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Abstract. We consider a set of team-based information tasks, meaning that the
team’s goals are to choose behaviors that provide or enhance information avail-
able to the team. These information tasks occur across a region of space and must
be performed for a period of time. We present a Bayesian model for (a) how infor-
mation flows in the world and (b) how information is altered in the world by the
location and perceptions of both humans and robots. Building from this model,
we specify the requirements for a robot’s computational mental model of the task
and the human teammate, including the need to understand where and how the
human processes information in the world. The robot can use this mental model
to select its behaviors to support the team objective, subject to a set of mission
constraints.

1 Introduction

In complex, rapidly evolving team settings in which a robot fulfills a role, the robot
needs sufficient autonomy to allow its human teammates to be free to direct their atten-
tion to a wider range of mission-relevant tasks that may or may not involve the robot. In
contrast to many prior applications in which the robot was either teleoperated or man-
aged under strictly supervisory control [1], recent advances in robot technologies and
autonomy algorithms are making it feasible to consider creating teams in which a robot
acts as a teammate rather than a tool [2].

In this team-centered approach, both humans and robots can take on roles that match
their strengths. Properly designed, this can facilitate the performance of the entire team.
This idea has already been applied to reform human-robot interaction in many areas,
like object identification, collaborative tasks performance, etc. [3]. In this paper, we
adopt the notion of collaboration, operationally defined as the process of utilizing shared
resources (communication, space, time) in the presence of asymmetric goals, asymmet-
ric information, and asymmetric abilities as illustrated in Fig. 1. The word collaboration
suggests that there are both overlaps and differences between the goals, information,
and abilities of the agents involved. Colloquially, collaboration can happen when ev-
eryone has something unique to offer and something unique to gain, but there is some
benefit to each individual if activity is correlated.

In a human-robot team, the asymmetries on abilties and information mostly come
from the natural difference on agents’ sensors and actuators. Additionally, an agent may
exhibit ability and information asymmetry in different states of interacting with the en-
vironment, like location, lighting condition etc. Often, a team goal will be decomposed



Fig. 1. Operational Elements of Collaboration.

into subgoals in execution. The subgoals are usually assigned to agents in the team by
organizing agents into specific roles with specific responsibilities, and this leads to goal
asymmetries. In a collaboration framework, the interaction between agents not only fo-
cuses on common goals, but may also require providing support for others’ goals. In a
team search tasks, for example, the robot and the human might work together for target
searching, while the robot might assist the human to deal with an emergency.

Collaboration is a form of teamwork that benefits from an explicit representation of
shared intent. The theory of shared intent suggests that both the human and the robot
need to have a mental model for the task to be performed and another mental model
for how other team members will act [4]. The primary contribution of this paper is a
framework for developing a task-based mental model from a human-robot collaboration
perspective, including the ability to represent and reason about contributions of other
team members to the mission and estimation of how other team members’ actions affect
performance.

2 Shared mental model

From studies of cognitive psychology, the concept of a shared mental model has been
proposed as a hypothetical construct, which has been used to model and explain certain
coordinated behaviors of teams. Shared mental models provide a framework of mutual
awareness, which serves as the means by which an agent selects actions that are con-
sistent and coordinated with those of its teammates. According to [5] [6], in order to
perform collaboratively as a team, members of a team must have the following:

– Teammate Model: knowledge of teammates skills, abilities and tendencies.
– Team Interaction Model: knowledge of roles, responsibilities, information sources,

communication channels and role interdependencies.
– Team Task Model: knowledge of procedures, equipment, situations, constraints.

These elements determine (a) how an agent makes decisions as a member of the
team and (b) how diverse capabilities and means of interactions are managed within an
organizational context. These concepts have been incorporated as important elements
in existing human-robot team designs [7]. From a robot’s perspective, operating within



the context of a human-robot team, the robot’s shared mental model will help the robot
predict information and resource requirements of its teammates. Importantly, a better
understanding of task demands and how teammates will likely respond will enhance the
robot’s ability to support team-level adaptations to changes in the world.

Given a shared intent from the team, the robot is assigned or adopts tasks, either
as an autonomous agent or as a collaborating teammate. What does the robot need to
collaborate? We address two fundamental elements: (1) How should the robot model the
task? (2) How should the robot model a human performing the task? We then illustrate
how the concept of a shared mental model is applied within a search task by providing
an example computational model that responds to these two questions.

3 Robot wingman in a search task

We introduce the shared mental model to a human-robot team search problem. In the
problem, the search region is modeled with the belief of where the target objects are,
and the search process works as constantly updating this belief by observations. Thus,
teams of humans and robots manage a region of space subject to particular time or
timing constraints [8].

From prior work in search theory, search efficiency is usually considered as one of
the essential factors to a task success, and is therefore a central element of the team’s
model of a search task. There are several parameters to measure the efficiency in a
search task [8], which are determined by the observation capability of a search agent.
In this paper, we are interested in:

– Sweep Width: a measure of how wide an area a searcher can, on average, effec-
tively cover. More specifically, it represents how well a sensor (e.g., the human eye)
can detect specific objects as a function of distance from sensor to object.

– Coverage: a simple measure of how well a segment was covered by all of the
searchers. Coverage is a ratio calculated by summing up the area that each searcher
covered and dividing by the area of the search segment.

– Probability of Detection: a measure of the probability of success. Search managers
need a way to determine the probability that a lost object would have been found if
it was actually in the segment that was searched.

Effective swept width and coverage are determined by the sensor model of a search
agent; the sensor model encodes the characteristics and capabilities of the agent’s sen-
sors. This model defines what the observation range of an agent is, and how the obser-
vation uncertainty might change with the distance of a target object. By contrast, the
probability of detection shows the probability that an object would have been detected
if in the area, which can be modeled as (a) an agent’s prior belief that an object is in the
search region and (b) the quality of the agent’s observation. Since all agents are imper-
fect detectors, there exist differences in detection success and detection times among
agents.

There is relevant prior work on applying these concepts to human-robot teams. [9]
and [10] import robots into urban search and rescue so that human unreachable locations



Fig. 2. A Robot Wingman framework.

can be explored, which greatly extends the coverage of search task execution. Integrat-
ing various types of sensors, like radars, laser rangefinders, ultrasonic sensors etc. [11]
[12], greatly expands the sweep width of a search team. [13] and [14] propose a way
to improve the probability of detection using information fusion across multiple agents.
Modeling the team as a distributed information fusion process exploits the asymmetric
perception capabilities of humans and robots to enhance the search efficiency of the
team.

In our proposed human-robot search team, we assume that the human is better at
strategy and decision making and the robot is better at raw data collection. This as-
sumption forms the basis for the robot’s model of its teammate. We propose the notion
of a robot wingman to support a human in a collaborative search task, which is to have
a robot that accompanies a human as he or she navigates through some space. Since a
robot may be able to detect certain types of signals not perceivable by a human (e.g.,
radio signals or chemical gradients), it is possible for the wingman robot to extend the
team’s perception not only in space but also in the type of data perceivable by the team.
As shown in Fig.2, as a flank support range that constrains where the wingman can
move. The robot wingman is expected to stay in an area determined by the flank sup-
port range around the human, when the human is moving for the search task. Doing so
guarantees that the robot rapidly respond to the human needs assistance, which main-
tains a reasonable distance for supporting communication and coordination. In a shared
human-robot search problem, the robot’s role not only includes staying within the flank
support range, but also includes gathering information about the world around the team.

The organization of the team determines how information flows when executing
the search task. Thus, the organization is an important element of the team interac-
tion model, with information flow acting as the currency of interaction. Information
flow shapes the process of fusing asymmetric information for collaboration. In the next
section, we model the belief of the locations of the search objects by a shared task
model. The information comes from the observations from both the human and the
robot. Meanwhile, the robot predicts how the human will work and what the informa-
tion collected by human is like, and this prediction is used to make a decision on how
to run the search operations as in Fig.3.



Fig. 3. Information Flow in a Wingman Human-Robot team.

4 A Bayesian Approach

We present a Bayesian model for how information flows in the world and how informa-
tion is altered in the world by the locations and perceptions of both humans and robots.
Building from this model, we can specify the requirements for a computational men-
tal model of the human teammate to understand where and how the human processes
information in the world. The robot can then select its behaviors to support the team
objective, subject to a set of mission constraints.

The world is represented as a discrete set of cells. For each cell, we wish to de-
termine the probability that an object of interest is in a particular cell given a set of
observations. Let St

i and Ot
i denote state and observation random variables that en-

codes whether an object of interest is in cell i at time t. Given a set of N cells, we
will move or position the robot such that we gather a series of observations that provide
information about all of the cells or some subset of those cells.

Since observations will be taken over time and since objects of interest can move
over time, we formulate the problem as a sequential Bayes estimation problem. Given
t sequential observations about cell i, our belief that an object of interest is in cell i at
time t is given by the following:

belt(si) = PSt
i |Ot

i ,O
t−1
i ,···O1

i
(sti | oti, ot−1i · · · o1i ). (1)

Equation (1) is the a posteriori estimate that an object of interest in cell i has been
detected given all observations to that point position. Adopting the standard conditional
independence assumptions of the Bayes filter [15], the sequential estimate becomes

belt(si) = αPOt
i |St

i
(oti | si)bel

t
(si), (2)

bel
t
(si) =

∑
j

∑
sj∈S

[PSt
i |S

t−1
j

(si | sj)belt−1(sj)], (3)

where bel
t
(si) is the predicted distribution of objects of interest, α is the normalizing

constant required by Bayes rule (equal to one divided by the prior predictive distribu-
tion), POt

i |St
i
(oi | si) is the detection likelihood, and PSt

i |S
t−1
j

(si | sj) is the model for
how objects move in the world.

In this paper, s = T or s = F indicate that the cell contains an object of interest
or not. For each cell, we track the belief that an object of interest is in that cell as a



function of time. Given a prior belief about objects in the cell, we predict the probability
that an object of interest will still be in that cell given (a) the presence or absence of
an object in that cell on the previous time step, and (b) the presence or absence of
objects in neighboring cells in the previous time step. Thus, Equation (3) includes a
double summation, one for all cells in the world (the sum over j) and the other over the
presence or absence of objects in that cell.

The process of a search task can also be considered as information gathering. From
(2) and (3), we can see that information from observation updates the belief of the search
region, which results in uncertainty reduction. We select entropy, which is a commonly
used criterion for measuring uncertainty [16], to quantify information collection. It is
written as:

H(belt(si)) = −
∑
si∈S

[belt(si) log(bel
t(si))]. (4)

5 Case Study

Consider a two-dimensional simplified representation of the world and adopt an oc-
cupancy grid representation of information in the world. We create a hexagonal tes-
sellation of the world with the dimension of the hexagon determined by the perceptual
capabilities of the human. The hexagonal tessellation is useful because it is one in which
the distance from the center of one cell to any of its immediate neighbors is constant.

Before exploring the search region, we have no information on this area. We use the
entropy of the shared belief to define the uncertainty in equantion (4). More formally,
we will assume that the prior probability that a cell is occupied by an object of interest
is equal to 0.5, which means that the probabilities of the search object in the cell or not
are equivalent.

5.1 Teammate Model

From the teammate model of human behavior, the wingman robot can predict how the
human will move. This yields a sequence of cells that the human plans to traverse,
which is denoted by Y = [y1; y2; · · · yD]. Each yt corresponds to a physical location in
the tessellation, so yt = i means that the human was in cell i at time t.

We adopt a very simple model of agent perception, albeit one based in search theory.
The model is that the likelihood of detecting an object of interest in cell i is certain if
the human occupies that cell, is zero for cells outside a fixed radius of detection, and is
constant for all cells within the radius of detection. Let N(i) denote the set of all cells
that are within R units of cell i, in which R defines a radius,

N(i) = {j : j is no further than R cells from i}. (5)

Let λ ∈ (0, 1) be the constant of detection for all cells withinN(i). Thus, an agent’s
probability of detection at position xt is given by Equation (6).

POt
i |St

i
(F | T ) =

0 if i = xt

1− λ if i ∈ N(xt)
1 otherwise

(6)



By definition, POt
i |St

i
(T | T ) = 1 − POt

i |St
i
(F | T ). In (6), we assume a search

agent can do perfect observation in the cell he is in. However, there exist distinctions on
probabilities of detection in the neighbor cells, which come from the difference on agent
perception capabilities. To differentiate the observation range, we use Nhuman(yt) and
Nrobot(xt) for the set of observed cells by human and robot at time t.

5.2 Team Interaction Model

The team interaction model uses the flank support range Rhuman
flank to determine the set

of cells for the wingman robot motion. This is based on the human’s tolerance for how
far the robot can wander before being out of position. We use (5) to translate Rhuman

flank

into a set of feasible cells, Nhuman
flank (yt), in which yt is the human’s position. Given a

motion range of the wingman robot at a time step, Rrobot
motion, we have

∀yt , xt ∈ Nhuman
flank (yt) ∩Nrobot

motion(x
t−1) (7)

to define the wingman robot motion dependence on the human motion.
In this paper, we assume that the teammate model provides enough information to

estimate the human’s path via prediction, Equation (6) can be used to determine the
posterior probability of likely target location after the human has moved. The posterior
from the human is then used as the prior for the robot. In essence, this means that
the shared belief about the world passes through two phases: a refinement that comes
because the human has moved through the environment and a refinement that comes
because the robot is going to move through the environment.

5.3 Team Task Model

When the robot plans to fulfill its role for the task model, it assumes that objects of
interest do not move, appear, or disappear over time, but this will change in future
work. Given this assumption, the prior estimate for the target object’s location at time t
is equal to the posterior estimate for target object location at time t− 1. In future work,
if the object of interest can move, then a predictive step is required and a full Bayes
filter can be applied [15].

Since the human’s path has been obtained from the teammate model (the robot is
supporting the human), our goal is to control the robot’s path to maximize the amount
of information gathered by the human and robot combined. When the robot is at xt,
it will update the beliefs of all the neighbor cells defined by the radius of detection,
Rrobot. We denote the information gain at position xt as

F (xt) =
∑

i∈Nagent(xt)∪xt

[H(belt−1i )−H(belti)]. (8)

In (8), H(belti) denotes the entropy of the belief of cell i at time t, and F (xt) shows the
uncertainty reduction at time t from the all the observed cells.

In order to keep synchronization with human motion, a requirement imposed by
the interaction and task model, we assume that the robot starts in the same location



(a) After Human Visited (b) After Wingman Robot
Visited, FSR = 2, ROR =
2

(c) After Wingman Robot
Visited, FSR = 2, ROR =
3

(d) After Wingman Robot
Visited, FSR = 3, ROR =
2

Fig. 4. The entropy of shared belief of the search region changed after observation, FSR is short
for FlankSupportRange, ROR is short for RobotObservationRange.

as the human and intends to plan a time length identical with the predicted human
motion length. We set the initial position by x0 = y0 and the planning time length
to D. These constraints yield a natural tree structure for the problem, which forms a
tree by finding all “visitable” cells by (7). The problem is thus to find the sequence
X = [x1;x2; · · ·xD] of robot positions such that

D∑
t=1

F (xt) = H(belD)−H(bel0) (9)

is as large as possible. Performance can either be described as a summation of infor-
mation gain at each time step or the total information gain reward. Putting this together
with the constraint (7) from the team interaction model yields the constrained optimiza-
tion problem for the team task model.

max
x1···xD

∑D
t=1 F (x

t)

subject to xt ∈ Nhuman
flank (yt) ∩Nrobot

motion(x
t−1).

(10)

Fig.4 shows a case of how the entropy of the shared belief of the search region has
been updated by the search of the human-robot team. To visualize the entropy, we color



the maximum value in black and minimum value in white, which determines the gray
transition for the values in between. Before the search begins, we assume we have no
idea on the location of the search object so that all the cells have been colored black
which shows the largest uncertainty. For visited cells, the entropy is reduced to zero.
This means the entropy of the shared belief of this cell has been reduced to zero so that
this cell has been colored white.

5.4 Simulation

Fig.4(a) shows how the entropy of the shared belief of the search region has been
changed by a human search agent. The robot’s teammate model assumes, via Equa-
tion (6), that the human has imperfect observation in neighboring cells, so the entropy
of the believes on neighboring cells has been reduced less than the visited cells. The
value of the gray color is determined by how the observation model is defined.

Based on the human path and how the shared belief of the environment has changed,
the robot wingman plans a path to optimize the team information gain, subject to the
teammate interaction model via Equation (7). Fig.4(b), 4(c) and 4(d) show the entropy
of the shared belief of the search region after the search of the robot wingman within
different parameters. We use arrows to label the planned path of the robot wingman. We
can see that increasing the observation range of the robot will usually not influence the
planned path for the robot wingman, as Fig.4(b) and 4(c) have the same path shapes.
However, increasing the flank support range, which gives more motion freedom to the
robot wingman, will lead to a new generated path, as shown in Fig.4(d).

6 Conclusion And Future Work

Based on shared mental model and search theory, we model team-based search as an
information-based task using a Bayesian approach. A wingman robot has been intro-
duced for this problem, with robot decision algorithms designed to support collaborative
human-robot interaction. Using the entropy of the belief of the search region as a way of
information measurement, we illustrate how the robot wingman will do path planning
for collaborating with the human as an optimization problem. Using a specific case, we
illustrate how the human robot collaboration on a search task will change the entropy
of the belief of the search region, which works as a shared model on the environment
from the team perspective. Here we only use a depth-first exhaustive search to find the
optimal solution for wingman path planning. Future work will be focused on propos-
ing an efficient and applicable solution for wingman path planning. Moreover, we will
add more features on modeling the search environment, like obstacles and stochastic
dynamics. Finally, we will relate problem modeling assumptions to the requirement of
a shared mental model.
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