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Abstract—During unmanned aerial vehicle (UAV) search mis-
sions, efficient use of UAV flight time requires flight paths that
maximize the probability of finding the desired subject. The
probability of detecting the desired subject based on UAV sensor
information can vary in different search areas due to environment
elements like varying vegetation density or lighting conditions,
making it likely that the UAV can only partially detect the
subject. This adds another dimension of complexity to the already
difficult (NP-Hard) problem of finding an optimal search path.
We present a new class of algorithms that account for partial
detection in the form of a task difficulty map and produce
paths that approximate the payoff of optimal solutions. The
algorithms use the mode goodness ratio heuristic that uses a
Gaussian mixture model to prioritize search subregions. The
algorithms search for effective paths through the parameter space
at different levels of resolution. We compare the performance of
the new algorithms against two published algorithms (Bourgault’s
algorithm and LHC-GW-CONY algorithm) in simulated searches
with three real search and rescue scenarios, and show that the
new algorithms outperform existing algorithms significantly and
can yield efficient paths that yield payoffs near the optimal.

Index Terms—Heuristic algorithms, hierarchical systems,
navigation, path planning, unmanned aerial vehicles.

I. INTRODUCTION

INI-unmanned aerial vehicles (UAVs) are becoming
useful tools in many reconnaissance, remote-sensing,
surveillance, and search operations, thanks to advances in UAV
technologies. They can help firefighters to map forest fires,
news crews to provide coverage, police to monitor crowds,
and wilderness search and rescue (WiSAR) workers to locate
a missing person. In these applications, the UAV uses its on-
board cameras to provide useful visual information in support
of the specific operation.
This paper focuses on using mini-UAVs to support WiSAR.
The aerial view from a UAV enables WiSAR workers to survey
large areas of importance in real time [1]. Search efficiency
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Fig. 1. Two approaches to the probability-maximizing path-planning prob-
lem. With three paths are generated by various algorithms, the first approach
prefers the path maximizing the CDP given a specific flight time (path 3 is
the winner) and the second approach prefers the path achieving a specified
CDP in the shortest amount of time (path 1 is the winner).

is very important in WiSAR because, as time progresses,
the survivability of the missing person decreases and the
effective search radius increases by approximately 3 km/h [2].
Therefore, a good flight path should rapidly maximize the
probability of finding the missing person to make efficient
use of the limited flying time.

Each UAV path accumulates information over time as the
UAV’s sensors scan the ground. As illustrated in Fig. 1, various
paths do so in different ways depending on how information
is distributed in the environment. The goal is to maximize the
total probability of detection. There are two quality metrics
for the probability-maximizing path-planning problem [3]-[5].
First, find the path that maximizes the cumulated detection
probability (CDP) after a specific flight time (blue vertical
dotted line). Out of the three example paths in Fig. 1, path 3
becomes the winner. Second, find the path that achieves a
desired CDP in the shortest amount of time (red horizontal
dotted line). Path 1 would become the winner out of the three,
instead. We model the problem following the first approach.

When using a UAV’s on-board camera to assist WiSAR
operations, factors such as dense vegetation, lighting condi-
tions, shadows, or distance between the camera and the ground
can lower the quality of the UAV aerial view and decrease
the probability of detection [6]. This can be attributed to
both sensor and human limitations (such as limited attention
span and cognitive workload). We propose to represent partial
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detection in the form of a task difficulty map, where a
more difficult subregion on the map has lower probability of
detection. Using a task difficulty map enables us to integrate
geo-referenced and spatial-related sensor constraints into the
problem formulation, which supplements traditional sensor
modeling methods (e.g., [7]) and potentially improves search
performance in real-world search scenarios. Because detection
difficulties vary in different search subregions, flying patterns
such as lawnmower and Zamboni do not guarantee optimal
coverage. Integrating the task difficulty map into path planning
adds another dimension of complexity to the already difficult
problem and causes the performance of existing greedy-type
algorithms [Bourgault’s algorithm (BA) [7] and LHC-GW-
CONYV algorithm [8]] to suffer.

We model the path-planning problem as a discrete com-
binatorial optimization problem and propose a new heuristic,
the mode goodness (MG) ratio. This heuristic uses a Gaus-
sian mixture model (GMM) to identify and prioritize search
subregions. We then present two new algorithms (7op2 and
TopN) that utilize the heuristic in hierarchical path planning
by forcing the UAV to visit high-priority subregions. The
hierarchical structure enables the algorithms to: 1) cluster
probability volumes and 2) prioritize search subregions at
different levels of resolution. It also makes it easy to par-
allelize the two new algorithms and improve computation
speed. We compare the performance of the new algorithms
against two published algorithms (BA [7] and LHC-GW-
CONV algorithm [8]) in simulated searches based on three
real search and rescue (SAR) scenarios. Results show that the
new algorithms outperform existing algorithms significantly
and can yield efficient paths that approximate the payoff of
the optimal path.

The contributions of this paper are: 1) the introduction of
GMM to compute the mode good ratio (MGR) heuristic, which
can be used to prioritize search subregions in a hierarchical
planner; 2) two new path-planning algorithms that utilize the
MGR heuristic to improve path-planning performance; and
3) the use of a spatial representation (task difficulty map)
in modeling sensor detection probability with terrain and
vegetation information and incorporating that into UAV path
planning.

Section II defines the problem and the metrics used to
evaluate algorithm performance. Section III discusses related
literature. Section I'V reviews two existing algorithms and then
demonstrates the weakness of these algorithms with a synthetic
scenario. It then presents the MGR heuristic and the two new
algorithms (Top2 and TopN). Section V compares algorithm
performance with three real SAR scenarios. Section VI dis-
cusses the limitations of the approach. Section VII presents
the summary.

II. PROBLEM FORMULATION
A. Problem Framework

Typical UAVs (fixed-wing or rotorcraft) are highly mobile
and variable, but we will assume a set of useful constraints on
their capabilities: they have a gimbaled camera, can maintain a
constant height above ground, and can travel at constant speed.
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A gimbaled camera enables the camera to aim straight down
even when the UAV is performing roll or yaw maneuvers. We
assume that the UAV’s speed is much higher than the speed of
the missing person and treat the missing person as stationary.
At every UAV flight time step, we treat the camera footprint
of the search area as a glimpse. This way we can discretize
the search area, model the UAV path-planning problem as a
discrete combinatorial optimization problem with respect to
probability accumulated, and define it following the framework
described in [9].

The search space is represented as a finite, connected graph
G = (V, E). V denotes the set {vy, ..., v,} as vertices of G and
E denotes the set of edges. Each edge in E can be viewed
as an unordered pair of vertices {v;, v;}. The missing person
is located at one of the vertices of G. A given probability
distribution map for the missing person is discretized to match
graph G, with p; being the probability that the missing person
is located at vertex v;. It is obvious that

 opi=1. (1)
i=1

The UAV search is conducted in discrete time. During each
time step, the UAV camera footprint can cover one vertex.
For a desired flight with 7 time steps, let S denote the set
{0,1,2, ..., T}. The UAV’s motion is constrained by the struc-
ture of the graph G. Let W be the set of functions ¥ : S = V
with the property that for any two consecutive integers ¢ and
t+1in S, either Y (r) = Y (t+1) or {Y(¢), ¥(t+1)} € E. Here, ¥
represents all possible paths, and under path i, vertex ¥ (¢) is
searched during step ¢. The conditions on the set W guarantee
that at each time step, the UAV camera footprint will either
remain at the current vertex (only possible for a rotorcraft) or
move to a neighboring vertex.

Even when the UAV camera footprint covers the vertex
occupied by the missing person, it is not certain that a
detection will occur. The probability of detection is described
by a glimpse probability function g, which is defined by a
given task difficulty map. The task difficulty map is a spatial
representation of sensor detection probability and defines areas
where it is difficult to detect the missing person (with lower
probability of detection), with d; being the task difficulty
level at vertex v;. Let dmax be the maximum task difficulty
level in the given map. If at time step ¢ the UAV camera
footprint covers vertex v, then let g(v, t) be the probability
that a detection will occur, given that the missing person is at
vertex v. We model this as

d;
dpax + 1

g, ) =1- 2

so that more difficult tasks (higher d; values) have lower
glimpse detection values, g.
Let Pr(y) represent the CDP for path ¢ € W with T time

steps. For each (cell, time) pair (i,¢) with 1 < i < n and
0 <t < T, we define the probability of failure f(i,t, V) by

1 — g, ) if Y1) = v

S, ¢) = { 1 otherwise. )
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Let D; represent a detection on the jth observation so that
D; is a detection failure. Then the probability of failing to
detect the missing person after N observations of vertex v;,
given that the missing person is at vertex v;, is the joint
probability P(Dy, D, ..., Dy|v;). Assuming each observation
is conditionally independent of each other (typical in the
WiSAR literature), we can rewrite the joint probability as

N
P(Dy.ylvi) = [ [ P(D;vi) &
j=1

and the probability of detecting the missing person after N
observations as

P(Dy.y|v;)) =1 — P(Dy.y|vi) Q)
which is equivalent to
T
P(Dyylv) =1 =[] fG.t, ) (6)
1=0

where N is how many times v; shows in path 1. Then Pr(i)
can be computed by

n T
Prny =3 pi(1-T] r6..w) ™
i=1 =0

where p; is the probability that the missing person is located
at vertex v;. Define Jiy*eW such that for any alternate path
Y'ew, Pr(y*y> Pr(y/'). Our goal is to find the optimal path ¢*
that produces the maximum CDP (path 3 in Fig. 1 at T = 600 if
there are only three possible paths) or find an efficient path ¢
that produces payoff approximating the payoff of the optimal
path within reasonable computation time.

When the path needs to end at an operator-specified vertex
(for easy UAV retrieval or to join with other path segments),
we add the constraint to the problem formulation (only add
edges to a path that does not violate the constraint so the UAV
that has enough time to reach the end point). Also for fixed-
wing UAVs, additional motion constraints (such as not allow-
ing the UAV to fly backward) are also introduced as velocity
constraints affecting edges {1(¢), ¥(t,)}, effectively creating a
directed graph. Both proposed path-planning algorithms satisfy
these constraints.

B. Performance Metrics

We will use two measures of algorithm performance: the
quality of the path and the run-time of the algorithm. Run-
time is self-explanatory, but we need a measure of path quality.
Ideally, the efficiency of an algorithm should be computed with
the following equation:

Efficiency(y) = Prv)

Pr(y™)
where 1 is the optimal path. However, because we do not
know what * is, we bound the efficiency. Let Yieleport be
defined as the path constructed as follows: 1) deduct the time
needed to move from the start vertex to the nearest vertex
with nonzero p; (plus time for doing the same with the end
vertex if specified) and 2) at each step, the UAV teleports to
the vertex that allows the UAV to collect the highest amount of

®)

probability after considering the task difficulty at that vertex.
Then, all the probability collected during the teleport flight is
summed, giving Efficiency, g for path i

Pr(yi)
PT ( wrm teleport ) .

Since Pr(Y*) =< Pr(Y¥ielepor), Efficiency can be no worse
than Efficiency; g, the latter sets a lower bound for the true
efficiency. Note that the majority of the teleport path Yieleport
is made up of disjointed points because the UAV would be
“jumping” from vertex to vertex, always landing on the vertex
that promises highest amount of probability collectable.

©))

rmEfficiency g, =

III. RELATED WORK

Many path-planning algorithms in the literature address
obstacle avoidance while planning a path to reach a destination
using A* [10], D* [11], Voroni diagrams [12], or probability
roadmaps and rapidly exploring random trees [13]. Hierar-
chical heuristics approaches were also developed, such as
hierarchical A* (HA*) by Holte et al. [14], hierarchical task-
based real-time path planning by Meuleau and Brafman [15],
and hierarchical-AO* (HiAO*) by Naveed et al. [16]. The
algorithms we present solve a different path-planning problem
by generating paths that make efficient use of the limited travel
time and maximizing the probability of finding the missing
person. This is similar to the vehicle routing problem [17]
and the orienteering problem (OP), which is a variation of
the traveling salesman problem (TSP) and is known to be
NP-Hard [18]. However, our path-planning problem is even
more difficult with added challenges of repeated visits and
partial detection. Tasgetiren and Smith [19] proposed a genetic
algorithm to solve OP. Liang and Smith [20] presented an ant
colony optimization approach that uses an unusual sequenced
local search and a distance-based penalty function for path
planning. These algorithms work well with OP problems
with few nodes (21-100) but can be slow with many nodes.
Unfortunately, they do not allow repeated visits and do not
support partial detection. Although the classic dynamic pro-
gramming [21] method can solve TSP, because TSP is NP-
Hard, it cannot be solved in polynomial time, unless P = NP.
The method suffers the “curse of dimensionality” and does
not scale well with complex problems. Reinforcement learn-
ing (approximate dynamic programming) methods [22], [23]
seek approximate solution (suboptimal policies) using function
approximation, thus avoiding the ‘“curse of dimensionality”
and scaling better. However, in our path-planning problem,
because a node can be visited multiple times, and our Bayesian
approach that allows for partial collection of information, the
score/prize collected for each visit is different. When using
a reinforcement learning method, the reward and the value
functions both become path dependent, making the design of a
reinforcement learning approach more challenging. We chose
a heuristic approach that scales well when search area and
flight duration expand.

In the 1950s, Koopman [24] discussed the uncertainties
in the act of detecting hostile submarines with radars and
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proposed a concept called the instantaneous probability of de-
tection by one glimpse. He presented simple search algorithms
and demonstrated how search effort should be distributed
given a prior probability distribution of the target and known
law of detection when only a limited total amount of search
effort (or time) is available [3]. Stone [4] presents various
search plans with partial detection models using Lagrange
multipliers and maximization of Lagrangians in finding sta-
tionary target in very basic search problems when no false
targets are present. Washburn [5] discussed how to construct
optimal search paths for different search problems. The author
also developed detection models based on radar/sonar and
expanded the fundamentals of search theory to include moving
targets. Bourgault et al. [7] described a Bayesian framework
for UAV trajectory planning to maximize the chances of
finding the target in given restricted time. Partial detection
was modeled based on a downward-looking millimeter wave
radar, and a one-step lookahead method was used for path
planning using posterior distributions obtained from Bayes
filter [25] updates. More recent work includes [26], where
Niedfeldt et al. presented a UAV path-planning algorithm that
utilizes probability of detection and maximizes the probability
of identifying an object using a N-step lookahead method,
and [27], where Ryan and Hedrick developed a control for-
mulation for a fixed-wing UAV that minimizes the entropy of
an estimate distribution over a receding horizon for searching
a moving target. N-step lookahead and receding horizon
methods are greedy-type algorithms that run into scalability
bounds and generate suboptimal paths in situations when a
complicated detection model is used, such as a task difficulty
map.

Koester [28] compiled statistics from large set of past
WiSAR incidents. These statistics can be used to construct
probability distribution maps. Ferguson [29] described how
Geographic Information Systems (GIS)can be used to segment
search areas into probability subregions. Goodrich ef al. [1]
described how a probability distribution of likely places to find
the missing person can be useful for UAV path planning. Lin
and Goodrich [30] proposed a Bayesian model to create such a
distribution based on terrain features and past human behavior
data. The model has been evaluated using real SAR scenarios
at George Mason University’s MapScore web portal [31] and
performed well compared to other statistical models. Stone
et al. [32] used posterior probability maps and successfully
located the wreckage of Air France Flight 447 [32]. Metrics
such as Koopman’s instantaneous probability of detection
by one glimpse [24], “seeability” proposed by Morse et al.
[6], and terrain and vegetation information obtained from
USGS [30] can be used to build a task difficulty map repre-
senting probability of detection in different search subregions.

The MGR heuristic is used to evaluate the “peakedness” of a
bivariate Gaussian. The traditional way to evaluate the peaked-
ness of a distribution uses kurtosis [33]. Mardia [34] extended
the concept to multivariate distributions. Because multivariate
kurtosis is difficult to compute and may show inconsistency in
meaning the peakedness of a distribution, Khurshid et al. [35]
extended Horn’s measure of peakedness [36] into a measure
for bivariate normal distributions. The heuristic we propose is
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an even simpler method to measure the peakedness and is well
adapted to support hierarchical search algorithms.

IV. PATH-PLANNING ALGORITHMS

In this section, we review two existing path-planning algo-
rithms, BA [7] and LHC-GW-CONYV [8], and demonstrate the
weakness of these algorithms with a synthetic scenario. Next,
we formally define the MGR heuristic. Then we present the
Top2 and TopN algorithms.

A. BA and LHC-GW-CONYV Algorithms Review

The BA algorithm [7] is a Bayesian approach to the UAV
path-planning problem. Given a prior probability distribution
of the missing person, it uses the Bayes filter as described
in [25] to compute the posterior probability distribution at
every time step. The probability of detection follows an
active model of a downward-looking millimeter wave radar
where signal power is determined by factors such as emitted
power, antennae footprint, and sensor distance to the target.
Distributions are discretized into a grid for calculation and
a (greedy) one-step lookahead method is used to determine
which cell the UAV should fly to next (the grid cell with the
highest posterior probability).

Our formulation in Section II can be viewed as a Bayes filter
with the following assumptions: p; is the prior probability,
g(v;, t) is the detection likelihood, and we assume a stationary
object of interest. Instead of using a greedy approach, we
look ahead much further down the path. In order to address
the increased computational complexity, we use a heuristic
(introduced in the next section) and rely on a hierarchical
approach to improve the search for efficient paths. Because
the speed of our algorithms is very fast, our algorithms can
turn into a “greedy” algorithm with extended horizon when
dealing with moving object or changing environment.

The sensor model in BA uses target distance and signal
strength, which implicitly considers the spatial information
of the environment. We use a task difficulty map to take
advantage of explicit prior knowledge of the environment
and how it affects the detection probability spatially. For a
fair comparison, we used the same downward-looking camera
visual sensor model when we implemented the BA algorithm,
and we note that our algorithm can use detection models
similar to the one used in [7].

The LHC-GW-CONV algorithm [8] is a combinatorial
optimization approach to the UAV path-planning problem. It
discretizes the given probability distribution of the missing
person and the task difficulty map into a grid and uses a
local hill-climbing algorithm to select the next cell to fly
to (the grid cell with the highest one glimpse detection
probability). Spatial averaging is performed by convolving the
combined probability distribution and the task difficulty map
using box filters. This serves as the tie-breaker, enabling the
algorithm to look beyond local neighbors in order to plan paths
toward broader areas with high probability. Even with spatial
smoothing, a typical problem of Local Hill Climbing (LHC) is
that it favors local maxima, resulting in the UAV getting stuck
in a local probability hill for too long before it can move to
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Fig. 2. Synthetic WiSAR scenario. (a) Multimodal probability distribution.
(b) Simple task difficulty map. (c) Probability collectible on first visit
(combining probability distribution and task difficulty map).

another probability hill. To overcome the problem, a “Global
Warming” technique is used.! After each “ocean rise,” a new
path is created and the best path is returned as the final path
found. Equation (10) shows how the probability p; that the
missing person has at vertex v; changes when the ocean rises

pg(_{p,-—nC,if pi > nC

0, otherwise (10)

where C is a constant height of each “ocean rise” and n is the
number of times the “ocean” will rise.

Both BA and LHC-GW-CONYV are greedy algorithms. The
advantages of greedy algorithms include low computational
cost and flexibility in quickly adapting to changes (e.g., a
changing environment or a moving target). A major drawback
is that such algorithms tend to get stuck in local maxima. We
demonstrate this using the synthetic scenario in Fig. 2, which
shows a multimodal distribution of the missing person location
and a task difficulty map with three difficulty levels.

For a UAV path where T = 900, if the UAV starts from a
subregion with low task difficulty (upper left corner), the BA
algorithm achieved 65.99% Efficiency; and the LHC-GW-
CONV algorithm achieved 96.28% (averaged for 10 runs);
Fig. 3 shows the paths generated by the two algorithms. The
BA algorithm’s performance is okay but not great, while the
LHC-GW-CONV algorithm performed really well (actually
slightly better than the performance of the Top2 and TopN
algorithms, which we will discuss in detail in Section VI).
But if the UAV starts from a subregion with high task
difficulty (lower right corner), both algorithms perform poorly
(much worse than the performance of the Top2 and TopN
algorithms), with BA scoring 41.91% and LHC-GW-CONV
scoring 53.71% (averaged for 10 runs) in Efficiency, g; Fig. 4
shows the paths generated by the two algorithms. This is
because both greedy algorithms fail to move the UAV quickly
out of the local probability hill. The Top2 and TopN algorithms
we propose address this problem by forcing the UAV to visit
other search subregions and also allocate more flight time to
subregions where the UAV can be more efficient. In order to
identify better subregions, we propose the MGR heuristic.

B. Mode Goodness Ratio

The MGR heuristic prioritizes search subregions, where
each subregion represents a cluster of probability volume that
can be “collected” by the UAV sensor. Compute the heuristic

'The name “Global Warming” comes from the metaphor where the “ocean
surface” represents all the grid cells with zero probability and the “islands”
represent probability hills with nonzero grid cells; as the “ocean” rises, the
volume of probability hills above the water decreases.

F@z@%

Fig. 3. Paths found at 7' = 900 when the UAV starts from a subregion with
low task difficulty (upper left corner). (a) Path created by BA. (b) Path created
by LHC-GW-CONV.

b e

Fig. 4. Paths found at 7 = 900 when the UAV starts from a subregion with
high task difficulty (lower right corner). (a) Path created by BA. (b) Path
created by LHC-GW-CONV.

as follows. First, combine the probability distribution map
and the task difficulty map to construct a new grid/surface
G'. The value of each cell in G’ represents how much
probability can be collected the first time the cell is visited
[e.g., Fig. 2(c)]. Second, use a GMM to partition G’ into high-
quality clusters/subregions. We subjectively set the maximum
number of subregions to 5 to reduce computational complexity.

A GMM is a probabilistic model for finding subpopula-
tions within an overall population and is often used for data
clustering. We choose the GMM method for two reasons. 1)
We can take advantage of the resulting Gaussian parameters
and coefficients to estimate the peakedness of the probability
hills. 2) A GMM is a parametric method, so we can define
subregions by cluster probability volume hierarchically and
search through the parameter space.

It is important to point out that when a task difficulty
map (especially a complicated one) is applied, the resulting
grid/surface G’ is unlikely to resemble a mixture of Gaussians
and we only use GMM to approximate the probability hills.

We used the Accord.MachineLearning library in the Ac-
cord.NET framework? to estimate GMM parameters. We gen-
erate data points to approximate G’ (create a 2-D histogram
of G’ and generate number of points proportional to each bin
count) and then feed these points to the Accord library, which
first uses the K-means algorithm to generate k initial clusters
and then uses the expectation maximization (EM) algorithm
to iteratively fit data to a mixture of Gaussians. Gupta and
Chen [37] provide detailed description on how to use EM
to learn a GMM model. The results are a set of (k)-scaled
bivariate Gaussian distributions with their means, covariance

2 Available at: http://code.google.com/p/accord/
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matrices, and the coefficient (scale) for each Gaussian. For
completeness, (11) shows the density function for a multivari-
ate Gaussian distribution

P(x) = *%((X*M)TZ’](X*M)). (11)

1
V@)X

Next, we identify all modes in the grid/surface G’ (using
simple local hill climbing with verification for plateaus and
ridges), match the mean of each Gaussian to the closest mode
centroid (in case the mode has a flat peak), and then use that
centroid, C;, to represent the subregion. Note that the number
of modes in G’ can be more than the number of modes in the
probability distribution after a task difficulty map is applied. If
there are fewer than five modes in G’, we reduce k accordingly
to reduce computation.

We evaluate three factors when computing MG, MG;, for
subregion i: distance ratio D;, probability volume V;, and
subregion area A;.

The first factor, the distance ratio, D;, is defined as

D, =log ( ) (12)

o+ 1

where T is the total UAV flight time (in time steps) and «; is
the L1 norm distance from the start location of the path to the
centroid of the subregion, C;. If an end location is specified
for the path, then that distance is also added

13)

o = ||Start — C;ll1, no End
"7 1 |IStart — Ci||; + ||End — C;||, otherwise.

We add 1 to the denominator in (12) to make sure it will
never be 0, and use the log scale to reduce wide-ranging
quantities to a smaller range.

The idea behind the distance ratio is that a subregion is less
attractive when it takes a large percentage of the total flight
time to reach the center of the subregion because the trip to get
there might not be very efficient. Therefore, higher D; values
indicate closer subregions.

The second factor, the probability volume, V;, is defined as

‘/i = VS(T)L/'}(TV{ wi (14)

where V3,35, is a constant (roughly 99.46%) representing
the volume of probability under a standard bivariate Gaussian
surface within three standard deviations, and w; is the weight
of each Gaussian component G;, which is the coefficient of
the Gaussian in the mixture as shown below with the property
of Zle w; =1

k
p® =Y wG. (15)
i=1
The idea behind the probability volume is that a subregion
is more attractive when the volume of probability within the
subregion is high, meaning visiting the subregion has the
potential of collecting a large amount of probability. Therefore,
higher V; values indicate subregions with more probability.
After rotating the axes of the bivariate Gaussian to align
with the eigenvectors of the covariance matrix ¥;, the area
under the surface within three standard deviations in both axes
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can be estimated using a rectangle with width 30y, and height
3oy, where oy, and oy are the square roots of the eigenvalues
of the Gaussian’s covariance matrix. The area of the rectangle
A; is the third factor in the heuristic. A larger A; means it
takes more time steps for a UAV to cover the area. Therefore,
the lower A; is, the better the subregion

A; = (3oyx)(3ay) =90y 0y. (16)

When we divide V; by A;, we are basically estimating the
peakedness of the Gaussian. Then assuming the peakedness is
independent of the distance ratio D;, we can multiply them
together to compute the MG of the subregion i

MG; = D;V;A; . (17)

Since all we really care about is the priority order of the
search subregions, we can simplify computation by computing
the MGR, MGR;, for subregion i with respect to subregion 1
as the following:

MG; D;VA;™!
MGR, = = (18)
MG, D1V1A171
_ DiV355i(900,)! (19)
~ DiVss85190x,0y)!
D,’S,' Oy Oy -1
_ Driitoyoy) (20)

 DiSi(oy o)

Naturally, MGR, the MGR for subregion 1 with respect to
subregion 1 will always be 1 and MGR; for other subregions
can be less or greater than 1. By sorting the MGRs of all the
subregions, we have a way of prioritizing them according to
their MG.

C. Top2 Algorithm

The Top2 algorithm is designed to generate paths that force
the UAV to visit the top 2 subregions in the search area.
This way, the heuristic-based path planner can escape from a
probability hill where task difficulty is high and probability of
detection is low. First, the MGR heuristic is used to identify the
top 2 search subregions (represented by centroids). Then, local
hill climbing is used to create the shortest path segment from
the start location to the nearest centroid. If an end location is
specified in the path-planning request, another path segment is
created similarly from the end location to the other centroid.

The algorithm then identifies a point (vertex) equidistant
from the two centroids (the green square) and launches two
path-planning tasks to plan path segments from each centroid
to that point using local hill climbing. By allocating different
percentages of the remaining flight time to these two path-
planning tasks, the Top2 algorithm can effectively search
within a new dimension of time allocation. The subregion with
more flight time allocated ends up with a longer path segment.
Note that it is possible for the path to cover other subregions
(other than the top 2) when a lot of flight time is allocated.
Fig. 5 shows three time allocation examples.

A coarse-to-fine search is performed starting from a low
resolution (large chunks of flight time transferred from one
path-planning task to the other) and gradually increasing the
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it

Fig. 5. [Illustrations of the Top2 algorithms where the top is subregion 1
and the bottom is subregion 2. (a) More flight time allocated to subregion 1.
(b) Equal flight time allocated to both subregions 1 and 2. (c) More flight
time allocated to subregion 2.

Path Top2(Point start, int T, ArrayList centroids, Probabili-
tyMap map, int tChunk) {
1. Find closest centroid to start cl and time needed t1
2. Plan straight path from start to cl and store in pathl
3. Find point center equidistant from c1 and c2
map.VacuumProbability(path1);
2min = L1dist(c1, center);
t3min = L1dist(c2, center);
double efficiency = 0;
int t2 = T-t1-t3min;
int t3 = T-t1-t2;
while (2 > t2min) {
t2 -= tChunk;
t3 += tChunk;
(e2, path2) = LHC(cl, center, t2);
(e3, path3) = LHC(c2, center, t3);
if (2 + €3 > efficiency) {
efficiency = e2 + e3;
pathRest = JoinPaths(path2, path3)

}

return JoinPaths(pathl, pathRest);

Fig. 6. Pseudocode for the Top2 algorithm when no end point is specified
at one layer of the hierarchy (e.g., top 2 Gaussians out of 5) and one coarse-
to-fine level defined by tChunk.

resolution (smaller chunks) until the best path is found. Then
the path segments are joined together to form a full flight path.
Fig. 6 shows the pseudocode for the Top2 algorithm.
Because we can specify how many Gaussians to fit during
the GMM step, we can cluster the probability hills hierar-
chically; this structure enables us to search through different
hierarchy layers with different k values (e.g., top 2 out of 5, top
2 out of 4, etc.). These path-planning tasks at different layers
can each run the Top2 algorithm in parallel, taking advantage
of the computing power of a multiprocessor system; the path
with the best performance is returned as the final result.

D. TopN Algorithm

The TopN algorithm forces the UAV to visit N subregions
(6 = N > 1). The algorithm first selects the top N search
subregions using the MGR heuristic. Then, similar to the Top2
algorithm, it plans the two shortest path segments connecting
the start and end locations of the path with the nearest
centroids (modes A and D, respectively). Next, the algorithm

N
)

@

Fig. 7. Illustrations of the TopN algorithms with top 4 subregions (k = 5
and N =4).

starts multiple path segments from the N centroids as shown
in Fig. 7 (N = 4 in this example), one from the centroid
nearest to the start (segment 1 from mode A), one from the
centroid nearest to the end (segment 2 from mode D), and
two segments for each other centroid (segment 3—6 in modes
B and C). Segments 3 and 4 are connected at the center of
mode B and segments 5 and 6 are connected at the center of
mode C. The four segments spiral outward from the center.
This technique allows the UAV to fly to the desired centroid
in a “spiral in” fashion and then leave the centroid in a
“spiral out” fashion without any overlaps, thus heuristically
minimizing unnecessary revisits and still providing a good
coverage of the probability hill. Six path segments perform
local hill climbing at the same time and at each one-step
lookahead, only the path segment with the maximum gain
gets to add the neighboring vertex to the path. This process
continues until the remaining flight time is just enough to
connect all six segments in the shortest way possible. In the
last step, path segments are connected into one continuous path
using local hill climbing. In the example shown, segments 3
and 1 join to connect modes A and Bj; similarly, segments 4
and 5 connect modes B and C and segments 6 and 2 connect
modes C and D. Note that planning two path segments from
the center of the same Gaussian mode allows the UAV to
spiral in to the center of the mode and then spiral out without
crossing paths and revisit nodes, approximating a Fermat’s
spiral (a special type of Archimedean spiral), and improve
the search efficiency (especially for an area with relatively
uniform detection probability). Fig. 8 shows the pseudocode
for the TopN algorithm.

Similar to the Top2 algorithm, the algorithm can specify
how many Gaussians to fit during the GMM step and, in
addition, search through different N values (e.g., 4 out of 5, 3
out of 5, 2 out of 5, and so on). The TopN algorithm for each
hierarchy layer is run in parallel and returns the path with the
best performance as the final result.
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Path TopN(Point start, Point end, int T, ArrayList centroids,
ProbabilityMap map) {
1. Find closest centroid to start ¢l and time needed t1
2. Remove cl from ArrayList centroids
3. Plan straight path from start to cl and store in pathl
map.VacuumProbability(pathl);
4. Find closest centroid to end cN and time needed tN
5. Remove cN from ArrayList centroids
6. Plan straight path from end to cN and store in path2N
map.VacuumProbability(path2N);
int TLeft = T - t1 - tN;
Path path2 = new Path();
Path path2.add(BestNeighbor(c1));
Path path2NMinus!l = new Path();
Path path2NMinus1.add(BestNeighbor(cN));
ArrayList segments = new ArrayList();
ArrayList segments.add(path2);
ArrayList segments.add(path2NMinus1);
foreach (Point ¢ in centroids) {
Path pl = new path();
pl.add(c);
Path p2 = new path();
p2.add(BestNeighbor(c));
segments.add(p1);
segments.add(p2);

while (EnoughTimeToJoinAllSegments(TLeft)) {
Path path = SegmentWithBestNeighbor(segments);
Point p = BestNeighbor(p.lastPoint());
path.add(p);
map.VacuumProbability(p);
TLeft—;

return JoinPaths(pathl, path2N, segments);

Fig. 8. Pseudocode for the TopN algorithm with end point specified at one
layer of the hierarchy (e.g., top 4 Gaussians out of 5).

Although the Top2 algorithm might appear similar to a
special case of the TopN algorithm, where N = 2, it is
not. First, the Top2 algorithm would force a path to go
through the vertex (the green square in Fig. 5) equidistant
from the two centroids; the TopN algorithm does not have
this constraint. Second, although both algorithms would plan
two path segments and join them together to form the final
path, Top2 algorithm actually generates multiple final paths
(by allocating different portion of flight time to the two path
segments) at the current hierarchy and then searches for the
one with the best turnout. The TopN algorithm, however, only
generates one final path at the current hierarchy. At each time
step, only the segment with the maximum gain in the next
move grows (deducting a time step from the remaining flight
time), until the remaining flight time is just enough to connect
the two path segments. And with only one path generated,
there is no need to search further at the current hierarchy.

Although simple, the Top2 and TopN algorithms become
powerful when combined with the MGR heuristic and a
hierarchical structure.

V. EXPERIMENT RESULTS AND ANALYSIS
A. Experiment Setup

We selected three real WiSAR scenarios to test the perfor-
mance of the proposed algorithms for ecological validity. All
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three scenarios were obtained from George Mason University,
and all came from the International Search and Rescue Inci-
dent Database [28]. In each scenario, the missing person’s last
known position (LKP) is at the center of a 2.4x2.4km search
area; therefore, we always start the UAV path from the center
of the map. The probability distribution map of the missing
person for each scenario is generated using the Bayesian
model presented in [30]. These probability distribution maps
have been evaluated at George Mason University’s MapScore
web portal [31] and performed better than most other models
evaluated.®> The task difficulty map for each scenario is built
using vegetation density data downloaded from the USGS
website and categorized into three difficulty levels (sparse,
medium, and dense). Although this method only considers the
vegetation density, it gives us a reasonable task difficulty map
and serves well for the purpose of demonstrating algorithm
performances.* The probability distribution maps and the task
difficulty maps are discretized into 100x 100 grids.

For each scenario, we compare the performance of the BA,
LHC-GW-CONYV, Top2, and TopN algorithms in Efficiency, g
and running time for three flight durations (7" = 300, 600, 900,
equivalent to 10, 20, and 30 min). Because we reimplemented
the BA algorithm in MATLAB and the rest algorithms in C#,
for a fair comparison, we omit the running time for the BA
algorithm. We also present the performance of the Top2 and
TopN algorithms for just one hierarchy layer to demonstrate
that the two algorithms can achieve much better Efficiency; g
in comparable running time with even arbitrary parameters
(k = 5 Gaussians and N = 3 for top 3 subregions). In all
the experiments, we did not specify the ending location for
the UAV because the BA algorithm (the only one) does not
support this feature.

Experiments were performed in simulated searches and not
on-board real UAVs. All paths generated in the experiments
were for a hexacopter although the algorithms also work for
fixed-wing UAVs. All experiments were run on a Intel 4-core
17-2600 PC with 16 GB of memory. For each scenario, we ran
10 experiments and recorded the mean and standard deviation
of Efficiency;p and running time. Due to space limitations,
only a subset of the experiment results are presented.

B. Experiments Results and Analysis

In the first WiSAR scenario (Hiker Paul), an elderly couple
was reported missing near the Grayson Highlands State Park in
Virginia (Fig. 9 shows a satellite imagery of the search area for
the scenario). In the second WiSAR scenario (NewYork53), a
46-year-old male camper was reported missing near Adiron-
dack Park in upper state New York. In the third WiSAR sce-
nario (NewYork108), two teenage female hikers were reported
missing near West Chesterfield in Massachusetts. For each
scenario, the LKP of the missing person is in the center of
the search region. Figs. 10, 13, and 15 show the probability
distribution map (left) and the task difficulty map (middle) for
these scenarios. The right part of the figures show the resulting

3Scoring 0.8184, 0.9858, and 0.9892 on a [-1, 1] scale, where the higher
the score the better. Available at: http://sarbayes.org/projects/

“In real WiSAR operations, these maps would be further improved by
domain experts before they are used for path planning.
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Fig. 9. Satellite imagery of the search area for the Hiker Paul scenario (near
the Grayson Highlands State Park in Virginia) showing the vegetation density.
The LKP of the missing person is at the center of the image.

Fig. 10. HikerPaul scenario. (a) Probability distribution map. (b) Task
difficulty map. (c) Surface after combining the probability distribution map

and the task difficulty map.

Fig. 11. Paths generated for HikerPaul scenario with T = 900. (a) BA.
(b) LHC-GW-CONV. (c) Top2. (d) TopN.

surface for each scenario when we combine the probability
distribution map and the task difficulty map, which is the
amount of probability the UAV can collect on its first visit
to each vertex (or grid cell). The task difficulty maps indicate
that large areas of these search regions were covered with
dense vegetation, which makes detecting the missing person
more difficult. There are also small subregions with sparse
vegetation (higher probability of detection). Figs. 11, 14, and
16 show the paths generated by the BA, LHC-GW-CONYV,
Top2, and TopN algorithms for each scenario, respectively.
The teleport paths for these scenario are not shown because
they are mostly made up of disjointed points. Note that
the paths sometimes revisit vertices that have already been
visited (path segments cross with previous segments), but the
combined surfaces we show in Figs. 10, 13, and 15 (right) only
represent the amount of probability the UAV can collect on
its first visit. Each surface is updated after each vertex visit to
reflect the amount of probability collectable on the next visit.

For the Hiker Paul scenario, Fig. 11 shows that both the BA
and the LHC-GW-CONV greedy-type algorithms generated
paths that centered around the starting point and could not
break away from the probability hills near the center of the
search area. The Top2 algorithm, on the other hand, directed

Fig. 12. Gaussian mixture identified for the HikerPaul scenario with 7' =
900 and k = 5. The numbers show the ranking of the Gaussians using MGR.
(a) Gaussians in 2-D. (b) Gaussians in 3-D.

TABLE I
ALGORITHMS Efficiencyp g AND RUNNING SPEED COMPARISON FOR THE
Hiker Paul SCENARIO (ALL NUMBERS SHOWN ARE AVERAGES OF 10
RUNS; ALL Efficiency; g STANDARD DEVIATIONS ARE BELOW 0.1)

Efficiencyrp (%) Speed (seconds)

T 300 600 900 300 [ 600 | 900
BA 56.95 | 60.07 | 57.11 - - -

LHC-GW-CONV | 60.18 | 56.76 | 55.18 | 0.30 | 0.47 | 0.98
Top2 (1 layer) 66.68 | 6521 | 66.08 | 0.24 | 0.30 | 0.41
TopN (1 layer) 76.19 | 71.02 | 68.26 | 0.25 | 0.24 | 0.22
Top2 (Hierarchy) 78.67 | 73.81 | 72775 | 0.73 | 0.84 | 1.19
TopN (Hierarchy) | 81.43 | 7548 | 74.13 | 1.52 | 1.73 | 1.68

the UAV to cover the tall probability hill on the left side of
the search area, and the TopN algorithm additionally directed
the UAV to cover subregions in the lower right of the search
area where more probability can be accumulated. Fig. 12
demonstrates how a GMM can be used to prioritize search
subregions and shows the five Gaussians identified when we
performed the Gaussian fitting for the Hiker Paul scenario with
T =900 and k = 5. The Gaussians are ranked using the MGR
heuristic values (1.39, 1.01, 1, 0.87, and 0.46 respectively).
Table I shows the performance of the four algorithms and
also the Top2 and TopN algorithms with specific parameters
(number of Gaussians to fit: k =5 and top N subregions for
TopN algorithm: N = 3). The Top2 and TopN algorithms
clearly outperform the BA and LHC-GW-CONV algorithms
(whether using arbitrary parameters or search through the
hierarchy) with significantly better Efficiency;p. Searching
through the hierarchy generated more efficient paths than only
working with one layer of the hierarchy. The TopN algorithm
also achieved slightly better Efficiency; g than the Top2 al-
gorithm. When using arbitrary parameters (only generating a
path for one layer of the hierarchy), both the Top2 and TopN
algorithms are faster than the LHC-GW-CONV algorithm.
When searching through the hierarchy, the Top2 and TopN
algorithm did take a little bit longer, but still completed within
2 s.

For the NewYork53 scenario, Fig. 14 shows that both the
BA and LHC-GW-CONV greedy-type algorithms generated
paths that spent a good amount of time right at the center
of the search area around the starting point before sending
the UAV to two other subregions on the right. The Top2 and
TopN algorithms, by contrast, did not waste any time at the
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Fig. 13.

NewYork53 scenario. (a) Probability distribution map. (b) Task
difficulty map. (c¢) Surface after combining the probability distribution map
and the task difficulty map.

ey
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Fig. 14. Paths generated for NewYork53 scenario with 7" = 900. (a) BA.
(b) LHC-GW-CONV. (c) Top2. (d) TopN.

TABLE II
ALGORITHMS EfficiencyLg AND RUNNING SPEED COMPARISON FOR THE
NewYork53 SCENARIO (ALL NUMBERS SHOWN ARE AVERAGES OF
10 RUNS; ALL Efficiencyp g STANDARD DEVIATIONS ARE BELOW 0.07)

Fig. 15. NewYork108 scenario. (a) Probability distribution map. (b) Task
difficulty map. (c) Surface after combining the probability distribution map
and the task difficulty map.

o S

Fig. 16. Paths generated for NewYork108 scenario with 7 = 900. (a) BA.
(b) LHC-GW-CONV. (c) Top2. (d) TopN.

TABLE III
ALGORITHMS EfficiencyLg AND RUNNING SPEED COMPARISON FOR THE
NewYork108 SCENARIO (ALL NUMBERS SHOWN ARE AVERAGES OF
10 RUNS; ALL Efficiency; g STANDARD DEVIATIONS ARE BELOW 0.07)

Efficiencyrp (%) Speed (seconds)

Efficiencyrp (%) Speed (seconds)

T 300 600 900 300 600 | 900 T 300 600 900 300 | 600 | 900
BA 39.95 | 54.27 | 65.08 - - - BA 39.92 | 45.34 | 49.39 - - -

LHC-GW-CONV | 3847 | 5691 | 67.38 | 0.01 | 0.02 | 0.02 LHC-GW-CONV | 41.38 | 52.88 | 52.61 | 0.01 | 0.01 | 0.02
Top2 (1 layer) 5442 | 66.61 | 72.79 | 0.75 | 092 | 0.81 Top2 (1 layer) 58.37 | 54.18 | 57.33 | 098 | 090 | 1.44
TopN (1 layer) 59.15 | 68.78 | 74.54 | 0.70 | 0.77 | 0.69 TopN (1 layer) 54.03 | 5391 | 5791 | 092 | 0.83 | 0.97
Top2 (Hierarchy) 57.18 | 69.29 | 74.44 | 1.87 | 2.06 | 1.92 Top2 (Hierarchy) | 60.73 | 5591 | 57.94 | 242 | 2.52 | 2.50
TopN (Hierarchy) | 65.39 | 71.47 | 77.36 | 5.01 | 576 | 5.32 TopN (Hierarchy) | 59.60 | 60.26 | 60.99 | 6.81 | 6.59 | 7.42

center subregion and immediately directed the UAV to cover
the two subregions on the right side of the search area. The
TopN algorithm also directed the UAV to cover a subregion
in the upper right part of the search area. Table II shows the
performance of the four algorithms and also the Top2 and
TopN algorithms with specific parameters (k =5 and N = 3).
The results show the same trend as with the first scenario
where the Top2 and TopN algorithms outperform the BA
and LHC-GW-CONYV algorithms significantly in Efficiency; .
Even with arbitrary parameters, the Top2 and TopN algo-
rithms generated much more efficient paths (e.g., 59.15% for
TopN with one layer versus BA with 39.95%). The TopN
algorithm also outperformed Top2 algorithm in Efficiencyyp.
When looking at the algorithm completion time, LHC-GW-
CONYV algorithm is the clear winner in this scenario. When
arbitrary parameters are used, the Top2 and TopN algorithms
both completed within 1 s, but when searching through the
hierarchy, both algorithms took much longer (about 2 s for
Top2 and 6 s for TopN) to complete.

For the NewYork108 scenario, Fig. 16 shows that both the
BA and LHC-GW-CONV greedy-type algorithms generated
paths that spent a good amount of time at the center of the
search area around the starting point before moving on to
the upper right subregion of the search area to cover the
probability ridge. The Top2 and TopN algorithms, however,
did not waste any time at the center subregion and immediately
directed the UAV to cover the probability ridge at the upper

right subregion of the search area. Both of them also sent the
UAV to another subregion at the lower left part of the search
area where a good amount of probability can be collected.
Table III shows the performance of the four algorithms and
also the Top2 and TopN algorithms with specific parameters
(k =5 and N = 3). The results show the same trend as with
the previous two scenarios where the Top2 and TopN algo-
rithms outperform the BA and LHC-GW-CONYV algorithms
significantly in Efficiency;g. Even with arbitrary parameters,
the Top2 and TopN algorithms generated more efficient paths
(e.g., 58.37% for Top2 with one layer versus BA with 39.92%).
In this scenario, the Top2 algorithm performed slightly better
than the TopN algorithm in Efficiency; g at T = 300 (60.73%
for Top2 and 59.60% for TopN), but the TopN algorithm
performed much better than the Top2 algorithm for the other
two cases. When looking at the algorithm completion time,
LHC-GW-CONV algorithm is still the clear winner in this
scenario. When arbitrary parameters are used, the Top2 and
TopN algorithms both completed in about 1 s, but when
searching through the hierarchy, both algorithms took much
longer (about 2.5 s for Top2 and 7 s for TopN) to complete.

Note that the performance metric Efficiency g is computed
using (9), which assumes that the UAV can teleport within the
search area. Because the amount of probability accumulated
following this teleporting path can be much better than the op-
timal path, the true search efficiency is likely much better than
the value of the Efficiency . Fig. 17 shows the comparison
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Fig. 17. Paths CDPs comparison at 7=900 with partial detection.

of the algorithms performance with respect to CDP collected
over time for the NewYork53 scenario when 7 = 900. The
dotted red line represents CDP accumulated over time if the
UAV could teleport from vertex to vertex. Therefore, this line
represents the theoretical CDP upperbound. If we know the
optimal path and can plot the performance, that line would
most likely be somewhere below the teleport path line. The
TopN algorithm (black solid line) performed the best (highest
CDP value at time step 900), and the Top2 algorithm (blue
dash line) ranked second. Both the Top2 and TopN algorithms
outperformed the BA and LHC-GW-CONYV algorithms (the
bottom two dashed lines) significantly.

Across experiments, results show that by taking advantage
of the MGR heuristic, the Top2 and TopN algorithms (even
when arbitrary parameters, k = 5 Gaussians to fit and N =3
for top 3 subregions, are used) always generated more ef-
ficient paths than those generated by the BA and LHC-GW-
CONYV algorithms. When hierarchical search is performed, the
improvement from Top2 and TopN algorithms is significant.
In most cases, the TopN algorithm outperformed the Top2
algorithm. However, when hierarchical search is performed,
the Top2 and TopN algorithms did take a little longer to
complete.

VI. LIMITATIONS AND DISCUSSION

In our problem formulation, we treat the missing person
as stationary because the speed of the missing person in
wilderness is relatively low when compared with the speed
the UAV travels in. False detection is not an issue because the
UAV can simply follow the path generated to continuously
collect detection probability while human operators verify the
accuracy of the detection. For other application domains where
the target might be moving or the probability distribution
might be changing during search, by setting 7 to a small

value, we can easily adapt the Top2 and TopN algorithms to
handle these situations. The two algorithms effectively turn
into greedy (a T-step look ahead approach compared to the
one-step look ahead method in [7]) algorithms with flexible
time horizons and scalability. We leave the evaluation of the
two algorithms in such scenarios to future work.

In (4), we assume that each observation at vertex v; is
conditionally independent. This assumption certainly has its
limitation. If the environment features remain the same (e.g.,
lighting conditions and vegetation density) and the sensor
platform (e.g., camera) has stable performance, then a high
probability of no detection on the first visit might indicate
high probability of no detection on future visits. However, in
practical applications, a sensor operator’s ability to recognize
the missing person from video footprint is affected by many
factors such as his fatigue level and cognitive workload [1],
especially when the sensor operator might also be flying the
UAV. In this case, the operator’s chance performance can be
regarded as independent trials (as in successive coin tosses).

The detection model used in our experiments is a simple
decay model only parameterized by a difficulty factor. In SAR
literature, the parameters of the decay factor could be affected
by environment features and sensor properties (e.g., distance
to radar and signal strength [7]). Also we only consider
vegetation density when we constructed the task difficulty
maps. Because we use a camera sensor and keep the UAV
flying at the same height above ground, we believe this model
is sufficient to show the algorithms’ capability in handling
partial detection, and we intentionally kept the sensor model
and environment model simple for demonstration purposes.
However, a more complicated sensor model and environment
model can easily be applied to the system.

Although GMM is a statistically mature method for clus-
tering, it has several limitations. First, convergence is not
guaranteed for the iterative EM algorithm used to estimate the
Gaussian mixture. In our implementation, we re-run GMM
multiple times if convergence is not achieved to overcome the
problem. Second, how many Gaussians should we fit? There
is the possibility that the Gaussians might not fit the data very
well. We arbitrarily set the maximum Gaussians to 5 to reduce
computational complexity. Experiment results show that we
were still able to generate good paths. Since the MGR is only
a heuristic, as long as it provides useful information to our
search most of the time, it serves its purpose.

Another limitation is that the algorithms do not handle tough
terrains where the UAV might not be able to climb fast enough
to fly over the terrain. Future work should explore how to
modify the algorithms to consider such constraints and actual
flight dynamics.

When defining the goodness of a subregion, MG;, we con-
sidered three factors: distance ratio, probability volume, and
subregion area. The last two factors, when combined, give us a
sense of the peakedness of a probability hill. Then we multiply
the peakedness with the distance ratio in order to compare
the MG of subregions. Here, we assume the two measures
are independent of each other, which is a limitation of the
heuristic. It also creates a trade-off problem. For example,
when the distance ratio of the subregion A is half of that
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Fig. 18. Paths found for the synthetic scenario at 7 = 900 when the UAV
starts from a subregion with high task difficulty (lower right corner). (a) Path
created by LHC-GW-CONV without specifying end point. (b) Path created
by LHC-GW-CONV with specified end point at upper left corner.

TABLE IV
ALGORITHMS Efficiencyr g COMPARISON FOR THE MULTIMODAL
SYNTHETIC SCENARIO AT T =900

(%) BA LHC-GW-CONV | Top2 | TopN
Start from upper left 65.99 96.28 94.96 | 95.82
Start from lower right | 41.91 53.71 93.46 | 95.29

of subregion B but peakedness of A is twice in size compared
to B, A and B would still have identical MG; values. Should
they be? We leave this to future work.

Going back to the synthetic scenario, we presented in
Section IV-A, Table IV shows the performance of the BA,
LHC-GW-CONYV, Top2, and TopN algorithms in two different
scenarios: starting from a subregion with low task difficulty
(upper left) and starting from a subregion with high task
difficulty (lower right). When starting from a high task dif-
ficulty area, the BA and LHC-GW-CONV algorithms tend
to get stuck in a local probability hill, while the Top2 and
TopN algorithms force the UAV to visit other subregions,
therefore achieving better paths with significant improvement.
One interesting observation we noticed is that if an ending
position is specified for the desired UAV path and the ending
point is in a subregion with low task difficulty, the LHC-GW-
CONYV algorithm also forces the UAV to visit other subregions,
and by doing so, improves the efficiency of the path. Fig. 18
shows an example where the path on the right achieved 93.60%
in Efficiency; g (computed within 0.01 s), which is slightly
better than the Top2 algorithm but not as good as the TopN
algorithm. Another thing to note with this scenario is that the
LHC-GW-CONV algorithm actually did slightly better than
the Top2 and TopN algorithms when the UAV starts from a low
task difficulty area. We have noticed from various experiments
that after combining the probability distribution map and the
task difficulty map, if the resulting surface is not a complicated
one (meaning it only has a few distinctive probability hills), the
LHC-GW-CONYV algorithm generally performs well. For more
complicated surfaces (such as the three real WiSAR scenarios
we tested the algorithms with), the Top2 and TopN algorithms
are more reliable in generating good UAV paths.

In the current implementation, we used a grid representation
for the probability distribution map, task difficulty map, and
the path generated. However, the algorithms also support other
tessellation methods such as a hexagonal tessellation.

IEEE TRANSACTIONS ON CYBERNETICS

VII. CONCLUSION

We proposed a new heuristic, the MGR, which uses GMM
to prioritize search subregions, and presented two new algo-
rithms that utilize the heuristic in hierarchical path planning.
The hierarchical structure enables searching for better paths
through the parameter space at different scales and enables us
to parallelize the two algorithms for better performance. The
probability of detecting the desired subject based on UAV sen-
sor information can vary in different search areas due to factors
such as varying vegetation density or lighting conditions. We
represented this type of partial detection using a task difficulty
map, a spatial representation of sensor detection probability,
and incorporated it into UAV path planning. We compared
the performance of the new algorithms against two published
algorithms, BA and LHC-GW-CONYV, in simulated searches
with three real SAR scenarios. Experiment results showed
that by using the MGR heuristic, the two new algorithms
Top2 and TopN consistently outperform the BA and LHC-
GW-CONYV algorithms, yielding efficient paths that produce
payoff approximating the payoff of the optimal path.
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