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Abstract

In this position paper, we synthesize “within the system”
models of human influence over bio-inspired swarms, sum-
marizing observations from previous experiments and identi-
fying methods of influence that have not yet been explored.
We describe (a) differences among agents that can be con-
trolled by a human and those that can’t, (b) agents that are
aware of the type of other agents and those that aren’t, and
the effects of attraction, repulsion, and orientation on human-
guided swarm behavior. We also briefly discuss the interac-
tion effort required to manage swarms.

Introduction
The relation between humans and swarms is often character-
ized in extreme ways. For control theorists seeking to design
a desired set of emergent behaviors, the human is frequently
considered a disturbance. They consider their “job” to de-
sign the system so robustly that no matter what wacky input
some operator might inject, the system remains conservative
enough to stay within the bounds of safety. While design-
ing to this criterion can preserve the coherence of the swarm
and guarantee certain properties such as convergence to con-
sensus, it may so attenuate the operator’s influence that the
swarm becomes incredibly sluggish and continues to behave
autonomously even as the human seeks to control it.

At the other extreme, ceding full authority to a human op-
erator can likewise cause undesirable results such as (a) ac-
celerating members at rates that lead to loss of coherence
and break-up of the swarm, (b) highly inefficient state tran-
sitions that might be achieved much more smoothly if done
in consonance with ongoing behaviors and (c) the possibility
that the human is less informed than the agents. Moreover,
centralized human control is susceptible to brittleness and
sensitivity to communication delays or dropouts.

One possible way to mediate between these extremes is to
use some sort of switching criterion wherein agents are re-
sponsible for behavior under some conditions and the human
is responsible under other conditions. This recalls Sheri-
dan and Verplank’s levels of autonomy wherein responsibil-
ity for behavior is governed by predefined rules and condi-
tions (Sheridan and Verplank 1978). The limitations of this
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approach include (a) that the swarm is treated as a single unit
that must coherently cede control to human input and (b) hu-
man input, when needed, asserts centralized authority over
all agents. Such switching may be possible, but for swarms
there is a powerful alternative.

We can find this alternative by acknowledging that a
swarm, particularly under conditions of noise/error and lim-
ited bandwidth, may have more and deeper knowledge of its
situation than a remote human operator. This knowledge is,
of course, distributed among team members, and this dis-
tribution may make it difficult for a human to perfectly un-
derstand what the collective is doing. The human operator,
however, has a better knowledge of mission goals but not
necessarily of how the swarm may be able to achieve them.
A solution is to require the operator to “work within the sys-
tem” by injecting control through a small number of agents
and allowing the system to adjust to these inputs over time.
The resulting interaction uses the system’s inertia to protect
it from disturbance-like control “jolts” while remaining re-
sponsive to operator goals.

Thus, control authority manifests itself in two forms: per-
sistence and span of control. Persistent influence requires
that, to bring the system to a new course, the operator must
persist in issuing a command over an extended time while
persistently monitoring state information that may be noisy,
delayed, or infrequent. Span of control is used by allowing
the human some authority over the number of agents that he
or she can influence.

Swarm Structures
There are many different types of swarm dynamics, but we
will adopt the characteristics described below. The charac-
teristics produce a large variety of swarm behaviors and
structures and are fairly general.

Agent Dynamics
We assume that the agents can experience three different
types of forces: repulsion, attraction, and orientation. These
three fundamental forces have been used in a variety of agent
models (Couzin et al. 2002; Spears et al. 2005; Reynolds
1987). These forces have been organized by Couzin to de-
termine how agents respond to each other: agents that are
with each other’s zone of repulsion repel each other; agents
that are within a zone of orientation align with each other;



and agents that are with a zone of attraction move close to
each others (Couzin et al. 2002).

These zones, along with the notations used for the zones,
are illustrated in Figure 1. Couzin’s model is thus a nonlin-
ear controller where agents make zone-dependent switches
between control laws.

Figure 1: Couzin’s zones of repulsion, Rrep, orientation,
Rori, and attraction, Ratt.

Phases
Quoting from (Goodrich et al. 2012), “[Figure 2] illustrates
the four phases identified by Couzin The figures illustrate
agents as circles with a line emanating from them in their di-
rection of travel. Each subfigure in [Figure 2] is a snapshot
at one time instant. The swarm phase is a highly dynamic

(a) Swarm (b) Torus

(c) Dynamic Parallel (d) Highly Parallel

Figure 2: Snapshots of various phases from Couzin’s model:
(a) Swarm. (b) Torus. (c) Dynamic parallel group. (d) Highly
parallel group.

collective structure that tends to stay stationary and exhibits
short bursts of agent alignment interspersed with apparently
random milling about the swarms center. The toroid phase

has agents that circle in the same direction around a rela-
tively stationary ‘hole’ in the middle of the structure. The
dynamic and highly parallel structures both exhibit collec-
tive movement in a unified direction, with the highly parallel
structure exhibiting greater alignment and greater group ve-
locity.” We find it useful to lump the parallel phases together
and call them “flocks”, and to mostly ignore the swarm
phase. Instead, we will the word swarm to include the torus
and flock phases.

Note that, although this paper focuses on Couzin-like
models, similar structures and similar results can be demon-
strated for physicomimetic models (Goodrich et al. 2011b;
Spears et al. 2005) suggesting that at least some of the results
in this paper are likely to generalize.

Humans Influencing Swarms
In a series of experiments, we have investigated several ap-
proaches in which a human can influence a swarm without
resorting to centralized control. It is helpful to make these
forms of influence precise, and we choose to do so by pre-
senting a simple mathematical formulation of the problem.
In prior work (Goodrich et al. 2012; 2011a), we have pre-
sented similar formulations to the one used in this paper,
but in this paper we use the formulation to identify other
possible methods of influence. The formulation is not used
to prove mathematically any properties of the system, but
rather as a means for systematically identifying how a hu-
man can influence a swarm given clear assumptions.

Under the influence of a human, agent behavior can be re-
sponsive to three different stimuli: other agents in the collec-
tive, operator input, and signals from the environment. Re-
stricting attention to an additive combination of these stimuli
yields the following discrete-time model:
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In the model, xi
t represents agent i’s state at time t, x¬i

t rep-
resents the states of every other agent in the collective except
for agent i, θi denotes the agent’s type (described below),
θ¬i denotes the types of every other agent in the collective
except for agent i, f encodes how the states of other agents
affect agent i, g encodes how human input, uop

t , influences
an agent with type θi, and e encodes how a signal from the
environment, uenv

t influences an agent of type θi. Note that
we have tried to keep this model as simple as possible by
making an agent’s response to human input only a function
of the agent’s state, xi

t and not other states, x¬i
t .

In this section, we will restrict attention to agents that
can respond to human input but ignore environment input
(e() = 0). Such agents tend to produce the swarm-like struc-
tures described above, and adding a response to signals from
the environment tends to create a different set of collective
structures. We speculate about e() 6= 0 later in the paper.

Agent Types
The agent’s type determines how it responds to human input,
to external input, and to other agents. For any two types of
agents θ and ϑ, gi(xi

t, u
op
t ; θ) 6= gi(xi

t, u
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t ;ϑ) meaning that



the agent types determine how an agent responds to signals
from the human, with each agent type responding different
than every other agent type.

We have explored two broad classes of agents: those that
can respond to human input (g() 6= 0) and those that ig-
nore human input (g() = 0). We call the first class of agents
human aware and the second class human blind.

We have further explored two types of human aware
agents. The first type of human aware agent is what we call
a special agent. These agents are influenced only by the hu-
man and not by other agents, that is, f = 0 and g 6= 0. The
second type of human aware agent is what we call a stake-
holder agent. These agents are influenced by both the human
and by other agents, that is, f() 6= 0 and g() 6= 0.

Among the human blind agents, we have two types: type
aware and type blind. Since g = 0 for human blind agents,
these agents cannot be directly influenced by a human. In-
stead, a human must influence these agents indirectly – by
influencing an agent that then influences a reactionary agent.

A type aware agent can either process the states of other
human blind agents or the states of nearby human aware
agents, but not both. If a special agent or stakeholder agent is
nearby, then the type aware agent is influenced only by that
agent, but if no special or stakeholder agent is nearby, then
the type aware agent is influenced only by other type aware
agents. Thus, a type-aware agent is a nonlinear controller
in which f() depends on the types of the other agents with
which it associates. The way a type-aware agent responds
to the states of other agents depends on the types of those
agents. For example, if a predator is close to a type-aware
agent, then the type-aware agent ignores all other agents and
flees from the predator, but if no predator is close, then the
type aware agent switches and tries to to align to its neigh-
bors.

A type blind agent ignores human input since it is a hu-
man blind agent and it reacts to all agents within its zone of
influence in the same way. It makes no distinctions between
the types of the other agents, treating stakeholders, special
agents, and other human blind agents the same way.

Influence Styles
In bio-inspired robot teams, two leadership models have
been studied by others: lead-by-attraction and lead-by-
repulsion (Olfati-Saber 2006). Lead-by-repulsion is com-
monly referred to as predation where the leader is a predator
and agents are prey, so the leader influences the behavior of
the agents by pursuing them. By contrast, lead-by-attraction
is often associated with the colloquial use of the word leader-
ship, meaning that a leader is one that gets ahead of a group
and the group follows.

Given that inter-agent influence allows attraction, repul-
sion, and orientation, it is reasonable to ask what would
happen if we add lead-by-orientation to lead-by-attraction
and lead-by-repulsion. We can then combine (a) repulsion-
, attraction-, and orientation-style models with (b) various
agent classes (human aware and human blind) and types
(special, stakeholder, type blind, and type aware), and ex-
plore what happens.

Afforded Behaviors
The subsequent sections review prior work from our lab that
explores various combinations of influence style and agent
class. Although the sections are informative, it is impor-
tant to note how many combinations haven’t been studied.
For example, how would type aware agents respond to the
presence of a human aware agent that exerted a lead-by-
orientation style.

Type Aware Agents When human blind agents are type
aware (that is, they don’t receive direct input from a human
but do switch behaviors when in the presence of a leader),
Couzin’s phases tend to disappear. Type aware agents tend
to line up behind a lead-by-attraction agent regardless of
whether the agents started as a swarm, torus, or parallel
group. The type aware agents near the leader start follow-
ing the leader, pulling other agents along, and turning the
entire group into a type of flock.

Type aware agents also tend to be fractured by a lead-by-
repulsion agent, forming smaller groups. If there are enough
initial agents in the collective, then some of these smaller
groups can form a torus, swarm, or a parallel group as long
as they are not near the predator.

Lead-by-attraction tends to work best when the task re-
quires that agents move together and cluster around an ob-
ject of interest, and lead-by-repulsion tends to work best
when the task requires a lot of different agents to be dis-
tributed to different areas of the world (Goodrich et al.
2012). Naturally, since lead-by-repulsion tends to fracture
the group, human workload is higher than with lead-by-
attraction because the task shifts from one of influencing the
entire group to managing a multiple smaller groups.

Type Blind Agents: Stakeholders versus Special
Agents
The fact that type aware agents tend to lose structure in
the presence of human-controlled agents is a problem. We
can address this problem by exploring how type blind
agents respond to the presence of human-controlled agents.
We’ve compared how type blind agents respond to lead-
by-attraction style influence using stakeholders or special
agents (Goodrich et al. 2012).

Results indicate that, although it is possible to move a
torus, swarm, or parallel group using either stakeholders or
special agents, it requires fewer stakeholders to move the
groups than special agents. Quoting from(Goodrich et al.
2012) and recognizing that the term “manager” in that pa-
per is the same as “human aware” agent in this one, “For
both manager styles, one and two managers had only a mod-
est impact on the ultimate distribution of the phase, but as
the percentage of managers grows their influence also grows.
[Figure 3] shows how the error decreases much more rapidly
for stakeholders than [special agents], and also that the ap-
parent plateau of error is smaller for stakeholders than [spe-
cial agents].”

Type Blind Agents: Switching Phases
The work reported so far either uses just one phase (flock-
like structures, in the case of type-aware agents) or pulls a



Figure 3: Error as a function of the percentage of number
of managers. Error is Euclidean distance between the fi-
nal centroid position and the food source. In the figure key,
“Leader” means special agent. Figure taken from (Goodrich
et al. 2012).

single structure from one point to another (in the case of
type-blind agents).

Another line of research is enabling a human to shift be-
tween the two attractors with relatively little exertion of
human influence. The research from (Kerman, Brown, and
Goodrich 2012) indicates that it is possible to select agent
parameters in such a way that a human can cause the col-
lective to switch between structures. Preliminary work has
indicated that, given a system tuned so that either parallel
groups or tori are equally likely, it is easy to switch from a
parallel group to a torus using lead-by-attraction. However,
lead-by-attraction does not work as well for switching from
a torus to a parallel group. This indicates that it is necessary
to consider other forms of influence, and we have explored
using lead-by-orientation. Preliminary results indicate that
lead-by-orientation works very well for switching from a
torus to a parallel group, as indicated in Figure 4.

(a) Lead-by-Attraction (b) Lead-by-Orientation

Figure 4: Probability of changing from a torus to a parallel
group under different influence styles. On the axes, M indi-
cates the number of stakeholders and ρ indicates how much
weight the stakeholder places on human input.

Type Aware Agents: New Phases The previous discus-
sion gives the impression that lead-by-repulsion turns all
structures into either fragmented groups or into a flock. This
does often happen, but recent preliminary results also indi-
cate another possibility. When a special agent using lead-
by-repulsion is placed in the center of a torus of type blind
agents, the type blind agents spin around the special agent.

By moving the special agent, the torus can be “steered” by
the agent inside of it.

This leads to an interesting possibility of allowing multi-
ple special agents to use combinations of attraction and re-
pulsion to cause the torus to take on various shapes. Prelim-
inary results are shown in Figure 5.

Persistence and Span of Control
Consider the following example. When using special and
type aware agents, it appears that it is possible for a human to
exert sufficient control authority via only one special agent.
The human can turn the team into a flock and then lead the
flock to where he or she wants, or fragment the group and
chase subgroups to where he or she wants. Thus, this ap-
proach allows a single locus of human control. The cost is
that the human must persist in exerting this control over a pe-
riod of time. For example, to chase a subgroup to a desired
location, experiments with human subjects indicate that the
humans are continually moving the predator in order to keep
the subgroup together.

As illustrated by the previous example, control authority
includes both span of control and persistence. In this paper,
span of control is simply the number of human aware agents
in the collective, and persistence is the amount of time that
the human aware agents must exert authority. Thus, we can
generalize the definition of interaction time from (Crandall
et al. 2005; Olsen, Jr., Wood, and Turner 2004) to interac-
tion effort, defined as the product of span of control and
persistence. Interaction effort has a unit of agent-seconds,
meaning that interaction effort is measured in the number of
agents that must be influenced and for how long.

We hypothesize that each combination of influence style
and distribution of agent types has a characteristic interac-
tion effort. As evidence for this hypothesis, we note how
both special agents and stakeholders can attract a structured
team from one location to another, but fewer stakehold-
ers are required. Persistence is frequently hidden in the re-
sults above; all figures presented above are shown after the
swarm changed behaviors, which sometimes took consider-
able time.

Future work should seek to quantify the interaction effort
for various team designs. If interaction effort can be quan-
tified, even probabilistically, then there is reason to believe
that this information could be used to provide performance
guarantees for human-swarm teams (Goodrich and Mercer
2012).

Beyond Swarms
Although interesting, there is a major weakness in the work
presented above: the agents cannot autonomously respond
to environmental signals. The agents swarm, adopt shapes,
can be lead, and can be coaxed into changing shapes, but the
agents do not autonomously change their shapes or move
toward particular locations in the environment. We refer to
these agents as swarms precisely because their autonomy is
designed to maintain a collective structure but not to do any-
thing useful for the group.

Autonomy is enabled with e() from Equation (1) is non
zero. Recall that we let uenv

t denote some spatially located



Figure 5: Special agents (the large circles in the center) can use a combination of attraction and repulsion to create various
tori-like structures among type blind agents (small circles around the exterior). The type blind agents are using only attraction
with and repulsion from each other, so the torus consists of agents circling both directions around the exterior.

signal in the environment, such as a food resource. If we ex-
tend xi

t so that it denotes not only the kinetic state of the
agent but also information about how agent i has reacted to
uenv

t , then the set of ways in which a human can influence
the collective grows. For example, in the problem of nest se-
lection multiple agents could be exploring various locations
as potential locations for a new nest. Agents leave the current
nest to evaluate the potential site and then return to broad-
cast information about the quality of the site. The state of
these agents include not only their current position, but also
the location and quality of a potential nest site. Other agents
could then commit themselves to exploring that site by ob-
serving this portion of the state. Notice how the parameter
of the e(·) function in Equation (1) includes the state of all
agents, allowing an agent to respond to a new environment
signal by comparing it to the information from other agents.

We are just beginning work on these types of structures,
but in reviewing the work in (Sumpter 2012) we propose to
begin with the following. One way that animals coordinate
activity in the wild when they aren’t always within prox-
imity of each other is by using a home, nest, or hive as a
centralized place where they can communicate information.
This creates a type of cohesion that has both spatial and tem-
poral elements: spatial because communication occurs when
agents are “with range” of each other which is most likely
to happen when they are at the nest site, and temporal be-
cause different agents pick up different information at dif-
ferent times.

Based on Sumpter’s work, we propose that the attrac-
tors for such nest-based collectives is a spatial distribution
of agents, such as when ants or bees distribute themselves
along various paths retrieving food from various sources. We
don’t know quite how to influence these collectives, but we
propose that in addition to attraction, repulsion, and orienta-

tion, a key component of human influence will be the ability
to inject information into xi

t about how agent i has reacted
to uenv

t .

Related Work
We have previously written literature reviews for human in-
teraction with bio-inspired robot teams and refer the reader
to those papers for discussions of that literature (Kerman,
Brown, and Goodrich 2012; Goodrich and Mercer 2012;
Goodrich et al. 2011a). In this section, we briefly review
literature that distinguishes between swarms and more so-
phisticated types of animal collectives.

For Couzin’s biomimetic and Spears’ physicomimetic
models, spatially cohesive groups are capable of express-
ing multiple, qualitatively different collective structures or
phases. Wood and Ackland use a similar model as Couzin’s,
but they identify four different collective structures or phases
that they label pack, swarm, dynamic, and no group. Wood
and Ackland’s swarms incorporate Couzin’s swarms and
tori, and the dynamic category incorporate Couzin’s dy-
namic and highly parallel groups. Models from physics
exhibit similar distinctions between relatively stationary
swarms and more highly mobile flocks (Levine, Rappel, and
Cohen 2000).

Conradt and Roper note that “Consensus decisions are
made by spatially cohesive groups and usually concern
movement direction, travel destination, and activity tim-
ing” (Conradt and Roper 2005, emphasis added). The spa-
tial cohesiveness of the groups is emphasized because it is
key. Flocks and swarms are spatially cohesive in the sense
that they are structured as a spatially connected topology. By
contrast, what we are calling colonies include how the so-
called “eusocial insects” cited in (Conradt and Roper 2005)
make decisions about nest choices. These choices include



the independent activities of foragers and scouts, which are
then communicated to the remainder of the collective, trig-
gering recruitment activities and quorum decision-making;
we will model this using topological structures in a subse-
quent section.

Introducing heterogeneity adds another potentially use-
ful dimension to swarm and colony-like behavior. For these
problems, the payoff to each agent depends on simultane-
ously fulfilling different roles, suggesting the need to oper-
ate under a type of social contract (Skyrms 2004). Madden
et al. recently created a model of pack activity that included
different roles (Madden, Arkin, and McNulty 2010). Impor-
tantly, the different roles performed by members of the pack
were dynamic and decentralized. Pack-level behaviors are
perhaps the least studied in bio-inspired robot teams.

Conclusions
This paper has presented a synthesis of prior work, and iden-
tified a number of trends as well as areas needing more
work. Human swarm interaction can be shaped by control-
ling how a human injects influence into a swarm (via human
aware agents), the style of influence (attraction, repulsion,
orientation, and possibly state information), and the interac-
tion effort of the influence (persistence and span of control).
Rich behaviors can be produced, but much work needs to be
done, especially in extending results beyond simple swarms
to colony- and pack-like behaviors.
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