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Abstract— We are developing a theory for human control of
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robot teams based on considering how control varies acrg

such as foraging in which robots perform largely independen
tasks. The present study addresses the interaction between
automation and organization an teams in controlling large
robot teams performing an %ﬁ&arch and Rescue (USAR)
task. We identify three subtasl§: perceptual search-visual search
for victims, assistance-teleoperation to assist robot, and
navigation-path planning and coordination. F studies
reported here, navigation was selected for automa?cause it
involves weak dependencies among robots makinhg it more
complex and because it was shown in an earlier experiment to be
the most difficult. Two possible ways to organize operators were
identified as assignment of robots to particular operators or as a
shared pool in which operators service robots from the
population as needed. The experiment compares two member
teams of operators controlling teams of 12 robots each in the
assigned robots conditions or sharing control of 24 robgtsin_the
shared pool conditions using either waypoint cof===or
autonomous path planning. We identify three self o};‘r: ng
team strategies in the shared pool condition: joint control
operators share full authority over robots, mixed control in
which one operator takes primary control while the other acts as
an assistant, and split control in which operators divide the
robots with each controlling a subteam. Autom path
planning improved system performance. Effects team
organization favored operator teams who shared authority for
the pool of robots.

Keywords— Human-robot interaction, metrics, evaluation,
multi-robot system, autonomy, team organization

I.  INTRODUCTION

Unmanned vehicle systems (UVSs), whether in the air or
ground, are intrinsically complex systems and rely on remote
operator guidance to accomplish different missions. For
achieving the goal of one operator controlling multiple
unmanned  vehicles (UVs), the human operator’s
responsibility must shift from manually controlling vehicles to
supervisory control.

The status quo of a many-to-one ratio of operators to UVs
needs to be reversed.. For example, the Predator requires a
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team made up of three operators to be operational [1].
Envisioned missions such as search and rescue or underwater
construction, however, will require multiple UV operators to
work as teams to control a much larger team of UVs.

Controlling multiple robots substantially increases the
complexity of the operator’s task because attention must be
shared among robots in order to maintain situation awareness
(SA) and exert control. In the simplest case an operator
controls multiple independent robots interacting with each as
needed. A foraging task [2] in which each robot searches its
own region would be of this category although minimal
coordination might be required to avoid overlaps and prevent
gaps in coverage especially if robots are in close proximity.
Control performance at such tasks can be characterized by the
average demand of each robot on human attention [3]. Because
robots are operated independently an additional robot imposes
only an additive demand on cognitive resources. Under these
conditions increasing autonomy for individual robots should
allow them to be neglected for longer periods of time making it
possible for a single operator to control more robots.

For dependent tasks the round-robin control strategy used
for controlling individual robots would force an operator to
plan and predict actions needed for multiple joint activities and
be highly susceptible to errors in prediction, synchronization or
execution. For highly dependent tasks such as teleoperating
robots to push a box, coordination demand for even two robots
completely occupies an operator’s attention excluding any
other task [4]. A multi-UV, multi-operator discrete event
simulation model has shown a similar steep increase in
difficulty when teams of operators must control interacting
robots as a team. [5]

If robots are not rigidly assigned to small teams under the
control of a single operator, then each event requiring
cooperation will either occupy more of an operator’s attention
than corresponding independent tasks or require the operator to
find the controller of another robot and assume the
communication and coordination overhead needed to
coordinate with him. These interaction times are likely to be
highly variable making it difficult to schedule interactions
without introducing excessive idle times. Since even moderate
variability in neglect time (NT) has been shown [6] capable of
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having an operator spending 90% of the time waiting, avoiding
such bottlenecks is crucial.

We are developing a general architecture for controlling
robot teams based on these observations. We begin by
considering how operators self organize to control robot teams
and the effects of the different strategies they adopt. T
possible ways to impose organization on operators are thro
assigning a subset of robots to each or through a Shared Pool
[7] in which operators service robots from the full population
as needed. Robot assignment has the advantage of reducing
the number of robots the operator must monitor and control.
The shared pool offers the scheduling advantage of load
balancing in that a pool of operators are available as robots
need servicing eliminating situations in which one operator is
overloaded and the other idle. Efficiencies such as improved
SA that might result from controlling a dedicated team at a
particular locale, however, must be sacrificed if operator
attention is switched among robots following FIFO (first i
first out) or similar discipline.

For monitoring, shared pool offers the redundant observer
advantage in that a second observer with partially overlapping
perceptual judgments may detect things missed by the first.
We expect the effects of these advantages to interact with the
types of autonomy possessed by the controlled robots. If
navigation and path planning were fully autonomous, we
would expect benefits to accrue to shared pool operators due to
both scheduling and redundant observer advantages.
Autonomous path planning should additionally lessen the
effects of loss of SA due to switching between robots because
only the victim-marking subtask would be affected. If robots
were able to self-reflect and report when they need assistance
we might expect to see a stronger scheduling advantage for
shared pool. We would additionally expect to see substantial
differences between types of autonomy in the numbers of
robots that could be adequately controlled.

The present experiment compares performance of robot
teams navigating either autonomously or using operator
supplied waypoints. The teams were controlled by pairs of
operators organized through assigned robots or as a shared
pool. In recent experiments [10] we have found that
participants performing an Urban Search And Rescue (USAR)
foraging task using waypoint control were at or over their
limits when controlling 12 robots each. Participants who were
asked merely to explore showed very similar performance in
area covered and reported similar levels of workload on the
NASA-TLX. Participants in a perceptual search condition in
which the foraging task was performed without the requirement
to navigate found twice the victims when monitoring 12 robots
and reported substantially lower workload.

The present study uses the same robots and environment
but with teams of two operators assigned to control 24 robots.
These operators controlled teams of 12 robots in the assigned
robots condition.  In the shared pool condition operators
shared control of the 24 robots. Robots were navigated by
operator assigned waypoints as in [10] in the manual condition
and by an autonomous path planner in the autonomy condition.
Participants were told they were a team and would share a joint
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score for the experiment. Because team organization was not
dictated by the experimenter, operators were free to choose
their own strategies for accomplishing their tasks. Strategies
could vary over the course of the task. Operators might act
with relative independence in the initial path planning phase,
for example, while dividing monitoring duties later on. One of
the goals of our experiment was to identify the coordination
strategies that emerged and find the relationship between these
strategies and performance.

Our hypothesizes were:

Automating navigation will lead to improved
p@ance
HZ: Increasing automation will improve shared pool
performance to a greater extent than it improves individual
assignment performance.

H3: Shared pool with redundant observers at birth, will
lead to greater accuracy for marking victims.

II. METHODS

A. USARSim and MrCS

The experiment reported in this paper was conducted using
the USARSim robotic simulation with 24 simulated Pioneer
P2-AT robots performing Urban Search and Rescue (USAR)
foraging tasks. USARSim is a high-fidelity simulation of
urban search and rescue (USAR) robots and environments
developed as a research tool for the study of human-robot
interaction (HRI) and multi-robot coordination. USARSim
supports HRI by accurately rendering user interface elements
(particularly camera video), accurately representing robot
automation and behavior, and accurately representing the
remote environment that links the operator’s awareness with
the robot’s behaviors. USARSim wuses Epic Games’
UnrealEngine2 [11] to provide a high fidelity simulator at low
cost and also serves as the basis for the Virtual Robots
Competition of the RoboCup Rescue League. Other sensors
including sonar and audio are also accurately modeled.
Validation data showing close agreement in detection of walls
and associated Hough transforms for a simulated Hokuyo laser
range finder are described in [13]. The current UnrealEngine2
integrates MathEngine’s Karma physics engine [14] to support
high fidelity rigid body simulation. Validation studies showing
close agreement in behavior between USARSim models and
real robots being modeled are reported in [15,16,17,18,19] as
well as agreement for a variety of feature extraction techniques
between USARSim images and camera video are reported in
Carpin et al. [12]. MrCS (Multi-robot Control System), a multi-
robot communications and control infrastructure with
accompanying user interface, developed for experiments in
multirobot control and RoboCup competition [20] was used in
many experiments. MrCS provides facilities for starting and
controlling robots in the simulation, displaying multiple camera
and laser output, and supporting inter-robot communication
through Machinetta which is a distributed multi-agent
coordination infrastructure.
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Figure 1. The MrCS user interface with 24 robots for both Shared Pool (left) and Assigned Robots (right) groups.

Figure 1 shows the elements of the MrCS. The operator
selects the robot to be controlled from the colored thumbnails
at the top of the screen. To view more of the selected scene
shown in the large video window the operator uses pan/tilt
sliders to control the camera. The current locations and paths of
the robots are shown on the Map Data Viewer (bottom right).
Under manual control, robots are tasked by assigning
waypoints on a heading-up map on the Map Viewer (bottom
right) or through a teleoperation widget (upper right). In the
autonomous condition robots were equipped with autonomous
path planning and could explore autonomously. In the
separate/assigned robots group (Figure 1 right screen),
participants could view their teammate's robot as squares
instead of circles shown on the map, however they could not
control their teammate's robot nor see their video. The
participant also could not modify the location or cancel of
victim marked by their teammate. In the shared pool condition
the participants have equal authority to control every robot and
modify marked victims.

B.  Experimental Conditions

A large USAR environment previously used in the 2006
RoboCup Rescue Virtual Robots competition [20] was selected
for use in the experiment. The environment was an office like
hall with many rooms and full of obstacles like chairs, desks,
and bricks. Victims were evenly distributed within the
environment. The experiment followed a two by two between
groups design crossing autonomy with team organization of
shared pool and assigned robot groups. Twenty four robots
were controlled by teams of 2 participants. In the assigned
robots conditions, participants were each assigned 12 robots
and shared map information and marked victim location but
not control of robots or view of their. In the shared pool
conditions participants shared control of the 24 UGVs and
viewed the same screens. Groups in the manual control
conditions issued waypoints to navigate their robots. In the
autonomy conditions robots generated their own waypoints
using distributed path planning. Participants were able to
teleoperate the in-focus robot to extricate it when it became
stuck making autonomy a condition with mixed initiative
navigation. In the autonomy condition operators performed a
supervisory control task involving substantially greater
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automation in which the robots autonomously navigated with
the operator allowed to override by directing them through
new waypoints. A fully autonomous control condition was
also run to ascertain the contributions of operator assistance to
exploration performance in the autonomy conditions.

C. Participants

120 paid participants (60 teams) were recruited from the
University of Pittsburgh community balanced among
conditions for genders. None had prior experience with robot
control although most were frequent computer users.

D. Procedure

After providing demographic data participants read
standard instructions on how to control robots via MrCS. In the
following 30 minute training session, participants in all
conditions practiced control operations. Participants were
encouraged to find and mark at least one victim in the training
environment under the guidance of the experimenter. After the
training session, participants began the experimental session
(25 minute) in which they performed the search task
controlling 24 robots in teams. After the task, the participants
were asked to complete the NASA-TLX workload survey.

III. RESULTS

A comparison of regions explored between the
experimental autonomy condition and the pure autonomy

control in which human assistance was not available found no
difference 473, p=.64. This lack of difference ruled out
the assistandé subtask as a contributor to other effects in the

experiment.
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Figure 2. Victims Found

The 2x2 ANOVA for marked victims (Figure 2) comparing
team organization and autonomy found a main effect for
autonomy, F1,56=13.436, p=.001. Tests for team organization
and the interaction were not found to be significant. T-tests
showed differences between autonomy and manual conditions
for both assigned robots, t(28)=2.152, p=.04 and shared pool
organizations, t(28)=3.398, p=.002.
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Figure 3. Region explored

The ANOVA for regions explored (Figure 3), by contrast,
found main effects for autonomy, F1,56=6.982, p=.011, and
the interaction between autonomy and team organization,
F1,56=7.878, p=.007. The effect for team organization,
F1,56=3.701, p=.059, approached significance as well. For
assigned robots there were negligible differences between
manual and autonomous conditions. In the shared pool
organization, by contrast, there was a substantial advantage for
autonomy, t(28)=4.771, p<.001. This advantage appears due
to the decline in explored area from the assigned robots to
shared pool conditions for manually controlling participants,
t(28)=2.716, p=.015 rather than performance in the
autonomous condition which did not differ across team
organization.
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Figure 4. Victims per region explored

While participants enjoying automated path planning found
more victims in the assigned robot condition for which areas
explored were comparable, their overall advantage in finding
victims might have resulted simply from the greater
opportunity afforded by exploring larger areas. To examine
this possibility we tested the adjusted measure victims/region
explored. A main effect was found again for autonomy,
F1,56=7.138, p=.01, and also the interaction between
autonomy and team organization, F1,56=7.138, p=.054. No
difference was found in victims/region within the shared pool
condition, however, for assigned robots participants in the
autonomy condition did significantly better, t(28)=3.274,
p=-003. There was also a marginal difference favoring
assigned robots over shared pool within the autonomy
condition, t(28)=1.935, p=.063. The opposite trend for the
manual condition apparent in Figure 4 did not reach
significance.
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Figure 5. RMS error in marking victims

The related issue of accuracy in marking victims on the
laser generated map also favored the assigned robots,
F1,56=18.031, p<.001 and autonomy conditions, F1,56=5.434,
p<.023. T-tests show smaller errors in marking for autonomy
participants under both assigned robot, t(28)=2.519, p=.018,
and shared pool, t(28)=3.549, p=.001 conditions. The
advantage for assigned robots, however, only approaches
significance, t(28)=1.879, p=.07, in the manual condition.
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Figure 6. Subjective workload ratings

The full scale NASA-TLX workload measure showed no
main effects in an overall ANOVA. When examined
separately, however, a slight advantage in workload,
t(118)=1.933, p=.056 was observed favoring the shared pool.
Unlike earlier studies [10] no advantage was found for
autonomy.

A. Team Organization

Since participants shared control of the 24 UGVs and
viewed the same screens in the shared pool conditions, a
responsibility allocation procedure was a necessar%ijof the
task. In this study we observed three patte self
organization in the shared pool condition. Some of the
participants practiced joint control controlling all 24 robots
together , while others followed a Split control strategy by
splitting the robots with each controlling a subteam. A third
group of mixed strategy teams failed to settle on an identifiable
strategy and instead alternated between strategies suggesting
joint or split control. As a result, the shared pool conditions in
both autonomy and manual condition could be divided into

subgroups according to the way the robots were controlled.
(Table 1)

Table 1. Team Organization for shared Pool

Condition Split Mixed Joint
Auto 3 4 8
Manual 9 3 3

A chi-square test of independence was performed to
examine the relation between autonomy and team organization
(Figure 7). The relation between these variables was significant,
X? @ N =23 = 5239, p =022, Manual condition participants
were less likely to choose joint control than were Autonomy
participants.
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Victims/Region Explored
0.026

0024
0022 /

]

split |

0.02

0.018

0.016
Mm

0.014

victims
JE— /4

autonomous
manual

0.012

Figure 8. Victims per Region Explored for shared pool

A two-way ANOVA was conducted comparing strategies
(joint, mixed, split) and the level of autonomy (auto vs.
manual) for all the performance measures. A main effect for
team organization was found for victim found per region
explored, F | 26 =3.627, p=.042 (Figure 8).
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Figure 9. Victims Found for shared pool
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Considering only teams with clearly discernible strategies
(joint vs. split) T-tests show joint control participants found
more victims, t(21)=-2.764, p=.012 (Figure 9). RMS error
showed a similar pattern, t(21)=2.134, p=.045, with teams
following joint strategies marking victims more accurately
(Figure 10).
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IV. DISCUSSION

The current experiment with teams of two operators
replicates the effects of automated path planning found in an
earlier single operator experiment [10]. In both experiments,
relieving operators of the need to perform path planning and
manually controlling robots led to finding more victims and
marking their locations more accurately. A deterministic
roadmap planner using a distributed information gain algorithm
was used in the current experiment to drive the robots unlike
the previous study in which paths were played back from those
generated by earlier participants. Operators appeared to have
little difficulty in following these algorithmically generated
paths and identified approximately the same numbers of
victims as in [10] following human generated paths.

The extra exploration appears principally due to
autonomous robots being able to move more or less
continuously with only brief pauses. In the manual condition,
by contrast, an average of 6.19 robots were left after being
given a single set of waypoints, while an average of 3.13
received no waypoints at all. The assigned robot condition
shows advantages here, perhaps because of the diffusion of
responsibility in the shared pool where each operator may
assume a stopped robot to be the other’s responsibility.

Table 1. Neglected Robots in Manual Condition

Number of Robots Assigned | Shared Pool | Average
Totally 2.00 4.26 3.13
After the Initial Move 4.73 7.66 6.19

Replication of the accuracy advantage for automated path
planning was also reassuring because studies such as [23]
suggested that this advantage might go in the other direction.
Peruch et al. [23] demonstrated that self-controlled viewers
tended to develop a rich survey knowledge more quickly than
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passive observers. Because operators in the manual control
condition needed to match landmarks between camera views
and the laser map, the active exposure to the environment
offered by path planning and entering waypoints might have
been expected to provide them a more detailed knowledge of
the environment and hence greater accuracy in marking
victims. Our replicated finding that automated path planning
improves accuracy suggests that either the advantage in
reduced cognitive load masks poorer survey knowledge in the
autonomous condition or that the frequent switching between
robots and viewpoints common to the two conditions allows
autonomous participants to develop equivalent or superior
survey knowledge.

Since avoiding missed targets is crucial to many foraging
tasks such as de-mining or search and rescue, thoroughness
may be more important than other performance gains such as
widening the search area. The analysis of victims per region
explored shows that in the assigned robot condition participants
using automated path planning found twenty-two percent more
victims. This gain is particularly significant because this group
was exploring 67% of the map and coming close to matching
the actual density of victims of .029/m2. Similar
improvements in RMS error and reduction in reported
workload suggest that substantial cognitive resources were
required for navigation and became available for other subtasks
improving overall performance when navigation was
automated.

In the assigned robot condition humans were able to plan
paths and control 12 robots each to cover the same area as the
autonomous path planner. This result supports the feasibility
of our information gain algorithm as a substitute for
operators (performance is no worse). We beliexﬂ?
divergence in area covered between manual and autononfious
control in the shared pool condition was due to diffusion of
responsibility. Participants in the shared pool condition were
confronted with a bank of videos (Figure 1) much like a
security guard monitoring too many surveillance cameras.
Under these conditions coordination demands were ambiguous.
Participants were frequently observed to reach some form of
agreement for dividing robots to be controlled at the outset
(like a self-organized individual condition). Later as they
performed the task some robots with apparently ambiguous
assignments were never moved out from the center of the
building. This diffusion of responsibility explanation is
supported by reported workload which was marginally lower in
the shared pool condition. Informal observation of participants
suggested that in the shared pool condition, the 23 thumbnails
being monitored appeared to interfere with their ability to focus
on particular robots and to locate victims. When multiple
robots found similar looking victims participants often became
confused marking the same victim twice or leaving a similar
appearing victim unmarked on the map. There also appeared
to be difficulties in switching strategies where one operator
might be trying to control a subset of robots while the other
was organizing the task by area.

A. Team Organization

A premise of our research is that if the supervisory control
task can be made more similar to conventional alarm driven
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control, teams of operators will be able to control increasing
numbers of robots due to advantages in load balancing and
redundant observations. An overall advantage for Area
Explored was not observed. We attribute this lack of effect to
the weak contribution the assistance subtask made to team
performance. While we had expected the office environment
to provide many opportunities in which robots would require
human assistance our results show that the robots
(autonomous) managed to explore an equivalent area without
any human assistance. Because the assistance subtask was the
task we expected to benefit most from load balancing, its
effects were muted. Suggestions of such effects, however,
were found within the shared pool conditions. We
hypothesized that increasing automation would improve shared
pool performance which allows load balancing and redundant
observations to a greater extent than assigned robot
performance which does not.

This shared pool advantage was found but only for teams
choosing the joint control strategy which allowed it. As
Figures 2 and 9 show joint control teams found approximately
17 victims in the auto condition and 14 in manual precisely the
numbers found by assigned robot teams under these same
conditions. Joint control teams matched or bettered assigned
teams in accuracy as well finding .021 and .023 victims/m2
respectively in auto and manual conditions compared to .022
and .018 for assigned robot teams. A similar advantage for
joint control participants was found in locating victims more
accurately (Low RMS error).

These results add to a growing picture of the complex
problem of controlling multiple robots with human teams.
Such tasks are invariably a mixture of subtasks of varying
difficulties and contributions. In this experiment the difficulty
of the monitoring task dominated and human interventions of
the sort described by the neglect tolerance model had little
impact. In future studies we hope to examine a range of
task/autonomy combinations to develop a more comprehensive
theory of team for teams HRI.
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