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Abstract

In this position paper, we analyze ways that a human can best
be involved in interactive artificial learning against a back-
drop of traditional Al programming and conventional artifi-
cial learning. Our primary claim is that interactive artificial
learning can produce a higher return on human investment
than conventional methods, meaning that performance of the
agent exceeds performance of traditional agents at a lower
cost to the human. This claim is clarified by identifying met-
rics that govern the effectiveness of interactive artificial learn-
ing. We then present a roadmap for achieving this claim,
identifying ways in which interactive artificial learning can
be used to improve each stage of training an artificial agent:
configuring, planning, acting, observing, and updating. We
conclude by presenting a case study that contrasts program-
ming using conventional artificial learning to programming
using interactive artificial learning.

Introduction

Artificial agents, both embodied and otherwise, are increas-
ingly being used to perform difficult tasks in uncertain, un-
known, and dynamic environments. As the environment and
tasks become more complex, encoding agent behaviors re-
quires system designers to invest more effort in evaluating
and encoding how an agent should act. Performing this task
in traditional ways can be very difficult since system design-
ers are often not domain experts. Furthermore, even when
system designers have domain expertise, traditional meth-
ods for encoding agent behavior require considerable trial
and error to understand how the agent will and should re-
spond in various environmental conditions.

To date, the most common and effective methodology for
encoding intelligent agents is traditional Al programming.
System designers of such agents must understand both how
experts perform domain specific tasks and how the environ-
ment triggers and modulates agent behaviors. Thus, agent
designers must either consult with domain experts or be-
come domain experts themselves to acquire knowledge of
the specific tasks that the agents must perform. Furthermore,
implementing these tasks within real environments requires
considerable trial and error to reveal important details about
the environment. Since these details are often unknown a
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priori, everyday end-users have the choice of implementing
creative (sometimes cumbersome) workarounds (Woods et
al. 2004), programming the technologies themselves (Yim
2006), or not using the technologies at all.

A second method for encoding intelligent agents is con-
ventional artificial learning. 1deally, conventional artificial
learning gives agents the ability to self-develop intelligent
behavior, thus eliminating dependence on technology and
domain experts. Unfortunately, conventional artificial learn-
ing has had only limited application to many real-world
problems for at least two reasons. First, conventional artifi-
cial learning algorithms do not learn fast enough. Second, in
practice, current conventional artificial learning algorithms
still require technology and domain experts to specify and
develop task specific learning representations, reward struc-
tures, and parameter settings. Thus, when the agent’s task
and environment are not known a priori, technology experts
must tune the learning mechanisms until they achieve the
desired behavior.

Recently, research efforts have begun to focus on a
third method for encoding agent intelligence, called inter-
active artificial learning (IAL). In TAL, the end-user in-
teracts with the agent via natural human-machine interac-
tions throughout the learning process. Various approaches
to IAL have been developed and analyzed, including interac-
tive pattern classification (Fails and Olsen 2003), imitation
learning (e.g., (Saunders, Nehaniv, and Dautenhahn 2005;
Demiris and Meltzoff 2008)), teaching by demonstration
(e.g., (Argall, Browning, and Veloso 2007; Nicolescu and
Mataric 2003)), and interactive reinforcement learning (e.g.,
(Thomaz and Breazeal 2008)). In each case, the human it-
eratively interacts with the agent to help it learn intelligent
behavior more quickly.

The goal of TAL is to develop agent capabilities that re-
quire minimal input and skill from the end-user. This notion
is captured by return on human investment, measured as the
ratio of agent capabilities to human involvement!. Figure 1
conceptually illustrates potential return on human invest-
ment for the three general programming paradigms we have
discussed. Traditional Al programming requires much effort

"We do not distinguish between return on designer investment
and return on user investment. Future work should study the inter-
relationship between work performed by designers and users.
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Figure 1: The various approaches to encoding agent intelli-
gence have different returns on human investment.

from technology and domain experts, resulting in a low re-
turn on human investment. Conventional artificial learning
potentially requires less work, but it still typically requires
significant investment from technology experts (in the form
of parameter tweaking, etc.) before the agent can learn suc-
cessfully. TAL has the highest potential return on human
investment of the three paradigms, though many challenges
must be overcome before this potential will be brought to
fruition on a large scale.

To realize the potential return on human investment, the
key characteristics of IAL must be identified, and methods
for implementing these key characteristics must be devel-
oped. Toward this end, in this paper, we leverage lessons
learned from conventional artificial learning to identify key
characteristics and recommendations for IAL. We analyze
existing approaches to IAL with respect to these character-
istics and recommendations. We then use a case study of
conventional artificial learning to better illustrate our find-
ings and recommendations. However, to better clarify our
objectives, we first formalize metrics for IAL.

Metrics

The metrics for the quality of conventional machine learn-
ing algorithms are generally agreed on and include things
like time to convergence, proximity to the optimal solution,
etc. (Mitchell 1997; Thrun 1992). Unlike conventional ma-
chine learning, much less is written about how to measure
the quality of a solution to a problem involving IAL, though
the amount of user input and the speed with which the learn-
ing algorithm converges are key since both affect user work-
load (Fails and Olsen 2003; Chernova and Veloso 2008).
Figure 2 shows an abstract illustration of how human in-
put can improve the performance of a learning agent over
time. A key aspect of this figure is that learning should im-
prove behavior over time. We refer to this growth as the cu-
mulative acquisition function (CAF) to indicate the increas-
ing capability acquired over time in a well-designed system.
The shape of this abstract curve suggests the first poten-
tial metric for evaluating IAL: competence. This metric can
be defined as the set of capabilities that an agent can (even-
tually) acquire over time using IAL. The set of acquired ca-
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Figure 2: Robot capability grows with human input over
time.

pabilities can be measured, for example, using performance
on a specific set of benchmark tasks.

Unfortunately, maximum capability ignores the amount
of work and patience that a human will invest in helping the
agent grow. Although several factors contribute to the per-
ception of work and patience, the amount of time elapsed
before the robot becomes competent is one key element of
such perception. Setting a threshold that delineates when
the agent is competent enough to be useful (by, for exam-
ple, satisfying its design specifications) introduces the sec-
ond potential metric for evaluating IAL: time to competence.
This metric is defined as the amount of time that will elapse
before the agent crosses the competence threshold, as illus-
trated in Figure 2. This time can be measured, for example,
as the amount of time before a robot learns to perform ac-
ceptably well on a required set of benchmark tasks.

We claim that the expected time to competence for IAL is
potentially much lower than for conventional artificial learn-
ing or traditional Al programming. The motivation for this
unproven claim is that involving the human at the right times
and in the right ways causes the learning agent to rapidly ac-
quire expertise by explicitly supporting the necessary trial
and error interactions between human and agent. How-
ever, decreasing time to competence begs the question of
how much work is required from a human. For example,
although an agent may achieve higher competence in less
time, such competence may potentially require more work
from a human depending on how such work is measured
(number of interactions, frequency of interactions). In the
next sections, we identify areas where human input can po-
tentially be used to minimize time to competence without
imposing undue burdens on the human. Prior to doing so,
we present a metric that reflects the amount of return on the
human’s investement.

The abstract CAF curve depicted in Figure 2 includes an
inflection where capabilities transition from slow growth to
rapid growth. This inflection point represents an interval of
time where the human gives input. Clearly, if the CAF for
one interactive learning algorithm grows more quickly than
another given a fixed amount of human input, then the al-
gorithm that produces the higher growth will be considered
superior. This suggests a third potential metric for evaluat-
ing IAL: leverage. We define leverage as the instantaneous



Step 1 Step 2

Step 3

Pre—Configure
Plan

Act

Step 4 Step 5
Observe

—_—> and ——>| Update
Reward

!

Technology and

Domain Experts

Figure 3: Conventional artificial learning process.

impact of a human-agent interaction on the agent’s compe-
tence. It can be viewed as the slope of the CAF as a function
of human input, and can be be measured by counting the
number of interactions (or measuring the amount of time)
required to produce a fixed increment in the CAF.

Although the CAF curve depicted in Figure 2 shows
monotonic growth, there are several factors that may detract
from an agent’s competence. If the agent is oversensitive to
perturbations in the environment or changes in learning pa-
rameters, than its performance may begin to decline in the
presence of change. Perhaps equally important, the human
working with the agent will also be learning: learning what
causes the agent to change, identifying different ways to rep-
resent the problem, and discovering new aspects of the prob-
lem to be solved. Thus, IAL inherently includes at least two
learning agents: the agent and the human. The potential sen-
sitivity to perturbations and the fact that the algorithm will
need to learn in the presence of other learning agents suggest
a fourth potential metric for evaluating interactive machine
learning: robustness. This metric can be measured, for ex-
ample, using sensitivity analysis that shows how the growth
of the CAF does not negatively change with perturbations,
or by evaluating the algorithm’s ability to learn productive
equilibria of the multi-agent problem.

These metrics suggest several practical questions about
how to design an interactive learning process. Three of these
questions seem particularly important.

1. When should humans be involved in the learning process,
and who determines human involvement? The decision of
when and how to involve humans in the learning process
is similar to the question of who has authority in human-
robot interaction (Sheridan and Verplank 1978); does the
human have sole authority to modify the process of learn-
ing or can the algorithm request human involvement as
needed? Can the algorithm reject human input? Addi-
tionally, including human input in the learning process
may mean that the human must be aware of how the agent
learns and vice versa.

How should a system be designed to support these interac-
tions? This includes (a) designing interfaces that show the
agent’s progress on the specific task as well as progress
toward its maximum potential progress, (b) providing sit-
uation awareness of the learning state of the agent, and

(c) supporting the user in specifying rewards, representa-
tions, etc.

. What learning algorithms are most appropriate and for
which steps of the process? This includes identifying al-
gorithms that are general purpose, that support human in-
put, and that are powerful enough to learn complicated
tasks. Additionally, since humans are likely to adapt to
changes in the agent’s capabilities, the algorithm used by
the agent should be capable of learning in the presence of
other learning agents.

To begin to answer these questions, we analyze the con-
ventional artificial learning process, and seek to learn neces-
sary characteristics of IAL from this process.

Programming Using Conventional Artificial
Learning

An idealized process of conventional artificial learning is
shown in Figure 3. In the first step of conventional artifi-
cial learning, called pre-configuration, the system designer
defines the learning mechanisms, reward structure, parame-
ter values, and state and feature representations used by the
agent to learn. After pre-configuration, the algorithm learns
based on the decisions made in this beginning step, begin-
ning with using its learning mechanisms to plan its next ac-
tion or behavior. The agent then acts out its plan, observes
the outcomes of its actions, and updates its internal state,
utility estimates, etc. based on the learning mechanisms de-
fined in the pre-configuration step. The agent then plans a
new action, and the process repeats.

The success of the idealized learning process depicted in
Figure 3 is heavily dependent on the choices made by the
system designer in the pre-configuration step. Since sys-
tem designers often cannot envision a priori the various at-
tributes of the problem the agent must learn, this conven-
tional learning process is often unsuccessful. Upon real-
izing that the agent has failed to learn effectively, the sys-
tem designer must analyze the agent’s policies, utilities, etc.
throughout the learning process to determine why it failed.
After determining why the algorithm failed, the system de-
signer then re-configures the learning algorithm by tweaking
the algorithm’s tunable parameters, learning mechanisms,
and reward structure (Figure 4). The conventional learning
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Figure 4: Classical learning process — what really happens.

process of plan, act, observe, and update is then repeated
until success (after which, in the academic setting, the sys-
tem designer publishes a paper describing the “successful”
learning algorithm).

The need to tweak the algorithm and repeat until success
results in a low return on human investment. Furthermore,
it requires system designers to be technology and domain
experts. In efforts to reduce these concerns, much effort has
been placed on developing algorithms that automatically de-
termine good features, states, and parameters values (e.g.,
(Kaiser 2007; Kohavi and John 1995)). However, to date,
most situations still require technology and domain experts
to spend large amounts of time developing new learning
mechanisms, tuning parameters, etc.

Rather than exclusively seeking to develop increasingly
sophisticated learning algorithms, we advocate that IAL al-
gorithms should be developed. These algorithms acknowl-
edge the need for the human to play the role of a teacher
and collaborator in the learning process. Thus, rather than
remove the human from the loop, IAL reframes the learning
process to one of iterative improvement that seeks to exploit
human capabilities and knowledge in order to increase the
return on human investment.

Programming Intelligent Agents Using
Interactive Artificial Learning

A generalized process of IAL is depicted in Figure 5. TAL
involves the same steps as conventional artificial learning.
However, in IAL, the end-user, who is not required to be a
technology or domain expert, can potentially be involved in
each step of the learning process. In so doing, decisions and
assumptions in configuring the algorithm can be modified
throughout the learning process, thus decreasing the algo-
rithms dependence on the decisions made during configura-
tion.

Involving the user in iterative interactions with the agents
in the various steps of the learning process is important for a
number of reasons. First, it allows the agent to benefit from
the knowledge, intuition, and goals articulated by the user.
Second, these interactions allow the user to build situation
awareness of not just what is going on in the world, but also
how much the agent knows. This information will help the
user to provide more efficient input to the agent. To better
understand how human-machine interactions can influence
the learning process, we discuss each step separately. Fur-

thermore, we note how various approaches to IAL from the
literature have addressed these interactive needs.

Configuration

Prior to learning, the user configures the algorithm by speci-
fying various representations, learning mechanisms, param-
eter values, etc. However, unlike the pre-configuration step
in conventional artificial learning in which the human im-
poses these decisions on the agent, we envision an interac-
tive process in which the user and the agent collaborate to
define and initialize the learning algorithm. For example,
the agent and the user could collaborate to select a desir-
able artificial learning mechanism from a toolbox of learn-
ing algorithms, and the agent could help the user to select
reasonable learning parameters. Additionally, collaborative
tools could be designed to support an intuitive process for
selecting state representations, relevant features, etc. and to
create a reward structure that supports scaffolding (Saun-
ders, Nehaniv, and Dautenhahn 2006). While these selec-
tions need not be perfect since they can be altered throughout
the learning process, this collaborative process could signif-
icantly increase the agents ability to quickly become com-
petent. Thus, configuration (rather than pre-configuration)
becomes very much part of the complete IAL process.

Planning

The planning step consists of determining a policy or strat-
egy based on the knowledge, rules, and representations held
by the system. In conventional artificial learning, this means
generating a policy given the utility estimates and policy-
construction rules specified in the pre-configuration step.
However, when the user is involved in planning, these utility
estimates and policy-construction rules can be augmented
with the user’s knowledge and intuition to greatly augment
the learning process. To do so, the “black-box” methodolo-
gies utilized in conventional artificial learning must be re-
placed by a more collaborative experience in which the user
and the agent can ask each other questions, provide answers
and make hypothesis, and then negotiate an effective strat-
egy. During this collaborative process, both the user and the
agent could improve their understanding of the problem.

With the exception of (Thomaz and Breazeal 2008), we
are unaware of approaches to IAL that address such collab-
orative processes in detail. As part of this position paper,
we propose three characteristics that an IAL should have for
planning. First, the artificial agent must be able to commu-
nicate its internal state, utilities, and policies. For example,
Thomaz and Breazeal used visual cues for a robot to com-
municate uncertainty in which action to implement (Thomaz
and Breazeal 2008). Other methodologies could involve data
visualization algorithms.

Second, a collaborative planning process for IAL should
allow the user and the agent to explore the estimated effects
of different actions. For example, (Goodrich et al. 2007)
allowed a human to investigate how altering a planning al-
gorithm’s parameters affected the system’s plan before com-
mitting to the plan. Additionally, (Demiris and Meltzoff
2008) discussed using forward and inverse models in imi-
tation learning. Such forward models could be used to pre-
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Figure 5: The interactive artificial learning process.

dict actions, thus improving the collaborative process (if pre-
sented in a way that the human can understand). Principles
learned from research in decision support systems could in-
form the development of these collaborative tools.

Third, an TAL should use the user’s input in the plan-
ning stage to improve its utility estimates, learning mech-
anisms, etc. However, as in other input provided by the hu-
man throughout the learning process, we cannot assume that
the human will always be correct. As such, the agent must be
able to tolerate incorrect feedback. To do this, we anticipate
that the agent will need to distinguish what it learns in the
planning steps from what it learns from its own experiences
(in the observe and update steps).

Acting

As in conventional artificial learning, the acting step in IAL
involves carrying out the intended action. Typically, this in-
volves invoking the policy determined in the planning step,
though it can possibly include situations in which the human
pre-empts this policy.

The effects of human involvement in the acting step have
been one of the most studied aspects of IAL. Both imitation
learning (e.g., (Demiris and Meltzoff 2008; Saunders, Ne-
haniv, and Dautenhahn 2005)) and teaching by demonstra-
tion (e.g., (Argall, Browning, and Veloso 2007)) fall in this
realm. In both cases, the artificial agent observes the actions
taken by the human, and learns thereby. If the human acts
appropriately, the agent can learn many aspects of its policy
space very quickly. In effect, the human is able to guide the
agent’s learning so that it can quickly learn desirable actions.

One potential reason for this speed up in learning is that
training examples tend to cluster in critical areas of the de-
cision boundary (Fails and Olsen 2003). This leads to the
question of how to decide when human input will be most
useful; does the human intervene or does the machine re-
quest help? (Thomaz and Breazeal 2008) gave this respon-
sibility to the user, while (Grollman and Jenkins 2007) and
(Chernova and Veloso 2008) implemented procedures in
which the agent requested the user’s input when its uncer-
tainty was too high. We note that, in these cases, the par-
ticular strategies were chosen based on the context in which
the agents were used.

One other potential reason for involving the user in the
acting step of IAL is to increase the user’s awareness of the
agent’s task and environment. The act of implementing the
action could cause the user to think more deeply about the
challenges the agent is encountering, thus allowing the user
to provide more useful input to the agent in other steps of
the learning process. While we are not aware of this ap-
proach being implemented in the IAL literature, there are
parallels in the literature on adjustable autonomy in human-
robot teams. For example, Kaber and Endsley explore the
effects of periodic manual control on the human operator’s
situation awareness (Kaber and Endsley 2004).

Observing and Rewarding

After acting, the agent and (when desired) the human ob-
serve the consequences of the action that was taken. Based
on the system’s goals and preferences, a payoff is ascribed
to this outcome. Involving the user in this step is desirable
for three reasons. First, the user can be used to determine the
utility of the outcome (e.g., (Thomaz and Breazeal 2008)).
While this could be done in the configuration step when the
user defines the reward structure of the environment, it is
often difficult to specify the reward structure a priori. Addi-
tionally, the reward structure could change over time.

We note that rewards need not be scalars, as real-world
reward signals can be much richer than a single payoff. A
learning algorithm may require a vector of rewards, one for
each attribute of the problem (e.g., (Goodrich and Quigley
2004; Crandall and Goodrich 2004)). While it may be un-
necessary or impractical for the human to specify all reward
signals, the human may be asked to specify part of it. For ex-
ample, an action may be associated with both monetary and
social rewards. While the monetary reward might be easily
observable and quantifiable, the agent may have more dif-
ficulty detecting social consequences. Thus, the user could
communicate this reward to the agent.

A second reason for involving the human in the observing
and rewarding step is to employ scaffolding. Since a task
may be too difficult for the agent to learn by itself initially,
it is often necessary to help the agent first learn a simpler
task. This can be accomplished by reinforcing behavior that
accomplishes the simpler task, even though the actual ob-



served outcome does not fully meet the agent’s goals. Exam-
ples of using rewards to scaffold the environment in IAL in-
clude the approaches used by (Saunders, Nehaniv, and Daut-
enhahn 2006) and (Thomaz and Breazeal 2008).

Third, the human can be used to help identify and annotate
an outcome that the agent does not see or understand. Such
a scenario could develop due to deficiencies in the agent’s
sensor system or in its ability to extract meaning from the
data gathered from its sensors.

Updating

After observing the outcome of the performed action, the
agent updates its utility estimates and internal state. Ad-
ditionally, in TAL the update step provides an opportunity
for the agent, with the help of the user, to update its learn-
ing mechanisms, state and feature representations, etc. We
anticipate that the kinds of human-machine interactions we
suggested for the planning step can be beneficial in the up-
date step as well. For example, (Fails and Olsen 2003) pro-
vide the user with a visual representation of how the agent
perceives the world (via a classifier) after the agent performs
the update. This information can help the user understand
what information the agent lacks. Additionally, the user in-
volved in the update step could help the agent solve critical
issues such as credit assignment.

As in planning, updating in conventional artificial learn-
ing often involves processes that are difficult for the user
to understand. For the user to become effectively involved
in this step, these “black-box™ processes must be replaced
by collaborative interactions that allow the agent and user
to effectively communicate knowledge, intuition, and ideas.
Thus, the characteristics of successful interactions in the
planning step will also be applicable in the update step.

Despite the potential benefits of human-machine collabo-
rations in the update step, with the exception of (Fails and
Olsen 2003), we are not aware of any papers that address
this issue in detail. Future work in this area is needed to
determine effective interactive processes for updating.

Summary

Each step of the conventional artificial learning process can
be converted into a collaborative interaction between the
user and the agent. These interactions will potentially serve
to quickly increase the agent’s competence, while providing
the user with a better situation awareness of the internal state
and learning mechanisms of the agent. Thus, we argue that
successful IAL algorithms should implement each of these
types of interactions to improve the return on human invest-
ment. To better illustrate these claims, we present a case
study in the next section.

Case Study — Multi-agent Learning

In the previous two sections, we discussed the conventional
and interactive artificial learning processes. The conven-
tional artificial learning process, while well-studied, does
not yield a high return on human investment due to the con-
siderable trial and error that is required to understand and

Figure 6: Prisoners’ dilemma game in maze form.

cooperate | defect
ccooperate | (24,24) (8, 30)
defect (30, 8) (15, 15)

Table 1: Generalized payoff matrix for the maze game.

implement how the agent should respond in various environ-
mental conditions. However, conventional artificial learning
illustrates the important human-machine interactions that
should be considered in IAL. To better illustrate what we
mean, we present a case study in which we developed a
multi-agent learning algorithm.

Task and Environment

We sought to create an agent that could learn successfully in
the game, shown in Figure 6, that modeled an iterated pris-
oner’s dilemma (Crandall and Goodrich 2004). In the game,
two agents (the circle and the square in the figure) began on
opposites corners of the maze. The agents were separated
by a wall containing four different gates which were initially
open. The goal of each agent was to move across the world
to the other agent’s starting position in as few moves as pos-
sible. The physics of the game were as follows:

1. Each agent could move up, down, left, and right. Moves
into walls or closed gates resulted in the agent remaining
where it was before the action was taken.

2. If both agents attempted to move through gate 1 at the
same time, gates 1 and 2 closed (without allowing either
of the agents passage).

3. If one agent moved through gate 1 and the other agent did
not, then gates 1, 2, and 3 closed (after the defecting agent
moved through the gate).

4. If one agent moved through any of the gates, then gate 1
closed.

5. When an agent reached its goal state, it received a reward
of r = 40 — n, where n is the number of steps taken to
reach the goal.



After both agents reached their respective goals, the maze
was reset, and the game repeated.

In this game, when an agent attempts to move through
gate 1, it is said to have defected. Otherwise, it is said to
have cooperated. Viewed in this way, the game turns into
the prisoner’s dilemma matrix game shown in Table 1. In
repeated prisoner’s dilemmas, successful agents learn to co-
operate with other successful agents, and they learn to defect
against agents that tend to defect (Axelrod 1984).

This simple game abstracts many real-world problems,
including self-configuring sensor networks and online mar-
kets. It is challenging for learning agents to solve since
(1) the game has a large state space (especially when the
position and actions of the other agent are considered part
of the agent’s state), (2) the environment in which the agent
must learn in is non-stationary when the other agent is learn-
ing, and (3) the agents have conflicting interests, though both
can benefit from mutual cooperation.

In addition to being a challenging game for artificial
agents, the game is also challenging for humans to learn to
play. However, humans do learn to avoid being exploited
and to (usually) play cooperatively with each other. We
sought to duplicate this successful behavior with an artifi-
cial learning agent using conventional artificial learning.

Programming Using Conventional Artificial
Learning

Our experience developing a successful multi-agent learning
algorithm for this game followed the following stages:

1. We pre-configured our agent using traditional reinforce-
ment learning algorithms from the literature. However,
these algorithms took a long time to learn. Furthermore,
they learned to defect when playing against other learn-
ing agents, resulting in low payoffs. True to the conven-
tional artificial learning paradigm, we began to tweak the
agent’s learning mechanisms, parameters, and state repre-
sentations in hopes of obtaining better results.

2. After several iterations failed to produce a successful
learning algorithm, we began to realize that we did not
have enough domain knowledge. To compensate, we de-
veloped a GUI that allowed us to play the game against
each other and against artificial agents employing various
learning algorithms. This provided us with intuition for a
new learning algorithm.

3. The new algorithm, called SPaM, learned two customized
utility functions and a mechanism to determine agent be-
havior based on these utilities (Crandall and Goodrich
2004). We then spent significant amounts of time using
trial and error to refine the algorithm’s learning mecha-
nisms and representations. Much of this time was spent
viewing the agent’s utility estimates as it learned in the
game, studying why certain utility estimates were “incor-
rect,” and tweaking the algorithm to compensate.

SPaM performs very effectively in this prisoner’s
dilemma maze game. It quickly teaches many associates (in-
cluding humans, itself, and other learning agents) to coop-
erate, but learns to defect against associates that are not apt

to cooperate (Crandall and Goodrich 2004). However, de-
spite these successes, the long development cycle meant that
we received a low return on our investment. We spent sig-
nificant amounts of time acquiring domain knowledge and
analyzing and tweaking the learning algorithm.

We anticipate that an IAL approach could produce a simi-
larly competent learning algorithm in significantly less time.

Lessons for Interactive Artificial Learning

For an IAL algorithm to be success in the prisoner’s dilemma
maze game, we believe that it would need to provide human-
machine interactions for the various steps of the IAL pro-
cess. We briefly describe potential interactive methodolo-
gies in these steps.

Configuring. In developing SPaM, our initial selection
of learning mechanisms and representations were insuffi-
cient to learn effective behavior in this particular maze game.
Thus, we would have found it useful to have a set of learning
algorithms to experiment with. Additionally, it would have
been helpful to scaffold the problem initially, by teaching the
agent to first navigate the world before teaching it whether
to “defect” or “cooperate”.

Planning. When designing our learning algorithm, we
would have found it useful to have the agent construct and
visualize potential plans as we selected different parameter
values. For this game, one of the key parameters that affects
strategic behavior is the first move — moving up indicates a
willingness to cooperate but moving toward the door suggest
the possibility of defection. Thus, during planning, we envi-
sion interactive tools in which the user can bias the learning
agent toward one of these behaviors by modifying parame-
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ters specifying the agent’s “aggressiveness.”

Acting. The multi-agent learning problem is challenging
since learning associates cause the environment to be non-
stationary. This means that an agent’s strategies must adapt
to the changes in the environment. However, agent’s strate-
gies often change too slowly. In these situations, we envi-
sion a situation in which the human takes over acting until
the agent’s policy can “catch up” with the environment. This
would allow the agent to continue to perform well in chang-
ing environments while potentially speeding up learning.

Rewarding. Similar to Thomaz and Breazeal’s work on
treating positive and negative feedback differently (Thomaz
and Breazeal 2007), it would have been useful to reward
agent-selected behaviors that displayed good strategic val-
ues, and penalize behaviors that showed shortsightedness.

Updating. From observing both humans and artificial
agents play the maze game, it is clear that humans make
substantially more changes to their utility estimates given
experiences than do current artificial learning algorithms.
Thus, a user could help the agent to update its estimates
more quickly. To do this, the human would likely need to
view a representation of the agent’s utility estimates after an
update is performed, and to allow the human to modify or in-
fluence these utilities to help the agent learn without waiting
for reward signals to propagate through the system.



Summary and Discussion

Interactive artificial learning is an exciting and relatively
new research area with great potential. To date, several inter-
esting and useful approaches have been proposed and eval-
uated. However, in analyzing conventional artificial learn-
ing and why it works, we believe that interactive artificial
learning algorithms will need significantly more interactive
power than they currently have if they are to allow end-users
to program their own agents. In particular, our experience
highlights three important aspects of the problem that future
research in interactive artificial learning should address:

1. Future IAL algorithms should allow the user to view and
understand the agent’s internal state.

2. Future TAL algorithms should allow the user to interact
with the agent’s internal estimates and values.

3. Future TAL algorithms should allow users to alter the
learning mechanisms and representations employed by
the learning algorithm.

While challenging, we believe that these objectives can be
met in many tasks by creating rich human-machine interac-
tions for the various steps of the learning process, includ-
ing configuration, planning, acting, observing and reward-
ing, and updating. Future work should evaluate what kinds
of tasks are appropriate for these potential aspects of IAL.
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