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We describe an approach examining multi-level collaboration challenges by integrating social, 
organizational, and cultural factors for human-robot teams operating in the real world. We 
discuss the research at three levels of social interaction: within a team, within a social 
environment, and within a culture. We first describe research exploring psychologically and 
biologically inspired models of behavior to extend the capabilities of heterogeneous multi-human, 
multi-robot teams.  We then discuss research issues that must be addressed to provide insights on 
how robots can correctly vary actions in response to cultural populations and geospatial 
environments by recognizing and properly interpreting human configurations, cultural artifacts 
and behaviors. The goal is to make it possible for robots to function effectively within dynamic 
operational and social situations. 

 
 

INTRODUCTION 
 

Human-robot teams are increasingly interacting, 
not only in more complex operational environments, 
but in situations requiring contact and sometimes 
collaboration with civilians. As such, research is 
needed which examines collaboration along 
multiple levels. We describe how to examine this 
via integration of the social, organizational, and 
cultural factors required for robots collaborating 
within teams operating in the real world. Such 
research is fundamental to making it possible for 
robots to function effectively within social 
situations.  

We propose a coordinated set of research 
approaches at three levels of social interaction for 
human-robot teams: within a team, within a social 
environment, and within a culture. First, we 
describe how psychologically and biologically 
inspired models of behavior can inform team 
structures and roles and be used to support 
heterogeneous multi-human, multi-robot teams.  
Second, we discuss how social-cognitive factors can 
inform collaboration within teams and with 
civilians. Third, we provide insights on how robots 
can correctly vary actions in response to cultural 
populations and geospatial environments by 
recognizing and properly interpreting human 
configurations, cultural artifacts and behaviors. 

 
TEAM AND ORGANIZATIONAL 

STRUCTURE 
 
Research in team organizational structures for 

collaborating agents has successfully employed 

explicit social rules as an organizing principle.  
Hierarchically structured teams allow for complex 
coordination and cooperation when information is 
available for planning (cf. Crandall et al., 2005; 
Goodrich et al., 2007; Whetten et al., 2010).  Such 
teams can be agile and responsive if coordination 
strategies are well designed. The tradeoff for the 
precision and responsiveness of these teams is that 
they tend to be more vulnerable to errors, 
variability, and unanticipated situations.  
Nevertheless, there is clear evidence that 
hierarchical teams are effective.  In particular, the 
high levels of coordination in such teams make 
possible the management of multiple robots 
simultaneously by a single human. But more is 
required for coordination to successfully unfold in 
other settings. For that, research can rely on bio-
inspired models. 

Many biological distributed multi-agent systems 
exhibit reliable levels of adaptability and 
robustness, often even under extreme and 
unexpected conditions.  Some of the most 
interesting and most well studied examples are 
found in social insect societies.  These examples 
suggest that response thresholds are an effective 
mechanism for specialization.  Variability in 
response thresholds has been found to lead to stable 
and effective division of labor in honeybee 
thermoregulation (Jones et al.,  2004). Dynamic 
reinforcement can further improve system 
effectiveness by allowing adaptation over time.  
Ravary et al. (2007) find that positive reinforcement 
alone can lead to specialization in ants.  Ants that 
are more successful at locating prey are more likely 
to forage again.  Over time, two groups of ants 



(successful and unsuccessful foragers) specialize to 
form a clear division of labor.  

The aforementioned examples from biology 
tend to be very robust, stable, and adaptable.  These 
systems tend to be massively parallel, with a many 
to one mapping of agents to roles.  These 
characteristics are particularly compelling 
considering that these systems are composed of 
relatively simple agents which interact using very 
simple, minimal communication (likely nothing as 
complex as negotiation or reasoning).  Importantly, 
some of these principles have already been 
successfully transferred to robotic multi-agent 
systems (Krieger & Billeter, 2000; Krieger, Billeter, 
& Keller, 2000).  One of the keys to the ability of 
these systems to self organize is variability in agent 
behavior in which agents respond appropriately, but 
not identically, to similar situations.   

 
Responsive and Robust Organizations 

 
We suggest that research needs to build upon 

these approaches in order to build team structures 
which are both responsive and robust. From this 
perspective, research must examine how different 
types and degrees of variation may affect the ability 
of human-robot systems to self organize and affect 
the robustness, stability, and adaptability of these 
systems.  In this way, human-robot teams could 
possess the capability for dynamic role 
management. Allocation of roles and 
responsibilities in bio-inspired and hierarchical 
approaches are, in some respect, two extremes, each 
with their own benefits.  On the one hand, there are 
well-defined hierarchical systems that are highly 
responsive and can perform with precision, but may 
be less tolerant to error.  On the other hand, there 
are massively parallel systems, which we believe 
are robust and fail gracefully, but may be less 
responsive in emergency situations.  We suggest 
that research can explore the possible ways in which  
the advantages of these two approaches may be 
combined.  We next describe feasibility by defining 
the hierarchical positions from the first approach as 
the roles that we want agents to self-organize into, 
and then use the second approach to generate the 
self-organized system consisting of roles in the 
hierarchy. 

The first broad research challenge is to make 
bio-inspired models, which are inherently robust, 
more responsive by applying bio-inspired principles 
to hierarchical systems.  This question attempts to 
understand and model how robots and humans can 

use bio-inspired principles to adaptively fill roles in 
a military hierarchy.  Not only must individuals 
coordinate effectively in their hierarchical roles, 
individuals must also be able to recognize if a 
position in the hierarchy is vacant and decide 
whether or not they are appropriate to fill that role.  
Thus the distributed decision-making approach 
described above could be used to increase the 
robustness of the hierarchical structure and 
compensate for loss and damage to team members 
in the defined hierarchy. 

   
Research Issue 1. Research must explore the 

conditions under which such a dynamically 
adaptable hierarchical team can effectively be 
formed and maintained, and study the types of 
hierarchies that evolve in these teams in 
comparison to human designed teams. 

 
The second broad research question addresses 

how to make hierarchical systems more robust.  In 
particular, research must understand and model how 
we can design hierarchical organizations that 
facilitate robust and flexible performance for 
multiple human, multiple robot teams.    In current-
fan-out models, variability in neglect and interaction 
times can cause the number of manageable robots to 
drop dramatically.   The result is that operators may 
have to work most of the time at very low 
workloads, just in case natural variability causes a 
workload spike.  This leads to responsive but low-
performing teams.  We suggest that it is desirable to 
identify organizations of multiple humans and 
multiple robots that retain responsiveness in the 
presence of natural variation.   

 
Research Issue 2. Research must explore 

organizational structures that flexibly allow 
multiple humans to manage high-performing teams 
of robots. 

 
The final broad research question addresses 

how to apply the theoretical results of the first two 
research questions so that they are compatible with 
real human-robot military teams.  This requires that 
research more closely examines current military 
human-robot team structures.  

 
Research Issue 3. Research must explore team 

structures and organizations to identify those which 
are likely to be most useful and relevant to military 
teams. 

 



Socio-cognitive Cueing 
 
Social cues, such as gestures and affective 

expression, are useful tools for nonverbal 
communication in human teams, and as humans 
spontaneously elicit these same behaviors with 
robots in field settings, gestures and affective 
expression are expected to be important in human 
robot teaming (e.g., Zhao & Badler, 2005). 
Understanding social cues increases soldier 
effectiveness by providing more context for robots 
to understand human intent and, therefore, to 
decrease the need for explicit instructions from a 
human. In room clearing for example, the use of 
gestures (e.g., signaling to stop and cease 
movement) can be used to maintain stealth, and 
affective cues (e.g., body movement, facial 
expression, perspiration) may serve as non-invasive 
indicators of a given state (e.g., stress) and the 
degree to which it is experienced.  

In this context we suggest that research in 
human-robot teams must leverage existing 
frameworks which can support understanding how 
such cues are related to team interaction. For 
example, using Kendon’s continuum as a 
framework, gestures can be thought of as a scale of 
meaning that ranges from gesticulation (e.g., simple 
motion without meaning to emphasize speech) to 
sign language (e.g., motion to replace speech), 
where the addition of meaning increases the cultural 
specificity of a given message. Additional 
considerations include the biomorphic expression of 
social cues in human-robot teams where phenomena 
such as the “uncanny valley” illustrate that increases 
in realism can have detrimental effects on emotional 
expression and social presence.  

To accomplish this, research must identify the 
types of cross-cultural social cues necessary to 
understand human-robot teams interacting with each 
other and in varied cultural contexts. Providing 
humans and robots with these cues would enable an 
additional means of communication in these teams 
that should effectively facilitate collaboration and 
development of shared assessment processes (Arkin 
et al., 2003). For example, these types of para-
linguistic social cues can be used to direct visual 
attention to areas that are used for non-verbal 
communication (e.g., hands, face), and help robotic 
team members determine the meaning behind non-
verbal symbols (cf. Byun & Badler, 2002). 

 
Research Issue 4. Research must identify and 

classify the gestures and social cues relevant to 

human-robot teaming and provide culturally 
applicable classifications and recommendations for 
their modeling.  

 
The next step for such research would be to 

understand the role of social-cues in attributions and 
their relation to collaboration in human-robot teams. 
In order to identify intent and make inferences 
about another’s actions, we often use particular cues 
(e.g., body language, gesture).  In human-
agent/human-robot teams, discovering intent and 
making inferences will inherently be based upon the 
type of attributions made about the agent or even by 
the agent (Fiore, Rehfeld, Jentsch, & Finkelstein, 
2006).  We suggest that, for effective human-agent 
interaction to occur, both the agent and the human 
must be able to gauge the intent of their teammate 
(Sycara & Lewis, 2004). This relies upon both 
verbal and non-verbal communication which is used 
to assess intent (cf. Gu & Badler, 2006). Further, 
this relies upon appropriate common-ground, that is, 
“a common language for describing tasks” (Liang, 
Moreland, & Argote, 1995 p. 386; see also, Clark & 
Wilkes-Gibbs, 1986; Fussel & Krauss, 1989). 
Research in this area must identify the appropriate 
level of communication for the correct intent to be 
conveyed. 

Research Issue 5. Research must examine the 
relation between social-cognitive cues such as 
affective expressions and gestures and the 
development of referential communication in the 
understanding of intent.  

 
Closely related to understanding intent is the 

complex cognitive process of making inferences. 
Specifically, in order to understand intent, it is 
sometimes necessary for the human and/or the agent 
to make inferences to fill in a gap in their 
knowledge. This is a complex component of 
comprehension that is at the core of understanding 
text and communication (McKoon & Ratcliff, 
1992). There are numerous forms of inferences that 
commonly occur (see Graesser, Singer, & Trabasso, 
1994), from causal antecedents (to try to understand 
what caused something to occur) to emotional 
reaction (how will this person react). We suggest 
that these play a critical role in effective 
collaboration in human robot teams (Arkin et al., 
2003) and they are an additional research issue to be 
addressed.  

 



Research Issue 6. Research must examine how 
to identify and accurately incorporate modeled 
gestures to determine how intent-related decisions 
should be influenced based on body language cues. 

 
Operating within Social Contexts 

 
Human actions occur in a context of 

motivations, opportunities, needs, trusts, and 
desires. Different cultures have varying norms for 
how actions are selected (Campbell et al., 2006). 
Cultural mores affect facial expressions, gestures, 
body movements, posture, visual orientation, 
physical contacts, spatial behavior, appearance, and 
non-verbal vocalizations. Interpretation of behavior 
requires an understanding of culturally specific 
action associations and probabilities. Understanding 
culture makes teams more effective by providing 
context for robot decision-making that decreases the 
need for explicit instructions from a soldier and 
providing context for robots that must interact with 
civilian bystanders. Cultural institutions (e.g., 
holidays, prayers, weddings, funerals, or work 
schedules) and known personal roles (e.g., family, 
tribe, church, government, military, or service 
provider) must be modeled and used during robot 
action selection. We argue that narrow approaches 
must be replaced by extensible general systems to 
handle novel team circumstances.  

Although speculative, such research would need 
to focus on creating strategies and models for robot 
interaction with non-team humans in complex social 
environments. For example, scenarios could be 
developed where robots interact with non-
combatant co-inhabitants of the robot’s local 
environment. This could involve movement in and 
around groups of civilians of differing ages, mixes 
of gender, and multiple cultural backgrounds. 
Within this context, intents ranging from passive to 
overtly hostile behavior could be incorporated. This 
research could utilize software such as the 
CAROSA crowd simulator (Pelechano et al. 2008).  
Agents in CAROSA have roles, schedules, and 
needs and are able to execute actions of several 
generic types: scheduled, opportunistic, reactive, 
and stochastic.  Underlying CAROSA is a detailed 
Parameterized Action Representation (PAR) for 
objects, agents (human or otherwise), actions and 
events. In this theoretical context, consider now 
some concrete examples for which cultural features 
are crucial. A robot engaged in a food distribution 
task must recognize and observe cultural serving 
priorities. A robot engaged in a crowd management 

task must understand personal space, and recognize 
whether groups are forming as family units or 
unruly clusters. An observer robot should 
understand the cultural trappings of a wedding and 
significance of firearms in the celebration. 

 
Research Issue 7. Research must examine how 

to best represent cultural knowledge relevant to 
military teams within robotic systems and what 
observation, representation, and response activities 
must be culturally parameterized (e.g., approach 
distance, friendly and unfriendly gestures and 
postures, or social significance of eye contact). 

 
Further, three broad aspects of cultural 

dynamics must be modeled for human-robot teams 
to effectively interact in social contexts. First, they 
must understand (in context) the behaviors of 
observed humans. In this case, behavioral variances 
or anomalies could be predicates for robot decision 
making or communications with human team 
members. Second, they must have a culturally-
sensitive action selection appropriate to a given 
mission. Here, the robot’s action choices could be 
tailored to the situation and cultural conditions as 
much as possible, subject to overall mission goals. 
Third, they must understand the ways in which 
different actions affect the perceived values of the 
participants. In this case, research would need to 
examine the ways in which an interaction affects the 
different values such as power, dignity, “face”, 
“propriety” as perceived by different cultures. For 
example, the same action of the robot might be 
perceived as friendly in one culture but an insult in 
another; the immediate participant might have a 
different interpretation than the witnesses, thus 
some action might be acceptable in private but not 
in public. Given these, we present the following 
research issues: 

 
Research Issue 8. Research must examine how 

observed human actions can be compared to norms 
(e.g., through a constructed cultural database) and 
expectations (e.g., through communication and 
representation of the current mission or task) 
provided to the robot.  

 
Research Issue 9. Research must examine how 

to develop a database of socio-cultural behaviors, 
standards, and geospatial contexts, framed within 
an action representation that allows rule-based or 
probabilistic reasoning bi-directionally from 



observations to interpretation and from behavioral 
requirements to specific action choice.  

 
Research Issue 10. Research must work to 

develop an empirical model, in which the cultural 
costs and benefits of an action are provided by a 
representation acquired through non-parametric 
machine-learning techniques from representative 
examples taken from the socio-cultural behavior 
database.  

 
CONCLUSION 

 
To fundamentally change interaction between 

robots and humans interacting within a team, and 
within a cultural context, robots need to understand 
a complex amalgam of organizational, social, and 
cultural factors. Operationally, the individuals with 
which the robot is interacting may issue commands 
to the robots, receive information from robots 
necessary for their specific tasks, or coordinate 
activities with the robots (e.g., Schurr et al., 2005; 
Sofge et al. 2004). But there are also social factors 
involved in that these missions may require 
interactions with civilians as well. Understanding 
teammates during a mission, as well as scenes from 
a cultural aspect, adds new layers of complexity. 
The semantic and epistemic aspects of reasoning 
become more important, as only a very small subset 
of cultural behaviors can be recognized purely from 
physical description (cf. Powers & Kiesler, 2006). 
As such, we have outlined how to make the initial 
steps necessary to develop organizational, social, 
and cultural models that could guide these 
interactions.   

In short, successful interactions within such 
teams are based on models which identify: (1) Roles 
within the team structure that mimic and support 
human team behavior, that is, organizational 
models; (2) Social cues enacted and interpreted 
during interaction, that is, social models; and, (3) 
Manifestation of roles and social-cues within 
cultural contexts, that is, cultural models.  Each of 
these represents progressively larger spans of 
behavior that are necessary to support robust and 
responsive collaboration in team, social, and 
cultural contexts. Such research is fundamental to 
making it possible for robots to function effectively 
within operational and social situations.  
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