
The Linux Programming
Environment (I)

File Name Expansion
Most file system commands accept multiple file or
directory names as arguments
list some files
$ ls –l a.txt b.txt c.txt

copy some files
$ cp a.txt b.txt c.txt backup

remove some files
$ rm a.txt b.txt c.txt

Typing long lists of file names can be tedious
To make this easier, the shell supports file name
expansion (or "globbing")

File Name Expansion
* match any string of zero or more characters
$ cp *.txt backup

? match any single character
$ cp ?.txt backup

[abc…] match any of the enclosed characters
$ cp [abc].txt backup

[!abc…] match anything but the enclosed characters
$ cp [!abc].txt backup

File Name Expansion
[a-z] match any character in the range
$ cp [a-c].txt backup

[!a-z] match any character not in the range
$ cp [!a-c].txt backup

{str1,str2,…} match any of the enclosed strings
$ cp {dog,cat,duck}.txt backup

~ substitute user’s home directory
$ cp ~/cs240/*.txt backup

~name substitute some other user’s home directory
$ cp ~george/cs240/*.txt backup

File Name Expansion
The shell processes each command-line argument
that contains file expansion operators as if it were a
pattern
It automatically replaces the pattern with the names
of all files and directories that match the pattern
If nothing matches the pattern, the argument is not
modified at all
File name expansion works for all commands, not
just file system commands
myprog is a program that I wrote
$ myprog ~/[A-Z]*

Quoting
What if we need to pass arguments that contain meta-
characters?
$ echo * is an asterisk

Quoting disables a meta-character’s special meaning and
allows it to be used literally
\ the character following is taken literally
$ echo * is an asterisk

’ everything between ’ and ’ is taken literally
$ echo ’~/[A-Z]*’
$ echo ’It\’s time to go’

Quoting

Quotes can also be used to pass command-line
arguments that contain whitespace
cd to a dir with spaces in its name
$ cd ’my cs240 files’

list some files with strange names
$ ls –l ’hw 15.txt’ ’hw 16.txt’

Standard Input and Output
C++ programs can read input from the keyboard. This is called
“standard input”
C++ programs can write output to the screen. This is called
“standard output”
Many programs that take file names as command-line
arguments will read their input from standard input if no file
name is provided on the command-line
count the number of lines typed,
hit CTRL-D to end
$ wc -l

Demo - reverse.cpp

Standard I/O Redirection
The shell lets you redirect a program’s standard input so that it comes
from a file instead of the keyboard
$ myprog < file.input

The shell lets you redirect a program’s standard output so that it goes
to a file instead of the screen
overwrite the output file
$ myprog > file.output
append to the output file
$ myprog >> file.output

You can redirect both standard input and standard output at the same
time
$ myprog < file.input > file.output
Demo - reverse.cpp

Pipelines

The shell lets you set up a pipeline of commands so
that the standard output of one command is used as
the standard input of another command
$ grep ’B *Y *U’ file.txt | wc –l
$ cat file.txt | grep ’B *Y *U’ | wc –l

This works because programs like wc and grep read
their input from standard input if no file name is
specified on the command line

	The Linux Programming Environment (I)
	File Name Expansion
	File Name Expansion
	File Name Expansion
	File Name Expansion
	Quoting
	Quoting
	Standard Input and Output
	Standard I/O Redirection
	Pipelines

