
Multi-File Projects

Multiple Files

Programs of any size are much more easily managed
if the project is split into multiple files
Typical C++ programs will have many files
comprising the project
The files are compiled separately, then linked
together
Each file typically contains one (or a small number of
closely related) class definition(s)
Class definitions are separated from method
implementations (.h vs. .cpp)

Header Files

Used to separate interface from implementation
Can be system defined or user defined
Header files should be named filename.h

Used for
Class declarations
Enumerations
Function prototypes
Constant definitions

Header Files

Header files provide the interface so that other
classes can use the classes without knowing how the
classes are implemented
Typically header files are provided along with object
file libraries to outside users (rather than source
code)
Rule of thumb – place the class definition in the
header file (.h), place the implementation of the class
methods in the source file (.cpp)
The header file is #include’ed into the source file

Example – Class StringStack
Header File StringStack.h

class StringStack {

public:
StringStack(int);
StringStack(const StringStack &);
~StringStack();
StringStack & operator =(const StringStack &);
bool IsEmpty() const;
void Clear();
void Push(const string &);
string Pop();

protected:
void Init(const StringStack & other);
void Free();
void Grow();

int capacity;
string * stack;
int top;

};

Example – Class StringStack
Source File StringStack.cpp

#include “StringStack.h”

StringStack :: StringStack(int initialCapacity) {
capacity = initialCapacity;
stack = new string[capacity];
top = 0;

}

StringStack :: StringStack(const StringStack & other) {
Init(other);

}

StringStack :: ~StringStack() {
Free();

}

Example – Class StringStack
Source File StringStack.cpp (continued)

StringStack :: StringStack & operator =(const StringStack &
other) {
if (&other != this) {

Free();
Init(other);

}
return *this;

}

bool StringStack :: IsEmpty() const {
return (top == 0);

}

void StringStack :: Clear() {
while (top > 0) {

stack[--top] = string();
}

}

Example – Class StringStack
Source File StringStack.cpp (continued)

void StringStack :: Push(const string & value) {
if (top == capacity) {

Grow();
}
stack[top++] = value;

}

string StringStack :: Pop() {
if (IsEmpty()) {

throw CS240Exception("can't pop an empty stack");
}
else {

string value = stack[--top];
stack[top] = string();
return value;

}
}

Example – Class StringStack
Source File StringStack.cpp (continued)

void StringStack :: Init(const StringStack & other) {
capacity = other.capacity;
top = other.top;
stack = new string[capacity];
for (int i=0; i < top; ++i) {

stack[i] = other.stack[i];
}

}

void StringStack :: Free() {
delete [] stack;
stack = 0;

}

Example – Class StringStack
Source File StringStack.cpp (continued)

void StringStack :: Grow() {
int newCapacity = capacity * 2;
string * newStack = new string[newCapacity];
for (int i=0; i < top; ++i) {
newStack[i] = stack[i];

}
Free();
capacity = newCapacity;
stack = newStack;

}

Multiple Inclusions

Sometimes a .cpp file ends up indirectly including the
same header file multiple times (e.g., A.cpp includes
A.h and B.h, but A.h and B.h both include C.h)
Multiple inclusion of a file produces multiple
definitions of the same symbol, which is an error
Resolve this by using a #define in the header file and
checking to see if it is defined
Include this at the beginning of EACH header file

Using #define
Header file StringStack.h

#ifndef STRINGSTACK_H
#define STRINGSTACK_H

class StringStack {

// define the class here
};

#endif

Managing the Files

Since there will be a lot of different files in your
project, keeping track of the files becomes more
difficult
Take advantage of the UNIX file system to assist you
Create sub directories for

Source (.cpp) files
Header (.h) files
Libraries
The executable file
The object files
Test source and data files

Managing the Files

So, for a student with home directory ~henry, with subdirectory
cs240, with a separate directory for the web crawler:

The .cpp files would be in
~henry/cs240/webcrawler/src

The .h files would be in
~henry/cs240/webcrawler/include

The executable file would be in
~henry/cs240/webcrawler/bin

The object files would be in
~henry/cs240/webcrawler/build

The user created libraries would be in
~henry/cs240/webcrawler/lib

The test source and data files would be in
~henry/cs240/webcrawler/test

Project Directory Structure

Project
Home

Directory

include

(.h files)

src

(.cpp files)

lib

(library files)

bin

(executable
file)

build

(.o files)

test

(source &
data files)

Locating Header Files

If .h files are not in the same directory as the .cpp
files that include them, you need to tell the
compiler where to find the .h files

cd ~/cs240/crawler/src
g++ -I../include -I../cs240utils/include
-o crawler WebCrawler.cpp

Linking

When compiling a single stand-alone .cpp file, the
program is compiled and linked automatically
When compiling multiple files, each .cpp file needs to
be compiled separately, then after all compilation is
done, the object code and libraries are linked
together
E.g. a project consisting of person.h, person.cpp,
schedule.h, schedule.cpp, main.cpp

Linking Example
Compile person.cpp (which #include’s person.h)

g++ -c person.cpp
Compile schedule.cpp (which #include’s schedule.h)

g++ -c schedule.cpp

Compile main.cpp
g++ -c main.cpp

Link them all together
g++ -o scheduler person.o schedule.o main.o

Libraries

C++ provides several libraries for your use
Frequently used functions are placed in libraries so
that they can be reused

i.e., math routines, string routines, I/O, etc.
The user can also create libraries
Generally used to combine several object files
together into a central location
The user can then link the library into his/her code
and use the functions in the library

Creating Static Libraries

The command to create statically linked libraries in
c++ is ar
Syntax:

ar option archive members

option can be:
r insert members into archive
d delete members from archive
t display the contents of the archive

UNIX ar Example

Create a library of the object files from the CS240
utilities:

ar r ../lib/libcs240utils.a FileInputStream.o
HTTPInputStream.o ObjectCountBase.o
StringUtil.o URLConnection.o

Linking Static Libraries
To make calls to the functions in a library, the library must
be linked into the executable
This can be done in two ways

g++ -o ../bin/webcrawler Main.o Parser.o CreateHtml.o
Index.o ../lib/libcs240utils.a

OR

g++ -o ../bin/webcrawler -L../lib Main.o Parser.o
CreateHtml.o Index.o -lcs240utils

g++ automatically prepends "lib" and appends ".a" to
the name of the library

Compiler Options
-c Compile the C++ file into an object file

but do not link
-llibrary Link code from library into the

executable
-Idir Append dir to the list of directories to

search for include files
-Ldir Append dir to the list of directories to

search for libraries
-ofile Place the executable from the compilation

into file

-Dmacro Define macro to be 1

-Dmacro=defn Define macro, set it equal to defn

-g Produce debugging information

	Multi-File Projects
	Multiple Files
	Header Files
	Header Files
	Example – Class StringStack
	Example – Class StringStack
	Example – Class StringStack
	Example – Class StringStack
	Example – Class StringStack
	Example – Class StringStack
	Multiple Inclusions
	Using #define
	Managing the Files
	Managing the Files
	Project Directory Structure
	Locating Header Files
	Linking
	Linking Example
	Libraries
	Creating Static Libraries
	UNIX ar Example
	Linking Static Libraries
	Compiler Options

