
Introduction to C++

C and C++
C was developed for doing system level programming on Unix
(OS kernel, device drivers, networking software, etc.)
C’s language constructs map directly to native hardware
operations, making it possible to write very efficient programs
C++ is an object-oriented derivative of C that supports classes,
inheritance, polymorphism, etc.
C is a subset of C++
Historically, C and C++ have been used for both system and
application programming
Application programming is moving away from C and C++ to
languages such as Java, C#, Visual Basic, etc.
System programming is still dominated by C and C++
Performance-critical parts of applications are commonly
implemented in C or C++

Simple C++ Program
simple.cpp

#include <iostream>
using namespace std;

int main() {
cout << "Every age has a language of its own\n";
return 0;

}

Compiling and Running
Use g++ to compile the program
$ g++ -o simple simple.cpp

The -o option tells g++ what the name of the
executable file should be

The default name is a.out
We then list the names of one or more C++ files that
contain the program's source code

One of these files must contain the main function
After compiling, we are ready to run the program
$./simple
Every age has a language of its own
$

The Compilation Process
simple.cpp

#include <iostream>

iostream libstdc++

Preprocessor

Compiler

Linker

simple.o

simpleintermediate file

Assembler

assembly code file

Demonstration of the phases
of compilation
View the output from the preprocessor

g++ -E simple.cpp
View the output from the compiler (assembly code)

g++ -S simple.cpp
Output in simple.s

View output from the assembler (object code)
g++ -c simple.cpp
Output in simple.o

View the output from the linker (executable file)
g++ -o simple simple.cpp
Output is in simple

Preprocessor directives

#include
#include <iostream>

#define
#define SIZE 26
#define MAX(a, b) ((a > b) ? a : b)

Demo - preprocess.cpp

Compiler Warnings

Turn on all of the compiler's warnings in order to find
possible bugs

g++ -Wall simple.cpp

Demo - warnings.cpp

Defining constants in C++

#define SIZE 26
const int SIZE = 26;
enum MONTH {JAN, FEB, MAR, APR, MAY, JUN, JUL,
AUG, SEP, OCT, NOV, DEC};
Using const is preferred over using #define

debuggers keep track of consts

Command Line Arguments

You can pass command line arguments into your
program and use them in the program
int main(int argc, char * argv[])
argc = # of command line arguments (including the
name of the executable)
argv[0] = name of the executable
argv[1] = first argument given
etc.
Demo - echo.cpp

	Introduction to C++
	C and C++
	Simple C++ Program
	Compiling and Running
	The Compilation Process
	Demonstration of the phases of compilation
	Preprocessor directives
	Compiler Warnings
	Defining constants in C++
	Command Line Arguments

