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Abstract

Learning algorithms often obtain relatively
low average payoffs in repeated general-sum
games between other learning agents due to a
focus on myopic best-response and one-shot
Nash equilibrium (NE) strategies. A less my-
opic approach places focus on NEs of the
repeated game, which suggests that (at the
least) a learning agent should possess two
properties. First, an agent should never learn
to play a strategy that produces average pay-
offs less than the minimax value of the game.
Second, an agent should learn to cooper-
ate/compromise when beneficial. No learning
algorithm from the literature is known to pos-
sess both of these properties. We present a
reinforcement learning algorithm (M-Qubed)
that provably satisfies the first property and
empirically displays (in self play) the second
property in a wide range of games.

1. Introduction

Artificial agents should act intelligently in complex
and unknown environments, including environments
influenced by other learning agents. Many of these en-
vironments can be modeled as repeated general-sum
matrix games, which may be fully cooperative, fully
competitive, or somewhere in between. Many learn-
ing algorithms perform well in various classes of these
games, yet none of these algorithms perform well in
general-sum matrix games as a whole.

One reason that learning algorithms have been unable
to learn strategies that produce high average payoffs
in many repeated general-sum games is that they have
focused on one-shot game theoretic concepts, which
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has led to a focus on learning (myopic) best-response
strategies. While appropriate in many games, game
theory itself suggests, through the folk theorem, that
these approaches do not produce satisfactory results
in many other games.

The folk theorem suggests two properties that a suc-
cessful learner should possess in repeated games. First,
a learner should never learn a strategy that produces
expected payoffs lower than the minimax value of the
game. Second, a learner should learn to make and
accept compromises that increase its average payoffs.

In this paper, we present a reinforcement learning al-
gorithm (called M-Qubed) that provably satisfies the
first property and empirically displays (in self play)
the second property in a wide range of games.

2. Definitions

In this section, we give some definitions and notation.
Let S denote the set of states in the game and let
Ai denote the set of actions that agent/player i may
select in each state s ∈ S. Let a = (a1, a2, . . . , an),
where ai ∈ Ai, be a joint action for n agents, and let
A = A1 × · · · ×An be the set of possible joint actions.

A strategy (or policy) for agent i is a probability distri-
bution πi(·) over its action set Ai. Let πi(S) denote a
strategy over all states s ∈ S and let πi(s) (or πi) de-
note a strategy in a single state s. A strategy may be a
pure strategy (the agent selects an action deterministi-
cally) or a mixed strategy (otherwise). A joint strategy
played by n agents is denoted by π = (π1, . . . , πn).
Also, let a−i and π−i refer to the joint action and
strategy of all agents except agent i.

Central to game theory is the matrix game, defined
by a set of matrices R = {R1, . . . , Rn}. Let R(π) =
(R1(π), . . . , Rn(π)) be the vector of expected pay-
offs when the joint strategy π is played. Also, let
Ri(πi, π−i) be the expected payoff to agent i when it
plays strategy πi and the other agents play π−i. A



Learning to Compete, Compromise, and Cooperate in Repeated General-Sum Games

r p s
r 0, 0 -1, 1 1, -1
p 1, -1 0, 0 -1, 1
s -1, 1 1, -1 0, 0

a b c
a 0, 0 0, 1 1, 0
b 1, 0 0, 0 0, 1
c 0, 1 1, 0 0, 0

(a) Rock, Paper, Scissors (b) Shapley’s Game

a b
a 1, -1 -1, 1
b -1, 1 1, -1

a b
a 2, 2 0, 0
b 0, 0 4, 4

a b
a 2, 2 3, -5
b -5, 3 4, 4

(c) Matching Pennies (d) Coordination Game (e) Stag Hunt

c d
c 3, 3 0, 5
d 5, 0 1, 1

c d
c 3, 3 2, 3.5
d 3.5, 2 1, 1

a b
a 0, 3 3, 2
b 1, 0 2, 1

(f) Prisoner’s Dilemma (g) Chicken (h) Tricky Game

Figure 1. Payoff matrices for various games (zero-sum, co-
operative, and conflicting interest).

.

Figure 2. Payoff space of the prisoner’s dilemma game
shown in Figure 1(f).

stage game is a single iteration of a matrix game, and
a repeated matrix game is the indefinite repetition of
the stage game between the same agents.

Figure 1 shows several two-player matrix games. In
the figure, the payoff to the row player is followed by
the payoff to the column player. For example, if the
row player plays c and the column player plays d in (f),
then the row player gets a payoff of 0 and the column
player gets a payoff of 5.

Each matrix game has certain game theoretic val-
ues. The minimax value for agent i is mi =
maxπi

mina−i
Ri(πi, a−i). The minimax strategy for

agent i is πm
i = argmaxπi

mina−i
Ri(πi, a−i). A one-

shot NE is a joint strategy π such that no agent can
unilaterally change its strategy without lowering its ex-
pected payoff in the current stage. Nash (1951) showed
that every n-player matrix game has at least one one-
shot NE. An NE of the repeated game (rNE) is a joint
strategy π(S) over all states s ∈ S, such that no agent
can unilaterally change its strategy in any state s ∈ S
without lowering its expected average payoff over time.
Every one-shot NE is an rNE.

While matrix games do not have state, agents can ben-
efit from using the previous w joint actions taken by

the agents as state (see (Sandholm & Crites, 1995)).
Unless otherwise stated, we use w = 1. Thus, if agent
1 plays c and agent 2 plays d at time t, then the state
at time t + 1 (st+1) is cd.

We assume that an agent can observe its own payoffs as
well as the actions taken by all agents. Thus, an agent
can observe its own payoff matrix Ri and can calculate
its minimax value mi and minimax strategy πm

i using
linear programming. Since an agent knows its payoff
matrix Ri it also knows its highest and lowest possible
expected payoffs (denoted h$ and l$ respectively).

3. Motivation

Most multiagent learning algorithms to date have fo-
cused on learning a (myopic) best response to the
strategies of other agents (e.g. (Fudenberg & Levine,
1998; Bowling & Veloso, 2002)). Play between learn-
ing agents using such approaches often converges to a
one-shot NE. However, a major result from game the-
ory (the folk theorem) suggests that the goal of reach-
ing a one-shot NE may be inappropriate in repeated
games. In this section, we briefly review the folk the-
orem (which is presented in more detail in (Gintis,
2000)) and some of its implications.

3.1. The Folk Theorem

Consider the prisoner’s dilemma game shown in Fig-
ure 1(f). The joint payoff space of this game is shown
in Figure 2, where the x and y axes show the payoffs
to the row and column players respectively. Convex
combinations of the various joint payoffs of the game
form the game’s payoff space (convex hull), which is
depicted by the union of the shaded regions (light and
dark) in the figure. By playing d, each player can guar-
antee itself a payoff at least as great as its minimax
value,1 so neither player has an incentive to receive an
average payoff per stage less than 1. Thus, the darkly
shaded region of the convex hull shows the set of av-
erage joint payoffs that the agents may be content to
receive. The folk theorem says that any joint payoff in
this region can be sustained by an rNE, provided that
the players believe that play will continue with high
probability after each stage of the game.

More formally, let C be the set of points in the con-
vex hull of the game. Any joint payoff R(π) =
(R1(π), R2(π)) ∈ C such that R1(π) ≥ m1 and
R2(π) ≥ m2 can be sustained as an rNE provided that
the discount rates of the players are close to unity. The
folk theorem can be extended to n-player games.

1In the prisoner’s dilemma, the minimax solution is a
one-shot NE, but this is not always true in the general case.
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3.2. Implications

The folk theorem implies that, in many games, there
exist rNEs that yield higher payoffs to all agents than
do one-shot NEs. Thus, the one-shot NE should not be
the goal of learning agents. Rather, in repeated games
between other successful learning agents, a successful
agent should learn to play profitable rNEs.

Since many repeated games have an infinite number
of rNEs, the folk theorem does little to indicate which
one the agents should play. Littman and Stone (2003)
give an algorithm for computing an rNE that satisfies
a set of desiderata, but how to learn this strategy is
unknown. Also, an agent may want to play a more
beneficial (for it) rNE if allowed by its associate(s).

Additionally, in games between learning agents, it is
difficult for a learner to determine if it is playing its
portion of an rNE. Because of this, we seek to design an
agent that learns to play strategies that yield average
payoffs that correspond to an rNE, preferably an rNE
with a high payoff. Thus, a learner should possess (at
the least) the following two properties.
Property 1. (Security Property) An agent should not
learn to play strategies that produce average expected
payoffs below its minimax value mi.

An agent can easily satisfy this property by playing
πm

i regardless of what its associates do. However,
such a strategy may be “irrational,” since mi may be
much lower than the payoffs that an agent can real-
istically expect. On the other hand, mi is the high-
est expected payoff that any agent can guarantee itself
without some form of cooperation or compromise from
its associate(s). Thus, a successful agent must learn (if
possible) to influence its associate(s) to be cooperative,
which brings us to the second property.

Let Ωt
i(π

t
−i(S)) = {πi(S) : Ri(πi(S), πt

−i(S)) > mi}
and let ∆−i(S) = {π−i(S) : Ωi(π−i(S)) 6= ∅}. That
is, Ωt

i(π
t
−i(S)) is the set of all strategies for agent i (at

time t) that will give it an expected payoff greater than
its minimax value given the other agents’ strategies
πt
−i(S); and ∆−i(S) is the set of associate strategies for

which Ωt
i is not empty. Also, let ϕT

i = (a0
i , a

1
i , . . . a

T
i )

be an action sequence through time T for agent i,
where at

i is agent i’s action at time t. Let Φi = {ϕT
i :

∀t ≥ T , πt
−i(S) ∈ ∆−i(S) if πt

i(S) ∈ Ωt
i(π

t
−i(S))}.

That is, Φi is the set of action sequences that agent i
may take that leads to it receiving an expected payoff
greater than its minimax value from time T onward.
Property 2. (Compromise/Cooperate Property) This
property has two parts: influence and compromise.
• Influence. If Φi 6= ∅, then an agent should play

ϕi ∈ Φi prior to time T and πt
i(S) ∈ Ωt

i(π
t
−i(S))

thereafter.
• Compromise. An agent can be influenced in non-

competitive games.
We refer to this property as the compromise/cooperate
(C/C) property because an agent must offer and ac-
cept compromises to possess it. In words, influence
says that if an agent can influence its associate(s) to
play cooperatively, it will. While this may be impracti-
cal without omniscience, a successful agent should sat-
isfy this property when associating with a large class
of learning agents in a large class of games. Com-
promise says that an agent can be induced to cooper-
ate/compromise. Therefore, an agent must be able to
compromise in self play to satisfy this property.

To better motivate the implications of these proper-
ties, we give several examples from the three classes of
repeated general-sum games: competitive games, co-
operative games, and games of conflicting interest.

3.2.1. Competitive Games

Competitive games have no solution in which all agents
receive an average payoff greater than their minimax
value mi. Figures 1(a) and (c) are examples of such
games. Both of these games have a single rNE, which
corresponds to each game’s minimax solution. The
security property implies that an agent should receive
an average payoff of mi in these games (provided, of
course, that its opponent is unexploitable).

3.2.2. Cooperative Games

Figure 1(d) shows a fully cooperative game with two
one-shot NEs (when the agents both play the same
action) and an infinite number of rNEs. The rNE in
which both agents repeatedly play b is the most desir-
able outcome. A related game is shown in Figure 1(e),
in which action b is risky, yet still corresponds to the
most profitable rNE. The C/C property implies that
successful learners should learn to play this risky solu-
tion (provided that their associate will cooperate).

3.2.3. Games of Conflicting Interest

Figures 1(b), (f)-(h) show games of conflicting inter-
est. In these games, offering and accepting compro-
mises can produce expected payoffs that are higher
than those obtained by playing a one-shot NE. These
compromises often require that agents resort to alter-
nating between “winning” and “losing.” For example,
in Shapley’s game, the one-shot NE is for both agents
to play completely randomly, which yields an expected
payoff of 1

3 to both agents. However, if the agents take
turns “winning” (i.e., alternating between payoffs of
0 and 1) they both receive an average payoff of 1

2 .
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Learning Algorithm Security C/C (Self Play)

Q-Learning No No

Fictitious Play No No
(Fudenberg & Levine, 1998)

minimaxQ (Littman, 1994) Yes No

NashQ No No
(Hu & Wellman, 1998)

FFQ (Littman, 2001) Yes In cooperative games

WoLF-PHC No No
(Bowling & Veloso, 2002)

Satisficing Learning No In most non-
(Crandall & Goodrich, 2004) competitive games

GIGA-WoLF (Bowling, 2004) Yes No

Table 1. Property characteristics of typical learners.

In Chicken, there are two pure strategy one-shot NEs
which yield the payoffs (3.5, 2) and (2, 3.5). While
there may be situations in which an agent should re-
peatedly accept the payoff of 2 (its minimax value),
many situations exist in which a successful learner
should enforce a mutually beneficial compromise (if
it cannot get 3.5), such as both agents playing c.

3.3. Measuring Existing Algorithms

We know of no algorithm in the literature that pos-
sesses both properties. Table 1 lists typical learners
and indicates which of the two properties they pos-
sess.2 The C/C property is shown for self-play only.

4. The M-Qubed Algorithm

In this section, we describe a learning algorithm that
(provably) satisfies the security property and appears
(empirically) to possess the C/C property in self play.
We call this algorithm M-Qubed (Max or Minimax Q-
learning = M3-Q = M-Qubed).

Like Q-learning (Watkins, 1989), M-Qubed estimates
the value of a state-action pair and generates a policy
using this estimate. We describe the algorithm below.

4.1. Q-update

In Q-learning, the quality of a state-action pair
Q(s, ai) is estimated by iteratively updating Q-values
using the following equation:

Qt+1(s, ai) = (1− α)Qt(s, ai) + α
(
rt
i + γVt(s′)

)
, (1)

where s is the current state, ai is the action taken at
time t, rt

i is the reward receive at time t, and Vt(s′)

2Table 1 typifies algorithms for general-sum games. A
large body of literature has been dedicated to cooperation
in more specific contexts, such as the prisoner’s dilemma
(see, for example, (Sandholm & Crites, 1995)).

is the estimated value of the next state s′, given by
Vt(s′) = V Q

t (s′) = maxbi Qt(s′, bi).

Watkins showed that the estimate Qt(s, ai) approaches
the true Q-values as t→∞ in stationary environments
provided that each state-action pair is taken infinitely
often and the learning rate α is decreased appropri-
ately (Watkins, 1989). However, since matrix games
between learning agents are non-stationary environ-
ments, various algorithms have been proposed to make
Q-learning appropriate for these situations. These ap-
proaches involve a) estimating the value of a state-joint
action pair (rather than a state-action pair) and b) es-
timating the value of the next state Vt(s′) with a game
theoretic value (e.g., (Littman, 1994; Hu & Wellman,
1998; Littman, 2001; Greenwald & Hall, 2003).

M-Qubed updates Q-values as does Q-learning except
it uses

Vt(s′) =
∑
bi

πi(s′, bi)Qt(s′, bi), (2)

where πi(s′, bi) is the probability that the agent be-
lieves it will play action bi in state s′.3 Note that (2)
is equivalent to V Q

t (s′) if πi(s′) = argmaxbi
Qt(s′, bi).

4.2. Generating a Strategy

A Q-learner always (unless exploring) takes the ac-
tion corresponding to its highest Q-value in the current
state. However, in repeated matrix games, an agent’s
best strategy might not be a pure strategy. The trick is
to know when to play a pure strategy, and when to play
a mixed strategy. We advocate that agents should act
predictably (pure strategies) in games of compromise
and cooperation, but unpredictably (mixed strategies)
in competitive games (if πm

i is a mixed strategy). Since
it is frequently unknown a priori whether a game is
competitive or whether associates will be inclined to
cooperate, a successful learning algorithm must deter-
mine whether to act predictably or unpredictably.

In this subsection, we state two strategy rules for de-
termining whether M-Qubed should play predictably
or unpredictably. Since each rule is advantageous for a
different set of circumstances, we present a third rule
which mixes the two rules in a desirable fashion.

In the first strategy rule, M-Qubed determines
whether it should play predictably or unpredictably
by comparing its highest Q-value in the current
state (maxai

Qt(s, ai)) with the discounted sum of mi

(
∑∞

t=0 γtmi = mi

1−γ ). When maxai
Qt(s, ai) > mi

1−γ ,
M-Qubed plays predictably. Otherwise, it plays πm

i .

3(2) makes M-Qubed’s Q-update similar to that of Sarsa
(Sutton & Barto, 1998).
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Thus, M-Qubed’s strategy in state s is

π∗i (s)←
{

argmaxai
Qt(s, ai) if maxai Qt(s, ai) > mi

1−γ

πm
i otherwise

(3)

Unfortunately, an agent may be exploited when using
this rule since its Q-values might not reflect its actual
payoffs when the environment is non-stationary.

A second rule for determining whether to play pre-
dictably or unpredictably is to compare the agent’s
average payoff µt

i = 1
t

∑t
j=1 rj

i with mi. This gives

π∗i (s)←
{

argmaxai
Qt(s, ai) if

µt
i

1−γ
> mi

1−γ

πm
i otherwise

(4)

While safe, µt
i reacts too slowly. Thus, an agent using

rule (4) might a) continue to play πm
i when a more

profitable strategy can be learned otherwise or b) be
slow to play πm

i when it is being temporarily exploited.

Thus, (3) allows an agent to explore possible improve-
ments (C/C), while (4) provides an agent with secu-
rity. A balance may be obtained by learning which of
the two techniques is more successful. Let βt

i be the
probability that M-Qubed uses (4) at time t, and let
1− βt

i be the probability that it uses (3). Thus,

π∗i (s)←
{

Rule (4) with probability βt

Rule (3) with probability 1− βt
(5)

βt
i is determined using β́t

i . Initially, M-Qubed opti-
mistically sets β́0

i = 0, then updates it using

β́t+1
i ←

{
β́t

i + λ(rt
i −mi) Rule (4)

β́t
i − λ(rt

i −mi) Rule (3)
(6)

where λ is some constant. In words, β́t
i determines

which rule is more successful by increasing (toward
rule (4)) if rule (4) yields payoffs greater than mi or if
rule (3) yields payoffs lower than mi, and decreasing
(toward rule (3)) otherwise. βt

i is β́t
i constrained to

the interval [0, 1], or βt
i = min(1,max(0, β́t

i )).

4.3. Adding Exploration

Q-learners typically explore their environment using ε-
greedy or Boltzmann exploration. In repeated matrix
games, an alternate exploration method is to set initial
value estimates optimistically (as suggested by Stimp-
son et al. (2001)) and let the learning process dictate
exploration. M-Qubed does this by initializing each
Q-value to its highest possible expected discounted re-
ward, h$

1−γ . In this way, an agent uses a relaxation
search to find a strategy that yields an expected dis-
counted reward at least as high as its highest Q-value.

1) α, η ∈ [0, 1], β́i = βi = 0.
2) Estimate h$, l$, mi, and πm

i during n observations.
3) Initialize πi(s, ai)← 1

|Ai|
, Q(s, ai)← h$

1−γ

4) Repeat,
a) Take action ai according to πi(s)
b) Observe reward r and next state s′:

i) Update estimates of mi, πm
i , h$, and l$

ii) Update πi(s
′) using Eq. (7)

iii) Update Q(s, ai) using Eqs. (1), (2)

iv) Update β́i, βi using Eq. (6)

Table 2. The M-Qubed algorithm for player i.

Name Type Parameter details

M-Qubed M-Qubed α = 0.1, γ = 0.95,

η = 0.04
(

20000
20000+t

)
, λ = 0.01α

h$−l$

QL Q-learner α = 1/(10 + 0.01κ
ai
s ), γ = 0.95,

ε-greedy w/ ε = max(0.2− 0.0006t, 0)

rQL Q-learner α = 1/(10 + 0.01κ
ai
s ), γ = 0.95,

ε-greedy w/ ε = 0.1

WoLF WoLF- Same as QL, but with
PHC δw = 1/(10.0 + κ

ai
s ), δl = 4δw

Table 3. Learners and their parameter values. κai
s is the

number of times that action ai has been played in state s.

M-Qubed also randomizes its strategy with some small
probability η if it perceives that its current strategy
π∗i keeps it in a local maximum. M-Qubed guesses
that this is the case if it has not visited state s∗ (a
state with the highest global Q-value) in the previous
L = (

∏
i |Ai|)w (the number of states in the games)

stages of the game. Thus,

πi(s, ai)←
{

π∗
i (s, ai), if s∗ ∈ {st−L, · · · , st}

(1− η)π∗(s, ai) + η 1
|Ai|

, otherwise (7)

where π∗i (s, ai) is obtained from (5) (unless stated oth-
erwise). η is slowly decayed to 0 as t→∞.

Because M-Qubed can cease to explore, it can learn
strategies that are not as desirable as it otherwise
might have learned. However, we will show in the next
section that continuing to explore in repeated games
can be more costly than ceasing exploration.

5. Results

In this section, we prove that M-Qubed (summarized
in Table 2) satisfies the security property and show
that it displays the C/C property in a wide range of
games (in self play). Unless stated otherwise, the pa-
rameter values used are as shown in Table 3.

5.1. Security Property

Before giving the main theorem, we give two lemmas
related to the random walk of β́t

i since its behavior
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relates closely to the performance of M-Qubed. The
first lemma shows that the interval (0, 1) is a reflect-
ing boundary for β́t

i when M-Qubed is being exploited.
The second lemma states a property of reflected ran-
dom walks.

Let lti = (mi − rt
i) be agent i’s loss at time t, and let

Lt
i =

∑t−1
j=0 lji be its accumulated loss prior to time t.

Let t ∈ [τ, ρ] be an interval such that β́t
i ∈ (0, 1).

Lemma 1. E[β́ρ
i − β́τ

i ] > 0 if M-Qubed is exploited
during time t ∈ [τ, ρ].

Proof. Let ξ3 be the subset t ∈ [τ, ρ] in which M-
Qubed uses strategy rule (3), and let ξ4 be the subset
t ∈ [τ, ρ] in which it uses strategy rule (4). Then M-
Qubed’s expected loss during t ∈ [τ, ρ] is

E[Lρ
i − Lτ

i ] =

ρ∑
t=τ

E[lti ] =
∑
t∈ξ3

E[lti ] +
∑
t∈ξ4

E[lti ]

When µt
i ≤ mi, then

∑
t∈ξ4

E[lti ] ≤ 0 since M-Qubed
plays πm

i .4 Thus, the expected loss becomes E[Lρ
i −

Lτ
i ] ≤

∑
t∈ξ3

E[lti ]. Since β́t
i increases whenever rt

i <

mi and M-Qubed plays rule (3), E[β́ρ
i − β́τ

i ] > 0 if
M-Qubed is exploited in t ∈ [τ, ρ].

We state the next lemma without proof. Let W be a
random walk in which E[Wt−Wt+1] ≥ 0 provided that
it encounters no boundaries. Let there be a reflecting
boundary such that whenever Wt < b, E[Wt+T ] ≥ b
for some T > 0. Also, let Pr(·) denote a probability.

Lemma 2. Pr(Wt < b)→ 0 as t→∞.

Theorem 1. M-Qubed satisfies the security property
(in the limit) in all repeated general-sum matrix games,
regardless of its associate(s).

Proof. We will show that limt→∞ Lt
i/t ≤ 0 in the worst

case. The worst case can occur when playing against
an omniscient opponent, a seer agent, which knows
everything about M-Qubed including its strategy, but
not its actual actions (a priori).

If Lt
i ≤ 0 for all t ≥ T , then limt→∞ Lt

i/t ≤ 0. Other-
wise, we must address three cases when µt

i < mi.

Case 1: β́t
i ≤ 0 for all t ≥ T . Since βt

i = 0 when β́t
i ≤

0, M-Qubed uses strategy rule (3) with probability 1.
Thus, (6) assures that β́t

i = β́T
i −λ(LT

i −Lt
i), so agent

i’s loss during t ≥ T is Lt
i−LT

i = β́t
i−β́T

i

λ . Since β́t
i ≤ 0,

Lt
i − LT

i ≤
−β́T

i

λ (a constant), so limt→∞ Lt
i/t ≤ 0.

4Since η → 0 as t→∞ we can assume η = 0.

Case 2: β́t
i ≥ 1 for all t ≥ T . Using similar logic as

case 1 (using (4) rather than (3)), limt→∞ Lt
i/t ≤ 0.

Case 3: β́t
i ∈ (0, 1) for some arbitrary time interval(s)

t ∈ [τ, ρ]. Lemma 1 shows that E[β́ρ
i − β́τ

i ] is propor-
tional to M-Qubed’s losses during the time t ∈ [τ, ρ].
This means two things. First, a seer agent cannot in-
crease M-Qubed’s expected accumulated loss by more
than a constant when β́t

i ∈ (0, 1). Second (in conjunc-
tion with cases 1 and 2), M-Qubed’s expected accu-
mulated loss can increase by no more than a constant
except when β́t

i repeatedly crosses 0 or 1. Each time
β́t

i crosses 0 or 1, M-Qubed can experience a small loss
(bounded by (mi− l$)). However, since M-Qubed uses
rule (3) when β́t

i ≤ 0, β́t
i ≤ 0 is a reflecting boundary.

Since β́t
i also satisfies the preconditions of Lemma 2

it follows from Lemma 2 that Pr(β́t
i < 0) → 0 as

t→∞. Thus, β́t
i crosses 0 increasingly less frequently

as t → ∞. A similar argument can be made for β́t
i

crossing 1 since Lemma 1 shows that (0, 1) is also a re-
flecting boundary (thus, β́t

i < 1 is a reflecting bound-
ary). Therefore, limt→∞ Lt

i/t ≤ 0.

Figure 3(a) shows the average payoffs of various learn-
ers against a seer agent in Matching Pennies. Since
a Q-learner (unless exploring) plays the action corre-
sponding to its max Q-value, a seer agent exploits it
indefinitely. Also, if M-Qubed uses only strategy rule
(3) (labeled M-Qubed(3)), then it may be exploited
somewhat. However, if M-Qubed uses strategy rules
(4) or (5) (labeled M-Qubed (4) and (5)), it learns
to play π∗i and, therefore, cannot be exploited. Fig-
ure 3(b) shows M-Qubed’s average payoffs in self play.

5.2. Cooperation and Compromise Property

In this subsection, we present empirical results show-
ing that M-Qubed displays (in self play) the C/C prop-
erty in many general sum matrix games. In doing so,
we compare its performance with the self play of other
learning agents (see Table 3) in a number of games.

Prisoner’s Dilemma. Figure 3(c) shows average pay-
offs for the Prisoner’s Dilemma. M-Qubed learns to
always cooperate, resulting in a payoff of 3 to both
agents. The other learners learn strategies that pro-
duce inferior payoffs. Note, however, that QL, which
stops exploring, is more successful than rQL, which
continues exploring. WoLF-PHC generally learns to
defect since it plays a stochastic (unpredictable) pol-
icy while learning.

Figures 4(a) and (b) show the average payoffs to agent
1 when M-Qubed agents use different values of α and
γ. The parameter values of the two agents are shown
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along the x and y-axes respectively. Lighter colors
indicate that agent 1 received high payoffs. The figures
show that M-Qubed is more successful when using low
values of α and high values of γ.

Chicken. M-Qubed also learns mutual cooperation in
Chicken, giving it the highest average payoffs of the
learners (see Figure 3(f)).

Shapley’s Game. Many learning algorithms do not
converge in Shapley’s game (Fudenberg & Levine,
1998; Bowling, 2004). However, M-Qubed does con-
verge to a cooperative solution which yields an average
payoff of 1

2 to each agent (see Figure 3(d)). The other
learners play strategies that yield only slightly lower
average payoffs, but do not typically converge. Again,
QL outperforms rQL since QL stops exploring.

Staghunt. While all the other learners typically learn
to play a in Staghunt, M-Qubed learns to play b, which
results in a significantly higher payoff (see Figure 3(e).
Figures 4(c) shows the results of varying α, which
again shows that lower values of α are more successful.

Tricky Game. Figures 3(g) and (h) show payoffs to the
row and column players respectively. Again, M-Qubed
outperforms the other agents and QL outperforms rQL

6. Summary and Discussion

We have advocated that learners in repeated games
should a) never learn to receive payoffs below the min-
imax value of the game and b) have the ability to co-
operate/compromise. No algorithm from the litera-
ture is known to satisfy both of these properties si-
multaneously. We presented an algorithm (M-Qubed)
that provably satisfies the security property and dis-
plays the C/C property in self play in many games. In
these games, M-Qubed learns the solutions proposed
in (Littman & Stone, 2003), which are pareto effi-
cient. These results support the hypothesis that learn-
ing agents should act predictably in non-competitive
games, and unpredictably otherwise.

M-Qubed has a number of weaknesses, one of which
is that it can be “bullied” by more intelligent agents
(though it still gets a payoff as great as its minimax
value). Additionally, M-Qubed does not have the C/C
property when associating with many other learners.
We believe that future learning algorithms should use
principles such as reputation, teaching, etc. in order to
satisfy the C/C property with a larger class of learners.

Acknowledgments

We thank Michael Bowling and Rich Sutton for helpful
discussions about the algorithm presented herein.

References

Bowling, M. (2004). Convergence and no-regret in
multiagent learning. Advances in Neural Informa-
tion Processing Systems.

Bowling, M., & Veloso, M. (2002). Multiagent learning
using a variable learning rate. Artificial Intelligence,
136(2), 215–250.

Crandall, J. W., & Goodrich, M. A. (2004). Learning
near-pareto efficient solutions with minimal knowl-
edge requirements using satisficing. AAAI Spring
Symp. on Artificial Multiagent Learning.

Fudenberg, D., & Levine, D. K. (1998). The theory of
learning in games. The MIT Press.

Gintis, H. (2000). Game theory evolving: A problem-
centered introduction to modeling strategic behavior.
Princeton, New Jersey: Princeton University Press.

Greenwald, A., & Hall, K. (2003). Correlated-q learn-
ing. Proc. of the 20 th Intl. Conf. on Machine Learn-
ing.

Hu, J., & Wellman, M. P. (1998). Multiagent rein-
forcement learning: Theoretical framework and an
algorithm. Proc. of the 15 th Intl. Conf. on Machine
Learning.

Littman, M. L. (1994). Markov games as a framework
for multi-agent reinforcement learning. Proc. of the
11 th Intl. Conf. on Machine Learning.

Littman, M. L. (2001). Friend-or-foe: Q-learning in
general-sum games. Proc. of the 18 th Intl. Conf. on
Machine Learning.

Littman, M. L., & Stone, P. (2003). A polynomial-
time nash equilibrium algorithm for repeated games.
ACM Conf. on Electronic Commerce.

Nash, J. F. (1951). Non-cooperative games. Annals of
Mathematics, 54, 286–295.

Sandholm, T. W., & Crites, R. H. (1995). Multiagent
Reinforcement Learning in the Iterated Prisoner’s
Dilemma. Biosystems, Special Issue on the Pris-
oner’s Dilemma.

Stimpson, J. R., Goodrich, M. A., & Walters, L. C.
(2001). Satisficing and learning cooperation in the
prisoner’s dilemma. Proc. of the 17 th Intl. Joint
Conf. on Artificial Intelligence.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning: An introduction. The MIT Press.

Watkins, C. (1989). Learning from delayed rewards.
Doctoral dissertation, University of Cambridge.



Learning to Compete, Compromise, and Cooperate in Repeated General-Sum Games

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 3. Plots showing the performance of several learning algorithms in many of the matrix games shown in Figure 1.
Each plot shows the sliding average (mean of 50 trials) obtained by the agents over time. (a) learners vs. seer agent in

matching pennies. For M-Qubed (4), mi in (4) is replaced by the function f(t) = min(l$ +
t(mi−l$)

30000
, mi). (b) M-Qubed in

self play in matching pennies. (c), (d), (e), (f), (g), (h) Average payoffs to agents in self play in the prisoner’s dilemma,
Shapley’s game, staghunt, chicken, and tricky game. Unless stated otherwise, parameter values are as given in Table 3.

(a) (b) (c)

Figure 4. Average payoffs to player 1 of learned strategies for M-Qubed in self play when parameter values are varied by
the agents as shown along the axes.


