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Abstract—In this paper we propose a bio-inspired model for a
decentralized swarm of robots, similar to the model proposed by
Couzin [5], that allows for dynamic task assignment and is robust
to limited communication from a human. We provide evidence
that the model has two fundamental attractors: a torus attractor
and a flock attractor. Through simulation and mathematical
analysis we investigate the stability of these attractors and show
that a control input can be used to force the system to change
from one attractor to the other. Finally, we generalize another of
Couzin’s ideas [4] and present the idea of a stakeholder agent. We
show how a human operator can use stakeholders to responsively
influence group behavior while maintaining group structure.

I. INTRODUCTION

Recently there have been large efforts to create control
systems suitable for human control of multi-agent system.
Often times in such systems it is difficult or impossible for
the human to communicate with all the agents in the system,
particularly when communication links are unreliable, or when
bandwidth and power constraints limit communication to only
a small subset of agents. One way of approaching these
difficulties that has become popular in the literature is to apply
principles found in biological swarm systems to robot systems.

Despite the limited intelligence and abilities of each indi-
vidual agent, swarms are able to achieve collective intelligence
greater than the sum of their parts [12]. Some examples are
flocks of birds [1] and schools of fish [5]. Swarm models have
been explored by researchers from a wide variety of fields
including computer science, engineering, physics, and biology.
Many of these swarm models fall into one of two categories,
flocking [11], [13], [6], [10] or cycles [8], [7].

Flocking is characterized by all agents moving cohesively
in approximately the same direction. Reynolds’ seminal work
in [11] modeled flocks using three fundamental regions of
interaction: repulsion, orientation, and attraction. Using these
three simple rules he was able to simulate realistic-looking
flocking behavior. In [13] a simple consensus model is pre-
sented, with an associated proof of convergence to a flock in
[6]. In [10] the authors provide a model using Reynolds’ three
rules of interaction, and provide mathematical guarantees that
the group will converge to a lattice structure with all agents
moving in the same direction.

Cycles are characterized by all agents circling around a
stationary point. A cycle is often called a torus. One prominent
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model is the cyclic pursuit model [8]. This model is charac-
terized by agents in a ring topology pursuing one another to
create a balanced cyclic group.

A few models of particular interest [5], [9] demonstrate both
flocking and cyclic behaviors. The model proposed by Couzin
et al. [5] uses three regions of interaction similar to those
proposed by Reynolds. Couzin showed that by varying the
sizes of these three regions different group structures emerge
including a torus structure—a type of cyclic group—and a
flock. Couzin In [4] he also explored leading a flock with a
small number of informed agents. This paper extends Couzin’s
work by exploring dynamic switching between group types
and exploring leading torus and flock group types with an eye
toward human input. Other work on leading swarms can be
found in [10], [3].

In this paper we describe a decentralized model which is
similar to Couzin’s model [5] except we have smoothed out
some of the switching nonlinearities and changed the dynamics
to be more suitable for robot systems. We assume that a human
can only influence a subset of the agents in the swarm. In
Section II we present our model. In Section III we discuss the
torus and flock attractors and through simulation demonstrate
when the system converges to these attractors. In Section
IV we consider a simplified model that uses only attraction
and provide mathematical guarantees for convergence to a
cyclic group. Finally, in Section V we present the notion
of a stakeholder and show how a human operator can use
stakeholders to cause the swarm to switch from one group
type to another. We also demonstrate how stakeholders can be
used to cause the swarm to track a time varying reference.

II. MODEL

Let ¢ = 1,2,..., N be a set of homogeneous agents with
nonholonomic dynamics given by

2; = s-cos(6;)
Yi = s-sin(6;) (1
Gi = w;

where [z;,v;]7 € R? is the ith agent’s position, §; € [—, 7]
is the angular heading of the agent, s is the constant agent
speed, and w; is the angular velocity control input.

For simplicity we define:



v; = [cos(6;),sin(6;)]T
ci=[zy" @
Let A(t) = a;j(t) denote the sensory adjacency matrix

where a;;(t) = 1 means that agent j is visible to agent 4
at time ¢. Each a;;(t) is determined at time ¢ according to a
Bernoulli random variable with parameter

b= { 1)

where d;;(t) is the Euclidean distance between agents ¢ and
j at time ¢. This method of choosing neighbors is similar to
the random neighbor model used in [2] which replicated field
observations of starlings [1]. This is relevant for robot systems
because occlusions make visibility less likely with growing
distance for visual sensors and interference makes sensing less
likely with growing distance for radio or wifi-based sensors.

Agents react to neighbors within three different zones:
repulsion, orientation, and attraction. The neighbors in these
zones are determined by

if di;(t) > 1
otherwise

ny ={j:llei — ¢l < Rp,ai; =1}
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where n}, n7, and n{ are the sets of agent 7’s neighbors in the
regions of repulsion, orientation, and attraction, respectively.
The parameters R, and R, are the associated radii of repulsion
and orientation. Note that this model allows for overlapping
regions of repulsion, orientation, and attraction. This elimi-
nates the hard switch between the repulsion, orientation, and
attraction forces seen in [5] that may be sensitive to sensor
transients in real robots.

The control input w; is determined by first computing the
repulsion, orientation, and attraction vectors
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Next, the desired heading vector wu; is computed as

u; = up +ud + ud. @)

Note that, because of the normalization in (5) and (6), ori-
entation and attraction forces are always equally weighted
in the model. This keeps one of the two fundamental forces
from overpowering the other. It also allows the exponentially
growing repulsion vector to overpower the orientation and
attraction forces as agents move closer together, which aids
in collision avoidance.
Finally, angular velocity, w;, is computed as

w; = ka 3
a = atan2(u;) — 0; 9)

where k is a scalar gain and « is the heading error. Us-
ing modulo 27 arithmetic we limit o« € [—m,7]. Since
max |atan2(u; )| = 7, w; is bounded by k.

III. ATTRACTORS

In order to define the two different attractors of the model
we use two metrics of group behavior described in [5], namely
group angular momentum, Mgroup, and group polarization,
Dgroup- Group angular momentum is a measure of the degree
of rotation of the group about the group centroid and is
calculated as

Z det[ric (1) v (1)]] -

The vector r;.(t) is a unit vector pointing from the group
centroid to the position of agent ¢ and is given by

i) —egt)
llei(t) = e (D]

R

where ¢, (t) is the group centroid. The term det[r;.(t)|v;(t)]
is the determinant of the 2 x 2 matrix with columns 7;.(¢) and
v;(t) and is a two-dimensional analogue of the cross product.
The m g,y of a swarm reaches a maximum value of 1 if all
the agents are rotating around the group centroid in the same
direction.

Group polarization measures the degree of alignment among
individuals within the group and is calculated as

E v (t

The pyroup Of a swarm reaches a maximum value of 1 when
all the agents have the same heading.

(10)

mgroup

rie(t) = an

12)

pgroup (13)

A. Torus Attractor

This model can produce a torus formation as shown in
Figure 1(a). A torus is characterized by pyroup close to zero,
Mgroup close to one, and a relatively stationary group centroid.
One potential application of a torus is perimeter monitoring.

B. Flock Attractor

The other attractor that the model exhibits is a flock; see
Figure 1(b). A flock is characterized by pg,.oup close to one
and M goup close to zero. Flock groups are useful for moving
the swarm quickly from one location to another.
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Fig. 1. 100 agents in (a) torus formation; (b) flock formation. The agents’
directions of travel are represented by straight lines emanating from the center
of each agent.
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Fig. 2. Average group moment and polarization as a function of radius of
orientation.

C. Group Expressiveness and Parameter Selection

We desire to be able to switch between the torus and
flock attractors without globally broadcasting parameters to
the agents. To determine parameter values that allow both
group types to emerge we ran a series of simulations using
N = 100,k = .5, R, = 1 and varied the the radius of
orientation. Simulations were run for 200 seconds with a step
size of At = 0.1. The radius of orientation was varied from 0
to 30 in | unit increments. One hundred simulations were
performed for each value of R,. For each iteration agents
were given random initial positions uniformly distributed over
a 10x10 square centered at the origin. Agents were also
given random initial headings. The percentage of trials that
converged to the torus attractor and the flock attractor were
calculated for each value of R, and are shown in Figure 2.
As can be seen in the figure, the value Ry = 8 had an equal
probability of converging to either attractor. Figures 1(a) and
1(b) show a torus and a flock formed with the parameter values
listed above and Ry = 8.

IV. ANALYSIS OF ATTRACTION DYNAMICS

The previous section provided empirical evidence that both
torus and flock behaviors can emerge using the system. In this
section, we provide an example argument that these behaviors
are formal attractors of the dynamic system. These attractors
have associated regions of stability and are the foundation
for claims of robustness of swarm behavior. To do this we

Fig. 3. Coordinates for an agent (blue) attracted toward the centroid (red).

consider a system based only on attraction (u; = u{) and
prove convergence to a stable cycle. We assume a complete
agent topology (a;; = 1 V ¢ # 7). Using this assumption the
desired heading of agent ¢ is

(14
J#i

which reduces to ¢, — ¢;, where ¢4 is the group centroid.

Therefore, u; points toward the centroid.

A. Change of Variables

We assume a stationary group centroid at the origin and,
using a method similar to [8], we perform a change of variables

r= a2 +y? (15)
a=v;i+m—0 (16)

where r is the distance from the group centroid and v =
arctan (£). Figure 3 shows how these variables relate to each
agent.
Computing equations for 7 and & we find that
7 = —scos«

1
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which describe an agent’s dynamics in terms of its distance
from the centroid r and the desired angle of orientation a.
B. Stability of Equilibrium Points

Solving for the equilibrium points of (17) and (18) we get

2s 7r
= — = :l:—

Pri 2
where we have restricted « to be in the interval [—, 7r]. These

two equilibria define a clockwise and counterclockwise orbit
about the fixed centroid with radius r = 2s/k.

r (19)



Fig. 4. A cyclic group formed by an attraction only swarm. The group
centroid is marked by an 'x’.

We now investigate the stability of the equilibria by lin-
earizing equations (17) and (18) about the equilibrium points.
Evaluating the Jacobian at r = 2s/kw and « = 7 /2 and letting
w = ka we have

0 ssin « 0 v
. s = 20
—Fsina Zcosa — k] (25/ k. /2) {—ki’;z —k] (20)

which has eigenvalues with negative real parts. Therefore the
equilibrium point is locally asymptotically stable. Linearizing
about the other equilibrium point
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gives a similar result.

This indicates that for a stationary group centroid all agents
converge to either a clockwise or counterclockwise orbit about
the group centroid with a fixed radius r = 2s/km.

To verify these results we simulated the simplified dynamics
with & = 0.5, s = 5. The resulting formation is shown in
Figure 4 and had a radius of approximately 20/7 as expected.
This simulation suggests that the assumption of a stationary
group centroid was well founded.

V. LEADERSHIP
A. Stakeholders

To allow a human to influence a swarm’s behavior we
introduce a type of agent called a stakeholder. In [4], Couzin
showed how a limited number of stakeholders can be used
to influence the behavior of a flock. In this section we show
that not only can stakeholders allow a human to control the
direction of a flock, but that stakeholders can also be used to
control a torus and dynamically switch between attractors. A
stakeholder is an agent that is influenced by the group and also
influenced by its interaction with a human operator. We assume
that the human operator can broadcast a desired location to
M < N stakeholder agents. By broadcasting a reference input
to a limited number of agents a human may influence the
movement of the swarm and even cause the group to switch
attractors.

A stakeholder has dynamics given by (1) and control input
(8). The difference is that u; is modified to allow a human
operator to influence the stakeholder’s behavior. This influence

is added into the stakeholder attraction dynamics through a
weighted sum as follows:

ust = qu’L + (1 B p)“’?
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where ¢ € R? is the reference, p € [0,1] is the priority of the
reference input, and u{ is given by Equation (6). Orientation
and repulsion are given by equations (5) and (4) with

(24)

wp = u;t +uy + uj.

This allows human input to the system without eliminating
inter-agent dynamics.

B. Controlled Switch

As mentioned above, one potential application of the torus
group is perimeter monitoring and one potential application
of the flock is to move the swarm quickly from one location
to another. It is therefore desirable to be able to dynamically
switch between attractors so that the human may have access
to both capabilities. We investigated how M and p affect the
potential for a human to cause the swarm to switch from one
attractor to another. Simulations were run varying M over the
interval 10 to 100 in 10 unit increments and p over the interval
0.1 to 1 in 0.1 unit increments. Ten 200 second trials were
performed for each parameter pair. Other parameters were
N=100,k=.5, R, =1, R, =8.

To investigate switching from a torus to a flock we first
initialized the group into a torus formation and then gave M
stakeholders a distant fixed reference input to move toward.
The final group polarization for each trial was recorded to
determine if the group had successfully switched from a torus
to a flock. The results of these simulations are shown in Figure
5 where the probability of the group successfully switching
from a torus to a flock by the end of any given 200 second
trial is plotted as a function of M and p. When the torus did not
switch to a flock, it either moved in formation in the general
direction of the reference input or the group fragmented.

To investigate switching from a flock to a torus we first
initialized the group into a flock formation and then gave M
stakeholders a fixed reference input at the origin. The final
group moment for each trial was recorded to determine if the
swarm had successfully switched from a flock to a torus. The
results of these simulations are shown in Figure 6 where the
probability of the group successfully switching from a flock to
a torus is plotted as a function of M and p. When the flock did
not switch to a torus, it either flew in a large clover like pattern
centered at the reference point or the group fragmented.

Examining Figures 5 and 6 we see that it is easier to switch
from a torus to flock than vice versa. We also see from Figure 6
that it is not necessarily desirable to set p = 1 because the lack
of agent interaction induced by the coercive leadership strategy
made it difficult for the agents to form a torus. However, if
p < 0.4 then there was almost zero probability of transitioning



Fig. 5. Probability of swarm switching from torus to flock when under
human control for various values of M and p.

Fig. 6.  Probability of swarm switching from flock to torus when under
human control for various values of M and p.

from one attractor to the other. This provides evidence that the
attractors are resilient in the presence of perturbations. We also
notice that a human only needs to control 30 percent of the
agents in the swarm to transition from a torus to a flock and 40
percent to transition from a flock to a torus. This indicates that
the control strategy is robust in the presence of communication
dropouts.

C. Path Following

In the previous section we discussed switching from one
attractor to the other. However, for many applications it is
desirable to lead the swarm while keeping the group structure
intact. We ran a series of simulations to determine whether
or not these group types could be effectively moved without
breaking formation. To do so we choose M = 50 and p = 0.8
to ensure sufficient influence on the group without commu-
nicating with all the agents. We again use agent parameters
N =100, k= .5, R, =1, R, = 8, but this time we introduce
a time varying reference input with velocity

q=sq-[1,0" 25)

where s, is the speed of the reference input.
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Fig. 7. Average minimum group moment as a function of reference velocity
when leading a torus.
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Fig. 8. Average distance from group centroid to reference input as a function
of reference velocity when leading a torus.

1) Torus Path Following : For torus formations s, was
varied from O to 1 in 0.1 unit intervals. Ten trials were
performed for each parameter set. The lowest group moment
achieved during each trial was recorded. If the minimum group
moment was low it indicates that the torus did not successfully
maintain formation during the trial. The average absolute
distance from the group centroid to the reference input was
also recorded. The average minimum group moment over the
ten trials is plotted in Figure 7. From the figure we see that the
torus formation was consistently maintained for s, < 0.6. The
average absolute distance from the group centroid over the 10
trials is plotted in Figure 8. We see that error increases linearly
with the speed. The decrease in error for a reference velocity
greater than 0.7 is due to the torus briefly switching to a flock
to catch up with the reference. Further investigation revealed
that most of the error was due to a constant steady state error
where the torus lagged consistently behind the reference input.
These results indicate that torus groups are difficult to lead
but are still responsive to human input for very low reference
speeds.

2) Flock Path Following : For flock formations s, was
varied from 4 to 5 in 0.1 unit intervals. Ten trials were
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Fig. 9. Average minimum group moment as a function of reference velocity
when leading a flock.
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Fig. 10. Average distance from group centroid to reference input as a function
of reference velocity when leading a flock.

performed for each parameter set. The lowest group polariza-
tion achieved during each trial was recorded. If the minimum
group polarization was low it indicates that the flock did not
successfully maintain formation during the trial. The average
minimum group polarization is plotted in Figure 9. From
the figure we see that the flock formation was consistently
maintained for s, > 4.6. We investigated the lower values of
54 and found that the group briefly circled back to allow the
reference input to catch up to the swarm. The average absolute
distance from the group centroid over the 10 trials is plotted
in Figure 10. We see that error is minimized when s, = 4.8.
These results suggest that flocks are responsive to human input
and maintain their group structure for reference speeds near
the agent speed.

VI. SUMMARY

In this paper we demonstrated a model with single integrator
rotational dynamics. We demonstrated that this model has both
a flock and torus attractor. We identified parameter values
that allow the swarm to converge to either attractor with
equal probability when starting from random initial conditions.
Through a linear stability analysis we showed that for an

attraction-only model the swarm converges to a cycle around a
stationary centroid. We further showed that by using a limited
number of stakeholders the swarm could be dynamically
switched from one attractor to the other. We also identified
control parameters that allowed stakeholders to lead both
flock and torus group types while maintaining group structure.
This satisfies the requirement of robust HSI systems, namely
that a human can lead and switch between attractors of the
system while only communicating with a subset of the agents.
Future areas of research include more thorough mathematical
guarantees on convergence to attractors, stability criteria, more
advanced control strategies, exploration of model behavior
for a wider range of parameter values, including the lowest
number of agents for which the results in this paper hold, and
implementation with real robot platforms.
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