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Abstract—A swarm is a group of uninformed individuals that
exhibit collective behaviors. The group without any information
has limited ability to achieve complex goals. Human-swarm
interaction methods often allow a human to influence these
uninformed individuals through either leadership or predation
as informed agents that directly interact with humans. These
methods of influence have two main limitations: (1) although
leaders sustain influence over nominal agents for a long period
of time, they tend to cause all collective structures to turn in to
flocks (negating the benefit of other swarm formations) and (2)
predators tend to cause collective structures to fragment. In this
paper, we present the use of mediators as a novel form for human-
swarm influence and use mediators to shape the perimeter of a
swarm. The mediator method uses special agents that operate
from within the spatial center of a swarm. This approach allows
a human operator to coordinate multiple mediators to modulate
a rotating torus into various shapes while sustaining influence
over the swarm, avoiding fragmentation, and maintaining the
swarm’s connectivity. The use of mediators allows a human to
mold and adapt the torus’ behavior and structure to a wide
range of spatio-temporal tasks such as military protection and
decontamination tasks. This paper also provides the results of the
experiment concerned with decontamination task that compares
previous informed agent methods to the mediator-based control
with regard to manageability and performance.

I. INTRODUCTION

Performing tasks with multiple robots potentially increases
the performance and flexibility of robots, but at a cost of
increased difficulty for the human(s) responsible for manag-
ing the robots. To manage multiple robots efficiently, many
researchers have tried to find an efficient control method by
observing swarm behavior in nature. In this work, a swarm
consists of a group of simple individuals who act without
input from a centralized controller, responding spontaneously
to signals from its environment and its neighbors.

In this paper, we utilize a swarm model in which each in-
dividual in the swarm follows three simple heuristic rules [1]–
[3]: (1) each individual attempts to stay within a certain range
of its neighbors, (2) each individual tries to avoid collisions by
maintaining a minimum distance from its neighbors, and (3)
each individual matches its velocity to its neighbors. Swarms
that follow these rules can exhibit a range of mobile spatial
structures including simple flocking and torus behaviors similar
to what have been observed in nature for groups of birds or

fish. Although there are a range of collective structures that
can be produced by these simple rules, we focus on a torus
structure, partly because of its usefulness and partly because
it has received less attention in the literature than other swarm
structures.

A swarm that is formed by only these simple rules has
limited information and, consequently, it is hard to shape
and guide the way the resulting swarm structures move. One
way to allow a swarm to achieve complex goals and adapt
to changing environments is to increase the complexity and
sophistication of the individual agents. Another way, which
minimizes the complexity of individual agents, is to enable
a human to interact with the swarm. Both approaches have
been used in the literature and have been applied to important
problems such as military force protection, firefighting, search
and rescue, etc. [4], [5].

In this paper, we adopt the latter approach and influence
swarm behavior by placing informed agents among uninformed
agents. The informed agents directly respond to an operator’s
input, and the uninformed agents respond to the informed
agents. In this way, a human can use direct influence over
a handful of robots to control an entire swarm.

We introduce a novel way to control a swarm by applying
persistent influence with a new type of informed agents called
mediators. The special types of mediators that we describe
below repel uninformed agents similar to the way a predator
does [6], [7] but use parameters that cause the uninformed
agents to “stay close but not too close” to the mediators. This
approach allows a human to alter the collective shape exhibited
by agents as they encircle a group of mediators. In addition,
the mediator-based control increases the manageability of a
human’s influence over swarms compared to leaders and preda-
tors. We investigate these claims about swarm manageability
and performance using a study of a decontamination task with
three different approaches to informed agent-based control.

II. RELATED WORK

Previous work on Human Swarm Interaction (HSI) has
described several different methods for controlling the agents
in a swarm. Kira and Potter used virtual leaders to influence a
swarm [8]. Similar to their control method, Olfati-Saber also
used a virtual leader to control the behavior of a flock [1].

978-1-4799-2722-7/$31.00 c©2013 IEEE



Su et al. proposed a method for controlling a flock using
multiple virtual leaders where agents have limited sensing
capabilities [9]. Mabrouk et al. use a virtual leader to escape
from a local minima in a reactive problem domain [10].
While these papers deal with enabling human interaction with
swarms through virtual leaders, our approach adds human
interaction to a swarm through one or more informed agents
that simultaneously attract and repel uninformed agents to
shape and steer a torus.

Elkaim and Kelbley showed formation shapes that are
similar to those that we propose. They used virtual leaders
that exerted attraction on other agents, and allowed obstacles
to exert repulsion potential forces on those agents [11]. The
basic concept of their approach is to maintain an equilibrium
between inter-agent potential forces and the forces applied by
a virtual leader positioned at the centroid of the agents. Our
approach differs in that it does not account for obstacles and
uses mediators that exert only a repulsion force on nominal
agents.

Varghese and McKee manipulate agent position by cal-
culating a geometric transformation that makes each agent
move to a desired position while avoiding collisions with
obstacles [12]. Kawashima et al. investigate the responsiveness
of fixed-communication leader-follower networks for manipu-
lating multi-agent formations [13]. Our model does not require
calculating a geometric transformation or a fixed communica-
tion topology but, instead, agents are able to flexibly form
various formations through the influence of mediators.

Kolling et al. present two different ways of enabling human
operators to control robot swarms: selection control and beacon
control [14]. Selection control allows the operator to select a
subset of agents in the swarm and to control consistently. This
is a form of direct and intermittent interaction that requires
that the operator knows the entire environment. Beacon control
is similar to a leader or a predator approach, but one in
which the leader/predator doesn’t move. This is a form of
indirect interaction. In contrast to these approaches, control
by mediator agents uses direct interaction and includes both
parameter setting and persistent influence.

III. THE MODEL

The model we propose is biomimetic, meaning biologically
inspired [2]. Fig. 1 shows how agents in nature simultaneously
respond to both their neighbors and to predators, producing
round empty spaces around the predators. Inspired by this nat-
ural behavior, we propose two different agent types, nominal
agents and mediators, and a mechanism for combining these
two agent types. Mediators are directly influenced by a human,
and nominal agents are influenced directly by mediators. The
term mediator indicates that the human does not directly
influence the nominal agents, but rather indirectly influences
nominal agents via the mediators. This means that the human
and nominal agents share control over the specific structure of
the swarm because the human can influence nominal agents
only by appropriately managing mediators.

We adopt a switching-based control model in which the
nominal agents either (a) react to their neighbors or (b) react to
the mediators but (c) not both. The human provides input to the

Fig. 1. Predators with agents in nature.

mediators, and the mediators influence nominal agents that are
within range of the mediators. Since the nominal agents may
move in and out of the sensing range of the mediator, agents
can switch back and forth between inter-agent influence and
mediator influence. Because avoiding collisions is critical, we
also added a switch in which nominal agents ignore mediators
if inter-agent distance drops below a threshold.

A. Nominal Agent

A nominal agent is a typical type of an uninformed agent
that uses a two-dimensional implementation of Couzin’s three
dimensional model [2]. Since we are interested in ground
robots, the two-dimensional model is sufficient. As mentioned
previously, this model uses three basic rules and can produce
two fundamentally different structures: a torus and a flock [2],
[3]. The first rule is that each agent attempts to stay close to
other agents. This is accomplished by the zone of attraction
(Ratt). Agents are attracted to neighbors within the zone
of attraction to maintain swarm connectivity. The second
rule is that each agent tries to avoid collisions with other
agents by maintaining a minimum inter-agent distance. This
is accomplished by the zone of repulsion (Rrep). This rule has
the highest priority [2], meaning an agent ignores attraction
and orientation forces in order to avoid a neighbor within its
zone of repulsion. The third rule is that each agent matches its
velocity and direction with its neighbors. This is accomplished
by the zone of orientation (Rori).

In addition to Couzin’s rules, we add another rule that
dictates how the nominal agents behave when near a mediator.
In particular, we assume that when nominal agents are near a
mediator they ignore all inter-agent influences except repulsion
and respond only to the mediator. This means that nominal
agents need two sets of parameters for determining their
actions: a set of parameters for when they are in the presence
of a mediator, and a set of parameters for when they are not in
the presence of a mediator. It is useful to treat the former set
as a property of the mediator rather than the nominal agent.
This allows us to systematically explore how nominal agents
respond to the mediator, which we now explain further.

B. Mediator

For the purposes of this paper, leadership means means that
a mediator (called a leader in this case) exerts an attractive
influence over uninformed agents, pulling uninformed agents
toward them. Conversely, predation means the mediator (called
a predator in this case) exerts a repelling influence over
uninformed agents, pushing uninformed agents away. Thus, we
have two specific types of mediators that we refer to as leaders
and predators. We now introduce a third type of mediator,
which we will call the mediator and distinguish it from leaders
and predators.



The mediator influences nominal agents using only preda-
tion, but uses what we can call a “weak” form of predation.

Fig. 2. Torus behavior
around the mediator.

Weak predation means the mediator
repels nominal agents, but the zone
of mediator predation is smaller than
the zone of nominal attraction. Let
the zone of predation be denoted by
Rpred. Weak predation occurs when
2 × Rpred < Ratt, or equivalently
Rpred < Ratt/2, which means that
the range of influence between nom-
inal agents exceeds the maximum
range of mediator influence on the
nominal agents. This allows nominal agents to stay in a
cohesive torus formation when a mediator is in the center
of the group. Combining this constraint with parameters that
Couzin used to produce a torus yields the following ordering
of parameters:

Rrep ≤ Rori < Rpred < Ratt/ 2. (1)

This allows a mediator to be in the middle of a torus and
“steer” the torus in various directions, as shown in Fig. 2.

Note that this means that the nominal agents use the
attraction, orientation, and repulsion behaviors identified in the
previous section when not in the presence of a mediator; when
a mediator is nearby, the mediator repels the agents and the
agents ignore each other except when avoiding collisions.

Table I shows how the parameters of the mediator relate to
previous work using a leader and a predator [6]. The first two
rows in the table indicate the parameters used in prior models,
and the last two rows indicate parameters for the two types of
mediators introduced in this paper.

Informed Agent Order of Nominal Agent’s Each Zone

Leader Rrep ≤ Rori < Ratt < Rlead

Predator Rrep ≤ Rori < Ratt < Rpred

Mediator Rrep ≤ Rori < Rpred < Ratt/ 2

TABLE I. HOW NOMINAL AGENTS ARE INFLUENCED. TOP TWO
INFORMED AGENT INDICATE PREVIOUS MODELS.

IV. SHAPING SWARMS

If we place more than one mediator in the center of a
swarm, we can make the nominal agents track many different
perimeter shapes. Before doing so, we note that a portion of
this section and the previous section were first described in
our previous work [15]; this paper significantly extends prior
work and includes a careful user study with results that were
not previously published. If multiple mediators are given a
specific initial configuration and move with the same direction
and the same speed, the shape of the swarm is approximately
static as the group translates to a new location.

In order to create a range of controllable torus shapes,
we alter nominal agent behavior to create so-called smart
agents [15]. Smart agents, or S-agents, are inspired by the
behavior of the sheep illustrated in Fig. 3. In this figure, the
sheep are orbiting a moving car. Because the car covers part
of the sheep’s vision, the sheep cannot see the entire group’s
movement. Rather, they can see only the neighbors in front of
them so they follow those neighbors.

Likewise, if S-agent i in a swarm observes a set of neighbors
O, it decides to follow the closest neighbor Ei where

Ei = argmin
j∈O

(
√
(ix − jx)2 + (iy − jy)2). (2)

This corresponds to a nearest neighbor topology which has
been shown to accurately model interactions in natural flocks
[16]. The main difference between an S-agent and a nominal
agent is that an S-agent has a more narrow field of view
(θ = 180◦ rather than 270◦). Because an S-agent has a larger
blind spot, it needs more than just attraction to maintain the
connectivity of the swarm.

Fig. 3. Sheep’s encircling mo-
tion around a car.

In order to make the agents
“smarter”, each agent i remem-
bers the last location of its
closest neighbor, PEi

. When
an S-agent does not observe
any neighbors within its vision,
the S-agent recalls the last lo-
cation of its closest neighbor
and moves towards that loca-
tion. As soon as the S-agent
observes a neighbor, it responds to the observed neighbor and
resets its memory.

Another way of being smarter to maintain connectivity is
that each S-agent has the ability to increase its speed when it
gets far from its nearest neighbor [17]. The speed for agent i
is

si(t+ 1) =

{
γ × s if ‖Pi − PEi

‖ > Stable Dist
s otherwise

(3)

where s is constant and γ > 1 determines how much the
agent increases its speed. We tested that when Stable Dist ≤
0.9× Ratt and γ ≥ 1.1, the torus remained stable during the
simulations. Also, we found that the mediator needs to move
slower with S-agents than with nominal agents to maintain a
stable torus formation.

Fig. 4 illustrates the different topologies that result when us-
ing mediators with either nominal agents or S-agents. Nominal
agents show more influence dependencies than S-agents. This
means that nominal agents respond to more neighbors than S-
agents do in order to maintain their connectivity—S-agents
need only the closest neighbor in front of them. As noted
in [15], using S-agents slides the weight of control from being
highly weighted on nominal agents to being equally weighted
between mediators and S-agents. Because of this change, S-
agents are better suited to shaping swarms than nominal agents.

Fig. 4. Topologies among nominal agents N , S-agents S, and mediators M .
Black lines indicate the response among nominal agents. Red lines indicate
the response to the mediator. The notation a→ b means a is influenced by b.



Fig. 5 illustrates that a group of S-agents under the influence
of a group of mediators can adopt a set of very flexible shapes,
more than is possible with nominal agents under the influence
of a group of mediators. The next section presents results from
an experiment that illustrate that S-agents can be managed by
mediators to perform interesting problems, and do so better
than leaders or predators.

(a) (b)

Fig. 5. Dynamic transformation of S-agents from an amorphous blob (a) to
a Y shape (b) under the influence of a group of coordinating mediators.

V. EXPERIMENT SETUP

In this paper, we claim that (a) mediator-control increases
the manageability of swarm control compared to leaders and
predators and (b) swarm-shaping can be used for a real
application. To explore how swarm-shaping can be effectively
used in a real world application, we designed an experiment
that used a problem that is best performed when multiple
robots can be placed in a flexible, dynamic shape around
the perimeter of an interesting spatio-temporal problem. This
means that task performance needs to be associated with the
spatial allocation of robots under time pressure. We created an
ocean-based oil spill scenario for the experiment since currents
and winds cause the oil spill to take various shapes. This means
that the robots need to be able to adopt different shapes to
confine the oil contaminants.

We created two scenarios that subjectively have different
workloads. This allows us to explore whether advantages of
mediator-based control are robust to changes in the problem
caused by environmental conditions. The experiment is thus
a 2 × 3 design with two workload levels and three types of
informed agent; see Table II.

Informed Agent
Scenario Leader Predator Mediator

Low Workload
High Workload

TABLE II. THE LAYOUT OF THE CASE STUDY.

We include seven measurements that reflect two types of
measures: manageability and task performance. Measures in-
clude both subjective and objective measures of performances.
Measures of manageability are as follows:

• Sustainability: This is an objective measure of how
well a human can sustain average influence over all
agents in the collective. High sustainability indicates
that it is easier for a human to manage the group.
This can be calculated by St =

∑t
i=1Bi where, St =

sustainability at time t, n = number of agents, and

Bi =
{

1 if di ≤ Rinfluence

0 otherwise

where, di = distance between an agent i and
an informed agent (leader, predator, mediator),
Rinfluence = radius of influence zone, B = the
adjacency matrix between S-agents and the informed
agent.

• NASA-TLX: This is a subjective measure of the
workload required to manage the group.

• Secondary task performance: This is a more direct
measure of workload, because high error rates indicate
that the human is using cognitive resources to manage
the robots and has little free capacity.

• Travel distance: This indicates how far the informed
agents (leader, predator, mediator) had to move, al-
lowing us to infer how much effort the user requires
to manage S-agents.

Measures of task performance are as follows:

• Amount of contaminant removed: The primary task
is to surround a shaped contaminant by a group of
agents, so this is a direct measure of performance.

• Contaminated area: The task is designed so that
users can hypothetically remove the contaminants in
three minutes, but this is difficult to do in practice.
However, groups that are easy to control and shape
should leave less contaminated area.

(a) Low workload scenario map. (b) High workload scenario map.

Fig. 6. The contaminant source (green dot) produces a new quanta of oil
contaminant every two seconds. (a) No ocean currents. (b) Directions of ocean
currents are marked as red arrows.

In the experiment, participants were given three minutes to
remove as much contaminant as possible. Participants used a
mouse and a keyboard to control leaders, predators, or medi-
ators during the scenario. Parameter used in the experiment
are shown in Table III. We measured distances in terms of
units where Rrep is fixed as 1 unit because it is the minimum
distance that is required to avoid collisions. All conditions fixed
the influence range of informed agents (leaders, predators,
mediators) at 14 units, the number of informed agents at 4,
and the number of nominal agents at 100.

Parameters
Agent Type Rrep Rori Ratt s/unit ω (◦/sec) θ

Nominal Agent 1 4 20 3 40 270
S-Agent 1 1 20 4 40 180

TABLE III. SUMMARY OF UNINFORMED AGENTS’ PARAMETERS:
SPEED s, TURNING RATE ω, AND VISION RANGE θ.

VI. MISSION

Each participant operates each of the different types of
informed agents (leader, predator, mediator) to manage and



control multiple uninformed agents to form a perimeter around
the oil spill and absorb as much oil as possible. As Fig. 6
shows, one oil source is located in the middle of the oil contam-
inants and produces a new quanta of oil contaminant every two
seconds. Each quanta is repelled by other contaminants and
moves depending on ocean currents. If the uninformed agents
are near enough to the oil for long enough, the oil is absorbed1

Encircling a quanta makes the quanta disappear more quickly
because encircling optimizes the number of agents within
decontamination range.

For the secondary task, participants hear two different
sounds: a target bell sound (“ding”) and a distractor spring
sound (“sproing”). They were instructed to press the space bar
when they heard the bell and to do nothing when they heard
the spring. Every two seconds, the probability P of a sound
playing is drawn from a uniform distribution, u(0.3, 0.7). The
probability of a bell sound playing is fixed from the beginning
of each scenario and is a Bernoulli random variable R, where
R ∼ u(0.55, 0.75).

Each participant was assigned to a counterbalanced combi-
nation of each scenario and informed agent yielding a within-
subjects designs. We recruited 13 participants from the campus
of the Brigham Young University, 8 males and 5 females, rang-
ing from 18–32 years old (average 24.23). After completing the
informed consent process but before we gathered data, every
participant was trained to manage the swarms with each type of
informed agents in a simplified version of the oil spill problem.

VII. RESULTS AND DISCUSSION

In this section, we address the following two questions:
First, does mediator-control method improve the manageability
of a robot swarm? Second, does mediator-control method
increase the performance of decontamination task? Data was
analyzed using a repeated measures ANOVA.

A. Manageability

Since the probability of playing sounds are random, it is
hard to define how well participants did in the secondary task.
Thus, we calculated the secondary task score by adding all
the number of positive responses and negating the number
of negative responses. Then, we normalized the score by the
total number of produced sounds. Although averages show
that the score for mediators is a little higher than others
(see Table IV), the ANOVA for the secondary task revealed
that there is no significant difference across the scenarios
(F [1, 24] = 0.983, p = 0.412) and among the three informed
agents (F [2, 36] = 0.682, p = 0.514).

For the score of NASA-TLX across the scenarios for
predators (F [1, 24] = 16.616, p = 0.002) and leaders
(F [1, 24] = 7.014, p = 0.02), there are significant differ-
ences. However, mediator showed no significant difference
(F [1, 24] = 0.226, p = 0.643) across the scenarios. Fig. 7
illustrates that workload increases when using leaders and may
actually decrease using predators, but stays relatively flat for

1Each quanta contains 3000 particles inside a circle of radius 5 units.
Particles are absorbed at a rate one particle per simulation time step per agent
within 5 units of the circle boundary.

mediators. It also shows that the mediator’s NASA-TLX score
is the lowest.

Fig. 7. NASA-TLX scores

Based on results from [18], we hypothesized that high
sustainability enables a human to manage a swarm easily.
However, Table IV shows that the leader has the highest
sustainability. On the other hand, the mediator’s sustainability
is similar to the predator’s because when the shape gets bigger,
uninformed individual has more chance to interact each other
and less chance to interact with mediators. This suggests
that sustainability, meaning the total number of uninformed
agents influenced by the informed agents, is less important for
problems where a swarm must be shaped than for a swarm
that must flock to different locations.

Leader Predator Mediator

Secondary task score 1.71 1.69 1.75
Sustainability 176.2 17.92 17.71

Travel Dist.(unit) 889.54 1054.97 249.0

TABLE IV. QUALITATIVE RESULTS OF SECONDARY TASK SCORE,
SUSTAINABILITY, AND TRAVEL DISTANCE.

However, the total distance traveled by the mediators’ is
much lower than the distances of other informed agents as
shown in Table IV. As illustrated in Fig. 8, it is easy to
see that mediators need to move less to manage the swarm
than other two informed agents. This impacts the strategies
used to control the uniformed agents. Because leaders facilitate
sustainable influence, participants tended to gather all agents
in the swarm near the contaminants and then guide this cluster
from contaminant to contaminant. For predators, participants
tended to turn the swarm into several groups of flocks and
tori, which they then “pushed” to different contaminant areas;
the predators were then moved around the map to guide the
separate groups. Because of this, predators tend to travel a lot.
Participants tended to place mediators near the boundaries of
the spill and then move the mediators toward the source of the
spill as contaminants were removed, resulting in little travel
distance.

(a) Leaders (b) Predators (c) Mediators

Fig. 8. Trajectories of informed agents.

In summary, lower NASA-TLX scores and lower distances
travel suggest that mediator-based control is easier for humans.



B. Performance

As shown in Fig. 9, both leader-based control (F [1, 24] =
4.457, p = 0.06) and predator-based control (F [1, 24] =
1.615, p = 0.23) do not show significant differences in the
amount of contaminant removed, but mediator-based control
(F [1, 24] = 9.523, p = 0.009) shows a significant difference
across the scenarios, suggesting that mediator-based control
scales better with workload. Importantly, mediators outperform
leaders and predators, which is not surprising since we de-
signed the scenarios to require swarm control compatible with
mediator-based influence. Moreover, because the initial condi-
tion of high workload scenario includes more oil contaminant
than the initial amount of oil contaminant in low workload
scenario, removed contaminant score for the mediator method
was increased under high workload conditions.

Fig. 9. Removed contaminant scores for each scenario.

The amount of area that is contaminated after three min-
utes shows no significant difference across the scenarios, but
there are significant differences among the informed agents
(F [2, 36] = 46.235, p < 0.001). Fig. 10 illustrates that
mediators tend to gather the oil contaminant into one place
and prevent the oil from expanding over the ocean surface.

(a) Leader (b) Predator (c) Mediator

Fig. 10. Contaminated area in the map of each informed agent.

These two measures indicate that the mediator-based control
performs better than either leader- or predator-based controls
for this task.

VIII. CONCLUSION AND FUTURE WORK

We introduced a mediator-based control model for human-
swarm interaction and demonstrated that this model can be
used to transform a swarm into a variety of shapes. Because
mediator-based swarm control allows a swarm to maintain
a torus formation while it is moving, the swarm retains the
advantages of torus behavior, in contrast to previous work
on leader- and predator-based control. We also investigated
how the mediator-based control is better in managing swarms
and performing decontamination task. Future work will study
whether mediated swarms can be robustly applied to real
robots. Future work will also examine how robustly the medi-
ator model can handle a variety of shapes.
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