless of the details of how a boundedly rational decision is obtained, it is clear that the ultimate rationale

for adopting a decision obtained in such a way is that it is theresolution to a tradeoff between the goal-directed

capabilities of a decision-maker and the environmental affordances relevant to that goal.

2.3 Positive Rationality: Heuristics

Once defined, approaches based on both optimality and non-Simon-like bounded rationality find the best possible

solution (according to an implicit performance metric) given context-dependent constraints and imprecise informa-

tion about the true state of nature. For real environments, adecision maker must also be able to determine not only

the set of possible optionsU (the search space), but also something about the utilityv(u; �) of taking action1 as well

as the set of relevant states�. This can lead to intractable complexity, especially for the designers of machines. For

example, control engineers sometimes use an explicit modelto predict the consequences of a sequence of actions

using a method termed “model predictive control” (Michalska and Mayne, 1995; Sistu and Bequette, 1996; Richalet,

1993; Mayne and Michalska, 1990; Scokaert et al., 1997)). The extent of the action sequence can be adjusted ac-

cording to a receding planning horizon, and must often be very limited because of the combinatorial complexity

of enumerating multiple action sequences. Often, when faced with such increasing complexity, the designer must

resort to heuristics (consider the success of heuristic search techniques).

In effect, heuristics are empirically derived cognitive shortcuts ina decision problem.For example, under

particular sensory influencesx a decision maker might use the ruleif x thenu. A criticism of the use of heuristics

is that they are unjustifiable and lead to capricious resultsbecause they are essentiallyad hocin nature (Kahneman

and Tversky, 1996).Ad hocprocedures while producing good (maybe even very good) decisions, will not produce

decisions that can be reliably established as being adequate in terms of performance, but are instead based on vague

notions of desirability or convenience without any definitive measures of quality. Fortunately, some heuristics appear

to be ecologically adapted to certain niches, and work is proceeding on identifying these niches and comparing the

behaviors produced by these heuristics to more conventional approaches (see, for example, (Chase et al., 1998)).
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The appropriate use of heuristics in machines and humans canincrease capacity and can help generate solutions to

non-optimal decision problems (Ho, 1999).

2.4 Interlude

The use of non-optimal decision mechanisms need not result in ad hocism. For example, Lotfi Zadeh, the father

of fuzzy logic, can undoubtedly be included as someone who isinterested in exploring non-optimal but justifiable

choice. Near the beginning of his career he wrote an essay entitled “What is optimal?” (Zadeh, 1958) and four

decades later revisited the theme in his paper “Maximizing Sets and Fuzzy Markoff Algorithms” (Zadeh, 1998). In

these papers, Zadeh questions the feasibility (and wisdom)of seeking for optimality given limited resources. How-

ever, in resisting naive optimizing Zadeh does not abandon the quest for justifiability, but instead resorts to modifica-

tions of conventional logic that are compatible with linguistic and fuzzy understanding of nature and consequences.

Other researchers, including many who have contributed to the area of optimal decision and control, have explored

non-optimal but justifiable solution methodologies as exemplified in work in suboptimal decision making, ordinal

optimization (Ho, 1994; Ho and Larson, 1995), probably approximately correct algorithms (Greiner and Orponen,

1996), multi-resolutional intelligence (Albus, 1991; Meystel, 1996), heuristic search, behavior-based/ecological

robotics (Brooks, 1986; Brooks, 1991; Duchon et al., 1998),anytime algorithms (Zilberstein, 1996), and satisficing

decision-making (Simon, 1996; Sen, 1998). It is interesting that each of these approaches seeks to resolve a tradeoff

between the ultimate behavior of the agent or system and the practicable methods for generating this behavior.

2.5 Comparative Rationality: Being “Good Enough”

The notion of being “good enough” is an underlying issue in all decision problems and is an inseparable companion

to the notion of a tradeoff. For example, under Simon’s satisficing, rejecting an option that does not meet or exceed

the aspiration level derives its justification from the observation that the option is rejected in favor of an unknown

alternative that produces better consequences; we trade the would-be consequences of the rejected option for the

expected consequences of an unidentified option. In machineintelligence, ensuring good enough performance has

conventionally been the responsibility of the designer. Bycontrast, in human intelligence ensuring good enough

performance is either the responsibility of the human or, ina much broader sense, the responsibility of the species

subject to evolutionary forces. For an individual human, evaluating success in goal-directed behavior requires ratio-

nal self policing.
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Restricting attention to goal-directed behavior, self-policing becomes very important. Self policing must include

the ability to determine if a behavior produces good enough consequence and, if not, change or adapt behaviors.

As part of this evaluative phase, a decision-maker may need to identify feasible alternatives, coherent beliefs, and

consistent values. Another aspect of self-policing is the ability to, in the spirit of Simon’s expectation-based aspi-

ration level, anticipate the efficaciousness of an option. Regardless of whether heuristic or optimal, self-policing is

essential for robust goal-directed behavior generation. Self-policing allows a decision-maker to evaluate and adapt

(possibly context-dependent) “means” subject to (possibly task-specific) “ends” in an effort to produce good enough

performance.

Recall the example of following a vehicle for an extended period of time even though passing it is a superior

alternative. Unless a driver is a voracious optimizer capable of limitless attention, few would say that the behavior

is irrational (although we reflect on the situation with mildamusement). The point is that being good enough is

required, and being optimal is optional.

3 Satisficing and Tradeoff

Too often, in a quest to impart intelligence to a machine we resort to one of two extremes. We either require the

designer to have sufficient expertise to identify and encodea simple and effectual task-specific algorithm, or to de-

termine and encode a complex context-free algorithm responsible for solving any and all task-specific problems.

Similarly, in an effort to describe and prescribe human behavior we often resort to one of these extremes. Thus, we

are forced into an artificial and unhealthy separation of task-specific/context-dependent (i.e., simple inference heuris-

tics) and general-purpose/context-independent (i.e., complex decision mechanisms) methods. Both extremes tend to

ignore the interdependence of “means” and “ends” (Connolly, 1999) as well as the requirement of simultaneously

efficient and robust behavior.

In (Simon, 1990, Page 7), Simon identifies the two factors that determine effectual behavior, “Human rational

behavior . . . is shaped by a scissors whose two blades are the structure of task environments and the computational

capabilities of the actor.” Simon backs up this statement, albeit implicitly, in his development of satisficing. The

computational capacities of the decision-maker are means,and the consequences produced by these means, evaluated

in the context of overall goal-directed behavior, are evaluated against the standard for good enough ends. We wish

to characterize the essence of satisficing as a cost-benefit tradeoff using a justifiable decision theoretic standard for
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performing rational self policing.

3.1 Some Related Characterizations of Satisficing

Satisficing facilitates the development of a decision theoretic paradigm that differs from the de facto paradigm of

optimality. One application of the concept of satisficing isin multi-attribute decision-making. “Aspiration levels

provide a computational mechanism for satisficing. An alternative satisfices if it meets aspirations along all dimen-

sions.” (Simon, 1996, Page 30). Exploiting a parallelism between multiple attributes and multiple relevant states,

this notion of satisficing has been mathematically formalized in (Mesarovic, 1970; Mesarovic and Takahara, 1972;

Matsuda and Takatsu, 1979b; Matsuda and Takatsu, 1979a; Takatsu, 1980; Takatsu, 1981). These developments

compare a utility,v(u; �), defined over the consequences of an optionu given state�, to a decision threshold (or

aspiration level),�(�). Note that this decision threshold depends only on observations and not on decision conse-

quences. An optionu is satisficing if and only ifv(u; �) � �(�) for all feasible�. Our approach is similar to these

other developments in that it is applicable to multiple states or attributes but, by contrast, compares two utilities

defined over the consequences of a decision whence our approach mathematically generalizes these decision rules

(i.e., the decision threshold�(u; �) depends upon both control actions and the state of nature).

In this section, we characterize tradeoffs using two utility functions: one to represent the payoff for accepting

an option and another for rejecting the same option. In our development and examples, we demonstrate why this

generalization to an option-dependent threshold is useful. We then discuss two methods for combining these two

utility functions to resolve tradeoffs. In Section 4, we discuss the applicability of each of these methods.

3.2 Epistemic Utility Theory: A Related Characterization

The philosopher Karl Popper made the following insightful comment regarding the goals of scientific inquiry,

“. . . truth is not the only aim of science.We want more than mere truth: what we look for isinteresting truth.”(Popper,

1965, Page 229). Although this statement is implicitly accepted by philosophers and scientists, most formal descrip-

tions of scientific inquiry only implicitly accommodate this observation. By contrast, the epistemologist Isaac Levi

made explicit this observation in his characterization of rational decision-making (Levi, 1980). A decision maker

seeking to increase its knowledge is not only trying to learntruth but also trying to gain new and useful information.

Such a decision maker is simultaneously playing two games: agame to obtain useful information and a game to pre-

serve truth. Given a set of propositions,U , closed under negation (that is, ifu is in the set than so is the negation,�u),
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information is gained whenever irrelevant or useless propositionsu 2 U are rejected. This translates into a utility

for rejecting propositionu or, equivalently, retaining proposition�u. On the other hand, identifying true propositions

is one of the goals of epistemology which translates into a truth-based utility of accepting propositionu. Given

these sometimes competing cognitive goals, the decision-maker engages in inquiry to identify true but informative

propositions; stated simply, Levi asserts that error should be avoided (that is, truth should not be compromised)

in the interest of adopting informative propositions. The lesson we learn from Levi is that truth and information

are both essential elements of decision making and can be made explicit in the construction of a tradeoff-centered

comparative rationality.

3.3 Comparing Values: Satisficing

Turning attention from the narrow world of epistemology to the broad world of practical decision making, we

observe that truth is the epistemological manifestation ofthe practical decision-maker’s goal of achieving success,

and that information is the epistemological manifestationof the practical decision-maker’s goal of efficiently using

resources. In the practical decision-making arena, Popper’s injunction can be rephrased to becomewe want more

than success — what we look for is efficient success.

Building on Levi’s work, tradeoffs can be thought of as a gamebetween competing values. For most decision

problems, there are not only reasons for accepting an option, but also reasons for rejecting an option. We need to

translate these “pros” and “cons” into a decision rule that resolves these tradeoffs. Thus, we have two independent

value functions: a payoff for selecting optionu given�, J1(u; �) similar to Levi’s truth support utility, and a payoff

for rejecting optionu given�, J2(�u; �) (similar to Levi’s informational value of rejection).

Returning again to Simon’s notion of satisficing, we can think of an aspiration level as the utility of rejecting

an option. In Simon’s formulation, the aspiration level is derived from an expectation of possible consequences.

By rejecting optionu, the decision maker expects a payoff at least as great as the aspiration level. Thus,J2(�u; �)
(which equals�(�)) encodes the aspiration level when the aspiration level is independent of the option. According

to Simon, a decision is good enough only ifJ1(u; �) � J2(�u; �) = �(�).
In the more general case when the payoff for rejecting an option depends on the option, we can think of the

relationship ofJ1 andJ2 as a tradeoff. The conventional approach to resolving tradeoffs is to combine the two

utilities into a single utility and then to maximize the resulting hybrid utility; we discuss some aspects of this

approach in the next subsection, but in this section we discuss an alternative formulation. Recall that a decision
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is optimal if and only if, when compared to all other options,no other option is superior whence optimality is

determined by comparing options against each other. By contrast, tradeoffs are resolved not by comparing options

but rather by comparing values (defined over consequences) against each other, whence comparative rationality

requires the evaluation of consequences. This is in the spirit of Simon’s satisficing wherein the consequences of

an option, encoded in the option’s utility, are compared to the consequences of rejecting the option, encoded in the

expected utility of an unidentified option.

An alternative to the optimization of an aggregated utilityis to treat the resolution of a tradeoff as a meta-decision

problem. Note that, in general, heuristics are used as fast and frugal ways to produce decisions and are therefore not

decisions themselves but rather decision rules. Such decision rules are produced through a meta-decision process,

sometimes the result of evolutionary forces, sometimes theresult of external feedback, and sometimes the result of

self-directed internal feedback. We construct a satisficing decision rule as the resolution of the tradeoff betweenJ1
andJ2 in Appendix A. Switching from the awkward notion of utility of rejectingu encoded inJ2(�u; �), we instead

choose to think of the cost of choosingu and the benefit of choosingu encoded in, respectively,�L(u; �) = J2(�u; �)
and�A(u; �) = J1(u; �). The satisficing decision rule, derived in Appendix A and presented as Equation (11) is

repeated here for convenience Sb = f(u; �) : �A(u; �) � b�L(u; �)g: (3)

Under this rule, the consequences of decisionu given observation� are evaluated without reference to other de-

cisions; an option is good enough if the consequences it produces are satisficing, and this characterization can be

determined without reference to other options.

From (3) we see that the essence of satisficing, as determinedfrom a tradeoff-centered resolution of indeter-

minate values, is a comparison. Intuitively speaking, thisnotion of satisficing requires that the payoff of selecting

an option outweigh the payoff of rejecting that option. The definition of “good enough” is based on comparing an

option’s benefit against the option’s cost (and noting that the payoff for rejecting an option is equivalent to a cost

for accepting the option). This permits an agent-centered characterization of good-enough. An option is “good

enough” if benefit (as encoded in�A) outweighs cost (as encoded in�L). Satisficing therefore becomes a two-

attribute decision problem with a benefit attribute (operationally termedAccuracy, meaning conformity to a given

standard) and a cost attribute (operationally termedLiability, meaning susceptibility or exposure to to something

undesirable). Simon likened situated rationality to scissors with one blade the structure of the task environments and
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the other the computational capabilities of the actor. Whenthese scissors operate, they produce two independent

evaluations of consequences (the set of consequences are cut in two):a success-based evaluation called accuracy, and

an efficiency-based evaluation called liability.

Given the satisficing decision rule, we can characterize theset of all states which are satisficing for a givenu,

and those skills which are satisficing given the state of nature, respectively defined asSb(u) = f� : �A(u; �) � b�L(u; �)g (4)Sb(�) = fu : �A(u; �) � b�L(u; �)g: (5)

In practice, a decision-maker will not identify all elements of these sets, but will instead rely on the boundaries of

these sets to detect when a behavior modification is mandatory. Suppose a cognitive skillu 2 U is being used to

solve a decision problem. When� 2 Sb(u) then there is no need to resort to another approach. However,when� 62 Sb(u), the current skill is inadequate and must be switched to a different skill. Given the need to switch, any

skill u0 2 Sb(�) can be employed. An evaluative algorithm can be outlined fortradeoff-based skill management

as follows:If � 2 Sb(u) then u0 = u; Else u0 2 Sb(�). This algorithm can be used to determine when a

switch is mandatory. In other words, when� is such thatu is not satisficing then a new skillu0 6= u must be selected.

3.4 Comparing Alternatives: Domination

Satisficing, as we have defined it, is a notion of rationality determined by comparing two aspects of the consequences

of making a decision. Under this rationality, a decision canbe admitted or rejected without reference to other

decisions. However, learning, memory, and the ability to model the world sometimes permits an agent to compare

the consequences of one decision against another. This allows a decision maker to compare the consequences of

alternative decisions in an effort to improve performance.For everyu 2 U letBA(u; �) = fv 2 U : �L(v; �) < �L(u; �) and�A(v; �) � �A(u; �)gBL(u; �) = fv 2 U : �L(v; �) � �L(u; �) and�A(v; �) > �A(u; �)g; (6)

and define the set of actions that arestrictly betterthanu (i.e., set of actions that dominateu)B(u; �) = BA(u; �) [BL(u; �); (7)
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that is,B(u; �) consists of all possible actions that have lower liability but not lower accuracy thanu, or have higher

accuracy but not higher liability thanu. If B(u; �) = ;, then no actions can be preferred tou in both accuracy and

liability, andu is a (weakly) non-dominated action with respect to�. Thenon-dominatedsetE(�) = fu 2 U : B(u; �) = ;g (8)

contains all non-dominated actions. It is interesting to note (see (Goodrich et al., 1998b)) that the setE(�) is

equivalent to the set of those options which maximize the aggregated utility��A(u; �)� (1� �)�L(u; �) for some� 2 [0; 1℄. In other words,E(�) = fu : 9� 2 [0; 1℄ for whichu = argmaxv2U ��A(v; �) � (1 � �)�L(v; �)g.
This means that the set of non-dominated options is equivalent to the set of maximizing options when the tradeoff

parameter� is completely indeterminate.

It is important to note that the interpretation ofE(�) as the set of optimal multi-attribute decisions is inadequate to

justify selection of an option. Observe from (8) thatE(�) is not a function of the consequences of making a decision,

but rather a function of the state of nature. This distinction is important because decisions should be justified on

the basis of their consequences and not simply because they are superior to some other decisions according to an

arbitrary criterion. An element ofE(�) might be optimal with respect to some criterion, but it may also produce

unacceptable consequences. Thus, domination should act asa secondary criterion for determining the usefulness of

an option and not as the primary criterion whencedomination is discretionary(which is a companion to the notion

that optimality is optional); it is a fact of life that sometimes the best option available to us is still unacceptable.

3.5 Postlude

To summarize the discussion of the preceding sections, two thoughts have emerged. First, decisions in the satisficing

set are justified by the consequences, and decisions in the non-dominated set are justified by the alternatives. Second,

satisficing is mandatory and domination is discretionary. One more point deserves mention before we end this

section. One advantage of the aspiration-based satisficingapproach is that multiple attributes (or, analogously,

multiple states) decreases the size of the set of options that are satisficing. This implies that searching for a solution

that is satisficing may take longer. However, once a satisficing option is identified it is likely to be robustly applicable

under many circumstances.

Returning to our automobile driving example, following thevehicle is satisficing because the benefits of follow-
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ing, relative to our goal of reaching our destination, outweigh the costs of following, relative to time loss or risk.

The passing behavior dominates the following behavior, butpassing is optional so we feel no mandated need to pass.

When cognitive resources permit, we may observe that passing dominates, but we need not pass since the current

skill produces good enough consequences. Additionally, because car following is a skill that is satisficing under

both heavy and light traffic densities, the skill is robust inthat it affords safe but productive driving in many driving

environments.

4 Intelligence Through a Multiple Agent Society

A large step toward resolving the debate between simple heuristics versus complex decision mechanisms is made

by realizing that for goal-directed choice there exist metachoice problems. For example, applying expected utility

theory requires a meta choice to determine the set of feasible options, beliefs, consequences, and utilities. From a

machine intelligence perspective, the debate is often a discussion of whether these meta problems should be implic-

itly included in the choice problem (to produce complex decision mechanisms), or if simple skills and heuristics can

be efficiently and explicitly (meta-)managed to produce thesame intelligent results. From a human intelligence per-

spective, the debate is concerned with prescriptive versusdescriptive models of rational choice; prescriptive models

require the decision-maker to solve the meta-problems internally, and descriptive models suppose that these prob-

lems are solved through evolutionary or other externally imposed conditions (although there is nothing unnatural

about learning to self-police our behaviors).

To justify the managed-skill hypothesis in describing human behavior or to encode this hypothesis in designing

machine intelligence, we must address the theoretical issue of meta choices. Satisficing is a tradeoff-centered deci-

sion principle that applies to meta decision problems and therefore decreases the gap between mind and machine,

or in the quest to settle the debate between simple and complex decision mechanisms. Given that the essence of

satisficing is tradeoff, the important issue is how, when, and by whom should tradeoffs be resolved. These questions

are questions in meta-agency, that is, questions in self evaluation and self anticipation..

4.1 Situated Decision Makers

***** INSERT FIGURE 2 ABOUT HERE *****

As we understand the philosopher Charles Peirce, meaning and therefore intelligence can only be present in a
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semiotic triad consisting of some kind of observation (firstness), some kind of consequent (secondness), and some

kind of mapping from observation to consequent (thirdness)that turns firstness into secondness. Goal-directed

agents capable of continued existence in real environmentsshould have the capacity to respond to, interpret, and

evaluate observations in terms of their capacities and skills. The key to doing this is to allow lessons learned from

the past (in the form of values, models of causal behavior, etc.) to turn observations from the present into acceptable

future consequences. As diagrammed in Figure 2, the past (thirdness) transforms the present (firstness) into the

future (secondness).

The lesson we learn from this triad of situated agency is thatmuch of reasoning is done in terms of either past

experiences or expected future experiences. This can be extremely complex unless effective coping strategies are

developed and used. A remarkably efficient coping strategy is to organize intelligence into modules appropriate

for commonly encountered circumstances. We call these modules cognitive or behavioral skills and note that these

skills determine the behavior of a situated decision maker.Such a decision maker can reason about the world in

terms of the consequences afforded by these skills. With theemergence of multiple skills including the capacity for

general-purpose problem solving, a decision maker can be capable of very sophisticated behaviors.

****** INSERT FIGURE 3 ABOUT HERE *****

In this context, an expert is one who has a skill that will produce satisficing consequences for any state� in the

domain of expertise�. This is diagrammed in Figure 3. Each closed curve represents a skill that produces satisficing

consequences for the� that it encloses. Note that multiple skills can be satisficing for a particular� and that the skill

set spans almost the entire domain of expertise�. In general, an expert in one domain� will not be an expert in all

domains.

4.2 Multiple Agent Society

Although many behavioral skills can be organized into a stimulus-response loop, cognitive skills require an appro-

priate organization. Borrowing on Minsky’sSociety of Mind(Minsky, 1986), we can treat each cognitive skill as an

agent and organize these agents into a society. Recognizingthat these agents must interact, we can include layers

of agents managing agents (i.e., meta agents), and agents managing agents managing agents, et cetera. These layers

form a multi-resolutional hierarchical society of cognitive agents. Within this society, multiple forces can influence a

decision. These forces include top-down forces from agentsresponsible for accomplishing certain goals, bottom-up

forces from skilled agents responsible for acting in a particular context, and lateral forces from neighboring agents
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interacting to accomplish tasks that accommodate shared goals or require shared resources. Top-down forces evoke

success-based evaluations of skills, and bottom-up forcesevoke efficiency-based evaluations of skills,

4.3 Decision Forces

Cognitive skills provide affordances for rational behavior. The termaffordanceis a term introduced by Gibson (Gib-

son, 1979) and extended by Norman to mean “those fundamentalproperties that determine just how the thing [skill]

could possibly be used” (Norman, 1988, Page 9). Skills whoseaffordances are compatible with top-down goals in-

duce an attractive potential commensurate with their likely usefulness. In terms of the values involved in a tradeoff,J1(u; �) represents this attractive potential. However, in addition to task specific goals there are also context depen-

dent constraints on the efficiency of these skills, and theseconstraints induce a repulsive potential commensurate

with their likely inefficiency. The functionJ2(�u; �) represents this repulsive potential.

Two independent descriptions of consequences can be thought of as the interplay between the two potential

fields. Given the analogy ofJ1 andJ2 as attractive and repulsive potentials, we can use this analogy to interpret

the notion of satisficing. An option (skill) is satisficing ifand only if the attractive potential is greater than the

repulsive potential. Partitioning evaluations of consequences into these attributes recalls the generalized potential

field (GPF) approach to path planning and obstacle avoidance(see, for example, (Nam et al., 1996; Guldner and

Utkin, 1993)). In the GPF methodology, a goal is representedas an attractive potential, obstacles are represented as

repulsive potentials, and the path along the negative gradient of the combined potentials is selected as a collision free

path. Although GPF approaches have traditionally been usedto plan a feasible path (with a corresponding sequence

of actions), the basic idea has been extended to dynamic environments wherein individual actions are identified as

a function of current and projected future dynamic states (Nam et al., 1996). Unlike such GPF approaches which

produce a unique best path (or unique best option), however,a tradeoff is resolved once a single skill is identified

with attractive potential greater than repulsive potential. By contrast, non-dominated options are best in the GPF

sense.

In this way, satisficing is a companion to a resolved tradeoffemerging from independent values. The interac-

tion between meta-agents resolving meta problems and choice-agents resolving choice problems involves inherent

indeterminacy. Simply put, a meta-agent does not know (nor especially care) what option a choice-agent will select,

nor is it appropriate for the meta-agent to speculate about the expected choices of the choice-agent (doing so shifts

all responsibility to the meta-agent and relegates the choice-agent to a vacuous role). The meta-agent is responsi-
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ble for abductively framing the problem, and the choice-agent is responsible for inductively solving the problem.

Since the consequences of framing a problem are different from the consequences of solving a problem, there is an

indeterminate mapping from the consequences evaluated by the meta-agent and the consequences evaluated by the

choice-agent. This indeterminacy requires that the meta-agent deal with sets of options and produces a decision rule

used by the choice-agent to identify “good enough” consequences.

4.4 Two Stages of Self-Policing: Evaluation and Anticipation

As diagrammed in Figure 2, a minimum requirement for intelligence is a relationship between past, present, and

future. To facilitate this relationship, there must be three phases for any choice problem: anticipating consequences,

the “moment of truth” when choice is made, and evaluating consequences. Anticipating future and evaluating past

consequences are necessary stages in rational self-policing. By evaluating past consequences a decision-maker is

evaluating its past choices, and is thus performing a third person (meta) evaluation of a “past self.” If performance

is inadequate or if superior alternatives are manifest thenthe decision maker should adapt its future behavior. By

anticipating future consequences, a decision maker is evaluating its future states, and is thus performing a third

person (meta) evaluation of a “future self.” If expected performance is inadequate or if superior alternatives are

recognized then the decision maker should act accordingly.

Unless anticipation and evaluation are simply re-enactments of the moment of truth, the decision maker should

be seeking to identify feasible options. This is done in two ways: by identifying options that resolve tradeoffs and

by identifying options that are non-dominated. In order of increasing complexity and necessity, satisficing-based

rationality must be satisfied first (unless, for a particularworld, non-domination guarantees satisficing) and then, if

resources permit, domination-based rationality can be satisfied.

4.5 Problem Solving

Let us now turn attention to a timeline for making rational decisions. Assume that the decision maker is situated,

meaning that the decision maker has a known goal and exists ina particular context. A rational decision-maker

should begin by identifying the set of possible states of nature�. By identifying relevant states, a process aided

by familiarity with the situation or previous exposure to similar situations, the decision-maker is able to identify the

goal-driven affordances from the suite of cognitive skillsthat it has available. Additionally, the decision-maker can

recognize contextual factors that restrict the applicability of particular skills.
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***** INSERT FIGURE 4 ABOUT HERE *****

Given an observationx and a subsequent understanding of the state of nature�, the decision maker then enters the

three phase process of decision making. This process consists of the two self-policing phases of anticipation and

evaluation, and the moment of truth (i.e., choice) phase.

Anticipation

Given the state of nature, the meta-agent can determine the expected payoffs�A and�L of each skill through a

deliberation process, through an experience-based identification process, or through a stimulus-response mechanism.

The meta-agent initiates a search for an appropriate skill,perhaps beginning at a default skill and the proceeding

to other skills using some practiced procedure. Each possible skill is analyzed to see if its expected consequences

resolve the tradeoff between goal-driven payoffs and context-dependent costs. If the decision maker has ample

time and memory or a wealth of experience, multiple satisficing options might be identified yieldingG � Sb(�).
Furthermore, past experience may help the decision maker identify non-dominated options via lateral decision forces

whence the search can be restricted to non-dominated optionE(�).
Moment of Truth

At the moment of truth, anyu 2 G can be applied. Selecting among the alternatives can be done(a) via a constrained

optimization policy such as selectingu� = argmaxv2G �A(v; �)� b�L(u; �), (b) via an exploratory policy wherein

an unexplored optionu 2 G is randomly selected, or (c) through an arbitrary process wherein anyu 2 G is

randomly selected. The policy can be adapted to reflect the nuances present in the moment of truth. Regardless of

the policy, the skill is expected to produce satisficing consequences and thus resolve the decision tradeoff because of

the anticipation phase. In terms of modeling human behavior, it is important to note that not all behavioral variability

is a result of noise and uncertainty. Instead, a portion of this variability results because, for a particular context and

a particular task, many behaviors may be satisficing. This suggest that constrained optimization, though possibly

appropriate for design, may not be readily applicable to describing the moment of truth in naturalistic settings.

Evaluation

Following the moment of truth, the consequences of the choice are evaluated. Any mismatch between anticipated

and observed values can be used to tune these values for future use. Additionally, the meta-agent determines if
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the consequences are satisficing. If they are satisficing (u 2 Sb(�)) and if cognitive resources are available, then

the meta-agent might2 compareu to other (remembered) options to refine the set of feasible optionsE , or bias the

search mechanism to useu again. If the consequences are not satisficing (u 62 Sb(�)) then the meta-agent might

spawn a new search to find a skillu0 2 Sb(�) that is expected to produce satisficing consequences. If, after exploring

and evaluating all known options,Sb = ; then the tradeoff is not resolvable given current options. The decision

maker must then either adjust its expectations (decreaseb) or acquire a new skill that will be appropriate for the

circumstances.

5 Discussion and Examples: Simple Inference Heuristics Vs.Complex Decision

Mechanisms

Satisficing rationality provides a simple but justifiable method for determining when simple inference heuristics and

or/complex decision mechanisms are justified. This allows the decision maker to perform cognitive and behavioral

tasks with an appropriate mechanism by turning the meta decision problem into one of controlling the selection of an

appropriate skill. In this section, we give examples that support the hypothesis that intelligent behavior is organized

into cognitive and behavior skills, and discuss how satisficing manifests itself in decision making.

5.1 Heuristics and Biases: the Existence of Cognitive Skills

In studies of human cognitive performance, Daniel Kahnemanand Amos Tversky have led the way in identify-

ing several heuristics and biases that systematically differ from standards of normative rationality (Kahneman and

Tversky, 1979; Gardner, 1985). Among other observations, two seem most relevant to our discussion. The first

observation is that people use and misapply cognitive shortcuts in inappropriate situations. The misapplication of

cognitive shortcuts (i.e., heuristics) is evidence that people have and use these heuristics, and the fact that some

cognitive biases disappear when the problem is reframed (e.g., the overconfidence bias can be overcome when data

are presented as frequencies rather than probabilities (Gigerenzer, 1996; Kahneman and Tversky, 1996)) indicates

that cognitive skills are ecologically adapted to certain domains. Additionally, the presence of robust but simple

heuristics such as “take the best” demonstrate that these heuristics can be very effective (Gigerenzer and Goldstein,

1996). The second observation is that untrained people are not very good at applying methods of normative rational-

ity. One logical conclusion from the heuristics and biases literature is that if researchers want to fool subjects, they
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can probably succeed by inducing an incorrect cognitive skill.

5.2 Experts and Naturalistic Decision Making: Non-OptimalChoice

The naturalistic decision making community has emerged in response to dissatisfaction with using normative models

of rationality in descriptions of expert behavior (Zsambokand Klein, 1997). A characteristic of naturalistic decision

making descriptions of human intelligence is that experts organize intelligence into cognitive skills. The majority

of time spent in expert decision making is spent searching and understanding the state of nature. Once the state

space is accurately deciphered, an appropriate skill is invoked and the problem is efficiently solved. From (Dreyfus

and Dreyfus, 1985), “[Experts] reflect upon the goal or perspective that seems evident to them and upon the action

that seems appropriate to achieving that goal.” They reasonabout the world in terms of afforded actions, and select

action according to their stated goal. Experts do not reasonusing context independent and general purpose problem

solvers, but rather with cognitive skills spanning the range of relevant states of nature (see Figure 3). Developing

expertise is the process of spanning the states of nature andlearning how to recognize and use the appropriate skill.

Since acquiring a set of skills that span� is done during the process of becoming an expert, the majority of expert

time is not spent in complex decision making but rather in identifying a skill appropriate for the circumstances.

5.3 Human Interaction with Automation: Detailed Example of Explicit Skill Management

In this subsection, we give a detailed example of skill management in the context of human interaction with au-

tomation. Automation is ideal for illustrating skill management because when a human initiates automation they are

consciously delegating a skill to the machine, and when theyterminate automation they are consciously appropriat-

ing a skill from the machine. Both of these skill transitionsprovide a means to demonstrate how humans can manage

skills. This section is largely taken from previously published work or from work currently in review (see (Goodrich

et al., 1998a) for a summary of the work under review).

A mental model is an internal representation employed to encode, predict, and evaluate the consequences of

perceived and intended changes to the system operator’s current state within the dynamic environment. Humans

interpret and respond to sensory input according to the context established by a mental model through task-specific

filtering of the external world. Skilled action is organizedinto behavioral quanta that correspond to separate mental

models each with their own perceptually delineated operational domain (Goodrich et al., 1998a). Many aspects of

cognitive decision-making have been described in terms of mental models (Johnson-Laird, 1988; Minsky, 1986).
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Formally, a mental modelM is a triple consisting of the perceived state of the environment�, a set of decisions or

actionsU , and a set of ordered consequencesC that result from choosingu 2 U when� 2 � obtains. According

to this specification, a mental model not only encodes the relation between the input-action pair3 (�; u) and the

predicted consequence
, but also induces an evaluation of preferences among consequences (see Figure 5, and

compare to related figures in (Meystel, 1996; Sheridan, 1992; Albus, 1991)). In words, the mental modelM
provides the context for meaningfully interpreting sensory information and generating purposeful behavior and thus

represents and encodes past experience within a decision problem.

***** INSERT FIGURE 5 ABOUT HERE *****

***** INSERT FIGURE 6 ABOUT HERE *****

Human behavior can be organized into a set of skilled activities that are applied when afforded by the envi-

ronment (Gibson and Crooks, 1938; Norman, 1988). In this context, the termactivity4 means the human’s actions

on the system (e.g., a behavioral activity is pushing the brake pedal or turning the steering wheel, and a cognitive

activity is adding two numbers or making a simple deduction). Formally, askill can then be defined asa learned

sequence of human activities. The human must map environmental cues into selected activities; an efficient way

to perform this mapping is to employ a pattern of activities specific for a particular task, and then implement this

skill when appropriate. This approach uses a task-specific mental model to determine which skill is appropriate for

the circumstances. Switches between skills are mandated when target perceptual states are not achievable by the

currently enable skill-based behavior or when enabled skills are not satisficing for the given state.

Human cognition can be described using multiple mental models (treated as agents) which can be organized

into a society of interacting agents. This societal structure not only determines which agents contribute to human

behavior, but also which agents can employ attentional resources. A three level multi-resolutional society of in-

teracting mental models organized into a hierarchical structure (see Figure 6) can be constructed corresponding to

Rasmussen’s knowledge-based (KB), rule-based (RB), and skill-based (SB) behaviors5 (Rasmussen, 1976; Sheri-

dan, 1992). At the KB level of this hierarchy, the agent role is supervisory; at the RB level, the agent role is task

management; and at the SB level, the agent role is task execution. Intuitively speaking, the KB, RB, and SB agents

think, monitor, and control, respectively. These mental model agents operate within the context of overall complex

human behavior. SB agents are akin to cognitive skills, and RB agents are akin to meta agents.

Automobile driving is a mix of cognitive and behavioral skills. When a driver delegates a task to automation, the

vehicle assumes responsibility for a behavioral skill. However, the driver retains (meta) responsibility to detecting
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the limits of the automation and responding appropriately.We conducted an experiment in which human subjects

were placed in a driving simulator with a cruise control system engaged. At random intervals, a vehicle cut in

front of the subject’s vehicle and compelled the subject to determine if the automation can safely perform the skill

or if the driver needed to intervene. Empirical estimates ofaccuracy and liability can be obtained as described

below. Figure 7 presents the resulting empirical estimatesand the best fit curve to these estimates. Note that for

this example, the ecologically valid state variables� = [Th; T�1
 ; v℄, (time headway, time-to-contact, and velocity,

respectively) suffice to describe the domain of expertise� (Goodrich and Boer, 1998).

***** INSERT FIGURE 7 ABOUT HERE *****

Empirical Estimates

To identify�A and�L, our objective is to find substates that trigger active braking. We therefore distinguish between

nominal behavioru 2 fSR;TRg and active braking behavioru = BA. Our goal is thus to find when�RB 62 Sb(u)
for u 2 fSR;TRg. Nominal operating conditions occur when the brake pedal isnot pressed. For both nominal

and braking conditions, we select representative sample points from each experimental trial and create two sets of[T�1
 ; Th℄T points: one set for nominal conditions, denotedNOM, and one set for braking conditions, denotedBRK.

For trials when subjects actively brake, the sub-state(s)[T�1
 ; Th℄T when braking is initiated is included inBRK,

and the sub-state(s)[T�1
 ; Th℄T when braking is terminated is included inNOM; for trials when subjects do not

brake, the initial sub-state[T�1
 ; Th℄T in the trial is included inNOM; and for trials where subjects only brake (by

anticipating the cut-in and then coming to a stop), the initial sub-state[T�1
 ; Th℄T in the trial is included inBRK.

For notational purposes in the subsequent sections, letN(T = � jCONDITION) denote the cardinality of the

set of pointsT = � given CONDITION. For example,N(T�1
 = � jNOM) is the number of points in the setf� 2 NOM : T�1
 = �g. Under nominal conditions (� 2 NOM), relative velocity must be considered acceptable to

the driver whence the distribution ofT�1
 under nominal conditions is an observable entity that provides information

about what is accurate. Clearly, ifT�1
 = �2 is accurate, then�1 < �2 must be at least as accurate. This monotonicity

property facilitates the computation of the accuracy function as the cumulative distribution function�A(T�1
 = �) = 1� FT�1
 (� jNOM)= 1� N(T�1
 � � jNOM)N(T�1
 � 1jNOM) :
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For classification purposes, we fit (via least squares) a sigma function of the form1=e(�a�+b) to �A(�) yielding the

function shown in Figure 7(a).

When braking is initiated (� 2 BRK), time headway values must be considered unacceptable whence the dis-

tribution of time headways when the driver initiates braking is an observable entity that provides information about

what is rejectable. Clearly, ifTh = �2 is rejectable then�1 < �2 must be at least as rejectable. This monotonicity

property facilitates the computation of the rejectabilityfunction as the cumulative distribution function�R(Th = �) = 1� FTh(� jBRK)= 1� N(Th � � jBRK)N(Th � 1jBRK) :
For classification purposes, we fit (via least squares) a sigma function of the form1=e(�a�+b) to �R(�) yielding the

function shown in Figure 7(b).

Classification Results

For the driver to switch from one skill to another, it is necessary to identify whenu 62 Sb(�). Using�A(T�1
 ) and�L(Th) from Figure 7, we can construct the set of statesSb = f� : �A(T�1
 ) � b�L(Th)g that support nominal

behavior, and the set of statesS
b = f� : �A(T�1
 ) < b�L(Th)g (superscript
 denotes complement) that do not

support nominal behavior. Ifu 2 fTR;SRg and� 2 S
b then� 62 Sb(u). Thus, the line�A(T�1
 ) = b�L(Th)
determines when behavior must be switched from nominal to braking. In other words, the line is the boundary ofSb(SR).

***** INSERT FIGURE 8 ABOUT HERE *****

Given the empirically derived functions, we can determine the boundary between nominal and braking behaviors

as a function ofb by finding the perceptual states� for which�A(T�1
 ) = b�L(Th). This is illustrated in Figure 8

for the data gathered in the simulator experiment, whereÆ indicates� 2 NOM and� indicates� 2 BRK. To the

northwest of the line, BA is satisficing but TR and SR are not, and to the southeast of the line TR and SR (and,

perhaps, BA) are satisficing. Classification can be performed by finding the value ofb that optimally separates

braking from nominal behavior. Consider the following three performance indices:J1(b) is the percentage of trials

that are incorrectly classified (i.e., the total number ofÆ’s above the line plus the total number of�’s below the line) ,J2(b) is the percentage of nominal trials that are incorrectly classified as braking (i.e., number ofÆ’s above the line),
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andJ3(b) is the percentage of braking trials that are incorrectly classified as nominal (i.e., number of�’s below the

line). The valueb = 0:53 is the minimax valueb = argminb�0maxfJ1(b); J2(b); J3(b)g which attempts to balance

the percentage of misclassifications (J1(b)), false alarms (J2(b)), and missed detections (J3(b)). The valueb = 0:20
minimizes the number of samples misclassifiedb = argminb�0 J1(b). The classification results for the different

values ofb are shown in Table 1 and indicate that, on the average, over 85% of samples are correctly classified.b % misclassified % false braking % missed braking

0.20 10.04 1.95 8.09
0.53 13.25 8.37 4.88

Table 1: Classification accuracies for different values ofb.
These results were validated in a separate experiment usingprofessional drivers in real vehicles responding to

cut in events on a closed test track. To perform the classification, �A(T�1
 ) and�L(Th) were estimated, and theb
that minimizes the misclassification error was determined.The experiments generated one false alarm (Æ above the

line) and no missed detections (� below the line) in fifty trials at varying speeds. The resultsbetween the test track

experiments and driving simulator experiments are very similar. The test track results produce a slightly smaller

value ofb (b = 0:21 for the test track versus an average value ofb = 0:53 for the driving simulator) and a slight

change in the liability function6 .

5.4 Automobile Driver Behavior and Navigation: Implicit Sk ill Management

We can now return to the driving example given in the introduction. While driving an automobile, we have been

following a vehicle for an extended period of time even though there is very little traffic on the road. Because

following the vehicle is satisficing, we do not feel a need to consider changing our behavior but rather rest content

with following the vehicle. Suddenly, we realize that we caneasily pass and that we want to do so because the lead

vehicle is going slower than our desired speed. Once we observe that an alternative behavior is still satisficing but

dominates our current behavior, we select this behavior andact accordingly. This is possible because much of the

behavior associated with speed management can be describedby three simple skills: speed regulation, car following,

and active braking. Speed regulation applies in the absenceof other traffic, and is a simple perceptual regulation

task where we manage the vehicle’s speed to produce an optic flow consistent with our calibrated estimate of the

vehicle’s speed. Car following applies in the presence of other traffic, and is a simple perceptual regulation task
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where we manage the relative rate of optical expansion to stay within a threshold (Lee, 1976). Active braking is less

sophisticated , and is tantamount to detecting an anomaloussituation and defaulting to a safe behavior. Coordinating

these behavioral skills is an exercise in meta-rationalitywith multiple satisficing skills overlapping for a given�.

Navigation problems can be precisely solved by appealing tothe topological layout of the city and a sense of

direction. However, only a portion of the population actually navigates this way (Aginsky et al., 1997). Many drivers

use landmarks extensively; they maintain their course until a landmark triggers a behavioral response. Although the

first method is more robust to errors for a well-informed driver, it requires complex representations of city and

geography. By contrast, the landmark method is remarkably efficient in producing effective navigation, and requires

minimal representation of the city. If the landmark is salient the driver can succeed with minimal knowledge of the

street topology (Aginsky et al., 1997). Both skills are justifiable for most of driving, and one is a simple heuristic

method while the other is a complex decision method.

Both of these examples illustrate that simple heuristics can be used in dynamic operation of automobiles. Both

are remarkably efficient in the required use of cognitive resources, and current evidence suggests that they are

effective in producing desired behavior. Moreover, we are exploring how these different skills are managed, and pre-

liminary evidence suggests that satisficing meta-rationality provides a useful mechanism for skill management (Boer

and Goodrich, 1998; Boer et al., 1998).

6 Conclusions

The essence of satisficing is tradeoff. Based on this theme, we constructed a decision-theoretic characterization

of satisficing as a comparison of two independent evaluations of consequences: the consequence of accepting the

option and the consequence of rejecting the option. Simon’soriginal descriptions of satisficing fit nicely within

this framework, but many variants of his ideas appear to abandon this comparative rationality in favor of variants

of superlative rationality via constrained optimization.Since, as we have discussed, optimality is optional (and its

companion domination is discretionary), satisficing, which is a mandatory evaluation of the consequences of a deci-

sion, deserves prominent attention in the decision-makingcommunity because being the best among the alternatives

may not be acceptable, attainable, nor unambiguously definable. Additionally, satisficing provides a mechanism for

spanning both simple inference heuristics and complex decision mechanisms; the satisficing decision rule manifests

itself as a simple heuristic but has a meta-rationality justification.

26



We have presented several examples of satisficing and cognitive skill management. The most engaging example

referred to automobile driver behavior in interacting withother traffic. The example illustrated why we consider

it rational to do non-optimal things. In automobile driving, when the driver has limited attentional resources their

superlative rationality is bounded and optimality is precluded — even for voracious optimizers. Nevertheless, the

driver’s comparative rationality permits the justification of rational driving behaviors. Extending from driving to

other domains of goal-directed decision making, we observethat skills (be they heuristic or complex) are justified

only if satisficing.

A A Characterization of Satisficing Through Meta-Rationality

Resolving a tradeoff is not a decision itself, but rather a decision about how to decide, that is, ameta decisionor

decision rule. In words, we want to identify conditions under which the tradeoff is resolved. We do this by deriving

the satisficing decision rule by comparing all possible decision rules that combine a payoff for accepting and a payoff

for rejecting an option. The result of this derivation is a decision rule which obtains its justification by an appeal to

superlative meta-rationality, but which manifests itselfas comparative rationality.

Let � : � ! B, whereB is sigma-algebra associated withU , denote a decision rule that maps the set of states

of nature� to the subsetG 2 B of possibilities. To resolve a tradeoff we must find the optimal decision rule�
subject to the constraint thatu and�u cannot simultaneously be accepted. The resulting decisionrule represents the

resolution of the tradeoffs in valuesJ1 andJ2. We can identify the utility of the decision rule� as an aggregation of

the two payoffs H(�; x) = E�jx[J(�(�); �)℄= E�jx(Xu2U h�J1(u; �)p(u 2 �(�))+(1� �)J2(�u; �)p(�u 2 �(�))i) (9)
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wherep(u 2 �(�)) represents the probability that optionu 2 U is an acceptable resolution to the tradeoff withp(�u 2 �(�)) defined conversely, where� denotes a tradeoff parameter, and whereE�jx(H) denotes the expectation

of J with respect to the conditional probabilityp(�jx), that isE�jx(H(�(�); �) =X�2�H(�(�); �)p(�jx):
By choosing the decision rule� we effectually choosep(�u 2 �(�)) andp(uxs 2 �(�)). Our objective is to find a

decision rule� that maximizes (9) keeping in mind that the rule� is a resolution betweenJ1 andJ2. Let�A(u;x) = X�2�J1(u; �)p(�jx)�L(u;x) = X�2�J2(�u; �)p(�jx)
Maximizing (9) over all possible tradeoffs yields the decision rule�(x) = 8>><>>: u ��A(u;x) � (1� �)�L(u;x)�u otherwise

: (10)

Without loss of generality, let observationx uniquely determine state� whence we drop the dependence onx. The

set of consequences that survive the resolution of the tradeoff is called thesatisficing setand is given byS� = f(u; �) : ��A(u; �) � (1� �)�L(u; �)g
or, equivalently, Sb = f(u; �) : �A(u; �) � b�L(u; �)g; (11)

whereb = 1��� . Thus, we see that resolving a tradeoff by maximizing over possible decision rules produces a

weak rationality that eliminates obviously bad choices andadmits good enough choices. Intuitively speaking, a
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tradeoff does not produce unique best decisions but rather asuspension of judgment between decisions that are

“good enough.”A tradeoff is resolved if and only if at least one skillu can be identified whose expected benefits

outweigh the expected costs, that is if and only ifSb 6= ;.
Notes1This can be determined directly by anticipating consequences via a model and then ranking the consequences, or indirectly by using a

value function over state-action pairs (as in Q-learning),or some contribution of both.2Note that this approach of continuing to search if results are satisficing is not observed in studies of the design process(Ball et al., 1996)

because, simply put, if the results are good enough then there is very little motive to continue dedicating resources to determining another

option.3A decisionu is often treated as a mapping from� into the set of consequences(Fishburn, 1981).4There are many uses of the term activity in pattern recognition and design literature (see, for example, Bobick97,Norman98). For our

purposes, we use activity to mean low-level movements whichis yet another use of the term.5These layers correspond not only to Saridisorganization, coordination, andexecutionlevels, respectively, for intelligent machine de-

sign (Saridis, 1989), but also the strategic, tactical, andoperational levels of decision-making (Boer et al., 1998).6Let Tmaxh = argTh�0(�L(Th) = 1). For the test track,Tmaxh > 0 whereas for the driving simulatorTmaxh < 0. These differences

simply indicate that the costs of error are higher when real vehicles are used; in other words, a real collision on the testtrack is much more

costly than a simulated collision in the driving simulator.Though the subjects were sincere and well-motivated, thereis simply no substitute

for the fear of death to motivate a driver. Additionally, thefunctional representation (obtained through least squares) of the empirical liability

measure introduced a bias in the simulator study because thetime headway space was not uniformly sampled.
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Figure 1: The decision problem. Arrows indicate either perceived (by the decision maker) or actual influence. For
example, a consequence is the result of taking actionu 2 U when� 2 � obtains. Not all decision methodolo-
gies explicitly account for all influences. Typically, complex decision mechanisms seek to make all elements and
influences explicit, whereas simple inference heuristics discard some of the influences or omit some of the elements.

Figure 2: Interface between past, present, and future. Pastexperience, through explicit causal models or through util-
ity elicitation, allows a decision-maker to map present observations and options into desirable future consequences.

Figure 3: For a specific domain of expertise�, an expert has skills spanning the space that produce satisficing
consequences. For any state, multiple skills can suffice.

Figure 4: Three phases of the situated decision making. Choice is themoment of truthfor a choice agent, and
anticipation and evaluation are elements of (meta) rational self-policing.

Figure 5: Working specification of a mental model. The arrowsrepresent perceived or real influence. Consequences
are a function of states and actions; behavior is generated through the operation of a mental model, but the mental
model is constrained by the set of behavioral affordances; and sensory observation influence the mental model, but
the mental model dictates active sensing of the environment.

Figure 6: Interaction within a society of mental model agents. SP=sensor perception, MM=mental model, and
BA=behavior actuation. The horizontal arrows are explained in the caption to Figure 5, and the vertical arrows
indicate interaction of low level sensors/high level goalswith high level representations/low level actions.

Figure 7: Actual (dashed line) and approximated (solid line) functions as a function of perceptually feasible obser-
vations: (a) accuracy as a function of time to collisionT�1
 and (b) liability as a function of time headwayTh.

Figure 8: Scatter plot of nominal and braking perceptual states. The line represents the boundary of the nominal
skill (states to the northwest of the line are unacceptable). The boundary of the braking skill is not identified in this
plot. Compare this figure to Figure 3.

Table 1: Classification accuracies for different values ofb.
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