
Pointers and the
C++ Memory Model

Variables and Memory
Each variable in a program is stored in a block of
memory
The block of memory that stores a variable's value
has three attributes

1. Size - how big is it?
2. Address - where is it?
3. Value - what does it contain?

01101001 01011100 11001100 00011001

0xf601be72

4 bytes

int

sizeof Operator - How big is it?
The sizeof operator tells you how many bytes of
memory are needed to store a particular variable or
data type
struct Student {

long id;
string name;

};

Student s;
Student t[10];

int longSize = sizeof(long);
int stringSize = sizeof(string);
int studentSize = sizeof(Student);

int idSize = sizeof(s.id);
int nameSize = sizeof(s.name);
int sSize = sizeof(s);
int tSize = sizeof(t);

& Operator - Where is it?
The & operator returns the memory address at which
the operand is stored
In C++, address values are called "pointers"
struct Student {

long id;
string name;

};

Student s;
Student t[10];

Student * sAddr = &s;
cout << "s is at address " << sAddr << endl;

Student * elemAddr = &t[4];
cout << "t[4] is at address " << elemAddr << endl;

long * idAddr = &s.id;
cout << "s.id is at address " << idAddr << endl;

* Operator - What does it contain?
The * operator returns the value pointed to by a
pointer
This is called "dereferencing" the pointer
Result of * can be used as an l-value or r-value
// simple integer copy
int x = 100;
int y = x;
x = 212;

// do the same thing with pointers
int x = 100;
int * xAddr = &x;
int y = *xAddr;
*xAddr = 212;

* Operator - What does it contain?
A structure example

struct Student { long id; string name; };

// simple structure operations
Student s = {12345, "fred"};
Student t = s;
string n = s.name;
s.name = "barney";

// do the same thing with pointers
Student s = {12345, "fred"};
Student * sAddr = &s;
Student t = *sAddr;
string n = (*sAddr).name;
(*sAddr).name = "barney";

The -> Operator
When you have a pointer to a structure, the syntax
for referencing a member of the structure is
(*p).member
The -> operator provides a more compact syntax for
doing the same thing
// ugly syntax
Student s = {12345, "fred"};
Student * p = &s;
string n = (*p).name;
(*p).name = "barney";

// nicer syntax
Student s = {12345, "fred"};
Student * p = &s;
string n = p->name;
p->name = "barney";

Arrays and Pointers
The name of an array (without a subscript) evaluates
to the address of the array
The address of an array is the same as the address
of its first element
Any pointer can be indexed like an array (even if it
doesn’t point to an array)
short data[100];

short * p1 = data;
short * p2 = &data[0];
// (p1 == p2)

short s = p1[32];
p1[32] = -50;

Pointer Arithmetic
Pointer values can be compared using relational
operators: ==, !=, <, <=, >, >=
if (p1 < p2) {…}

The ++ operator can be used to move a pointer
forward one position in memory

If p has type X *, ++p adds sizeof(X) to p, not 1
The -- operator can be used to move a pointer
backward one position in memory

If p has type X *, --p subtracts sizeof(X) from p,
not 1

Pointer Arithmetic
The + and += operators can be used to move a
pointer forward n positions in memory

(p + n) adds n*sizeof(X) to p, not n
The - and -= operators can be used to move a
pointer backward n positions in memory

(p - n) subtracts n*sizeof(X) from p, not n
The - operator can be used to subtract one pointer
from another

(p - q) returns the number of array elements (not
bytes) between q and p

Pointer Arithmetic
Let's rewrite this code using pointer arithmetic
short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
int i = 0;
while (i < 5) {

sum += data[i];
++i;

}

Pointer Arithmetic
Let's rewrite this code using pointer arithmetic
short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
int i = 0;
while (i < 5) {

sum += data[i];
++i;

}

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

Pointer Arithmetic

12 4 22 43 9data

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

0sum

Pointer Arithmetic

12 4 22 43 9data

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

0sum

end

Pointer Arithmetic

12 4 22 43 9data

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

0sum

endcur

Pointer Arithmetic

12 4 22 43 9data

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

0sum

endcur

Pointer Arithmetic

12 4 22 43 9data

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

12sum

endcur

Pointer Arithmetic

12 4 22 43 9data

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

12sum

endcur

Pointer Arithmetic

12 4 22 43 9data

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

12sum

endcur

Pointer Arithmetic

12 4 22 43 9data

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

16sum

endcur

Pointer Arithmetic

12 4 22 43 9data

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

16sum

endcur

Pointer Arithmetic

12 4 22 43 9data

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

16sum

endcur

Pointer Arithmetic

12 4 22 43 9data

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

38sum

endcur

Pointer Arithmetic

12 4 22 43 9data

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

38sum

endcur

Pointer Arithmetic

12 4 22 43 9data

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

38sum

endcur

Pointer Arithmetic

12 4 22 43 9data

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

81sum

endcur

Pointer Arithmetic

12 4 22 43 9data

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

81sum

endcur

Pointer Arithmetic

12 4 22 43 9data

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

81sum

endcur

Pointer Arithmetic

12 4 22 43 9data

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

90sum

endcur

Pointer Arithmetic

12 4 22 43 9data

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

90sum

end
cur

Pointer Arithmetic

12 4 22 43 9data

short data[5] = {12, 4, 22, 43, 9};
long sum = 0;
short * end = (data + 5);
short * cur = data;
while (cur < end) {

sum += *cur;
++cur;

}

90sum

end
cur

Null Pointers
A pointer with value 0 (zero) is called a "null pointer"
A null pointer doesn't point to anything

char * ptr = 0;

Dereferencing a null pointer is a fatal error

// assume that p1 and p2 are null
*p1 = 'X'; // disaster!

p2->name = "fred"; // disaster!

The C++ Memory Model
A C++ program's address space is divided into
several different areas

Code
Static data
Heap
Runtime stack

Code

Static Data

Heap

Runtime Stack

Maximum sizes of heap and
stack can be set using ulimit
before running program

ulimit –d #kb
ulimit –s #kb

Static Variables
Stored in static data area
Allocated when program is loaded, never deallocated
Initialized by compiler to all zeros (guaranteed by C++)
Kinds of static variables

Global variables
variables declared outside of any function or class

Static variables inside a class
all instances of the class share one instance of the
variable

Static local variables
local variables that retain their values between function
invocations because they’re not on the runtime stack

Parameters and Local Variables
Parameters and local variables are pushed onto the
runtime stack when a function is called, and popped
off the stack when the function returns

int f(char a, int b, char c) {
char * p;
float q, r;
…

}

r = f(‘q’, 3, ‘?’);

Runtime Stack

‘q’a
3b

‘?’c

return val

return addr
return sp

p
q
r

sp

Parameters and Local Variables
Never use the address of a parameter or local
variable after the function returns

Student * CreateStudent(long id, string name) {
Student s;
s.id = id; // ok
s.name = name; // ok
return &s; // disaster!

}

int main() {
Student * a = CreateStudent(4978L, “Fred”);
Student * b = CreateStudent(3925L, “Barney”);
cout << “Fred’s ID: ” << a->id << endl;
return 0;

}

Dynamic Memory Allocation
Programs can dynamically allocate memory from the
heap
The new operator is used to allocate heap memory
The delete operator is used to free heap memory
Heap memory should be freed whenever possible so
that the program won't run out of memory

Student * CreateStudent(long id, string name) {
Student * s = new Student;
s->id = id; // ok
s->name = name; // ok
return s; // ok

}
int main() {

Student * a = CreateStudent(4978L, “Fred”);
Student * b = CreateStudent(3925L, “Barney”);
cout << “Fred’s ID: ” << a->id << endl;
delete a;
delete b;
return 0;

}

Dynamic Memory Allocation
Use [] when allocating and deallocating arrays

Student * CreateStudentArray(int n) {
Student * s = new Student[n];
for (int x=0; x < n; ++x) {

s[x].id = 0L;
s[x].name = "";

}
return s;

}

int main() {
int number;
cout << "How many students? ";
cin >> number;
Student * s = CreateStudentArray(number);

// use student array for something . . .

delete [] s;
return 0;

}

Runtime stack vs. Heap
Runtime Stack:

Memory is automatically allocated/deallocated by the compiler
(easy for programmer)
Allocation/deallocation is very fast (just move the stack pointer)
Stack has a limited size, much smaller than heap (although this can
be changed)
Stack can’t be used to store dynamic data structures (e.g., linked
list, BST, array whose size isn’t known until runtime, etc.)
Programmer has no control over variable’s lifetime (when
subroutine exits, variable is popped no matter what)

Heap:
Programmer must call new and remember to call delete (more
work)
New and delete are expensive operations, much slower than
adjusting stack pointer
Heap is normally much larger than the stack
Dynamic data structures must be heap allocated
Programmer completely controls the time of birth and death of an
object

	Pointers and the �C++ Memory Model
	Variables and Memory
	sizeof Operator - How big is it?
	& Operator - Where is it?
	* Operator - What does it contain?
	* Operator - What does it contain?
	The -> Operator
	Arrays and Pointers
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Null Pointers
	The C++ Memory Model
	Static Variables
	Parameters and Local Variables
	Parameters and Local Variables
	Dynamic Memory Allocation
	Dynamic Memory Allocation
	Runtime stack vs. Heap

