
Code Complete 31. Layout and Style Page 1

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

31 1

Layout and Style 2

Contents 3
31.1 Layout Fundamentals 4

31.2 Layout Techniques 5

31.3 Layout Styles 6

31.4 Laying Out Control Structures 7

31.5 Laying Out Individual Statements 8

31.6 Laying Out Comments 9

31.7 Laying Out Routines 10

31.8 Laying Out Classes 11

Related Topics 12
Self-documenting code: Chapter 32 13

THIS CHAPTER TURNS TO AN AESTHETIC ASPECT of computer pro-14

gramming—the layout of program source code. The visual and intellectual en-15

joyment of well-formatted code is a pleasure that few nonprogrammers can ap-16

preciate. But programmers who take pride in their work derive great artistic sat-17

isfaction from polishing the visual structure of their code. 18

The techniques in this chapter don’t affect execution speed, memory use, or 19

other aspects of a program that are visible from outside the program. They affect 20

how easy it is to understand the code, review it, and revise it months after you 21

write it. They also affect how easy it is for others to read, understand, and mod-22

ify once you’re out of the picture. 23

This chapter is full of the picky details that people refer to when they talk about 24

“attention to detail.” Over the life of a project, attention to such details makes a 25

difference in the initial quality and the ultimate maintainability of the code you 26

write. Such details are too integral to the coding process to be changed effec-27

tively later. If they’re to be done at all, they must be done during initial construc-28

tion. If you’re working on a team project, have your team read this chapter and 29

agree on a team style before you begin coding. 30

CC2E.COM/ 3187

Code Complete 31. Layout and Style Page 2

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

You might not agree with everything you read here. But the point is less to win 31

your agreement than to convince you to consider the issues involved in format-32

ting style. If you have high blood pressure, move on to the next chapter. It’s less 33

controversial. 34

31.1 Layout Fundamentals 35

This section explains the theory of good layout. The rest of the chapter explains 36

the practice. 37

Layout Extremes 38

Consider the routine shown in Listing 31-1: 39

Listing 31-1. Java layout example #1. 40
/* Use the insertion sort technique to sort the "data" array in ascending order. 41
This routine assumes that data[firstElement] is not the first element in data and 42
that data[firstElement-1] can be accessed. */ public void InsertionSort(int[] 43
data, int firstElement, int lastElement) { /* Replace element at lower boundary 44
with an element guaranteed to be first in a sorted list. */ int lowerBoundary = 45
data[firstElement-1]; data[firstElement-1] = SORT_MIN; /* The elements in 46
positions firstElement through sortBoundary-1 are always sorted. In each pass 47
through the loop, sortBoundary is increased, and the element at the position of the 48
new sortBoundary probably isn't in its sorted place in the array, so it's inserted 49
into the proper place somewhere between firstElement and sortBoundary. */ for (int 50
sortBoundary = firstElement+1; sortBoundary <= lastElement; sortBoundary++) { int 51
insertVal = data[sortBoundary]; int insertPos = sortBoundary; while (insertVal < 52
data[insertPos-1]) { data[insertPos] = data[insertPos-1]; insertPos = 53
insertPos-1; } data[insertPos] = insertVal; } /* Replace original lower-boundary 54
element */ data[firstElement-1] = lowerBoundary; } 55

The routine is syntactically correct. It’s thoroughly commented and has good 56

variable names and clear logic. If you don’t believe that, read it and find a mis-57

take! What the routine doesn’t have is good layout. This is an extreme example, 58

headed toward “negative infinity” on the number line of bad-to-good layout. 59

Listing 31-2 is a less extreme example: 60

Listing 31-2. Java layout example #2. 61
/* Use the insertion sort technique to sort the "data" array in ascending 62
order. This routine assumes that data[firstElement] is not the 63
first element in data and that data[firstElement-1] can be accessed. */ 64
public void InsertionSort(int[] data, int firstElement, int lastElement) { 65
/* Replace element at lower boundary with an element guaranteed to be first in a 66
sorted list. */ 67
int lowerBoundary = data[firstElement-1]; 68

CODING HORROR

CODING HORROR

Code Complete 31. Layout and Style Page 3

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

data[firstElement-1] = SORT_MIN; 69
/* The elements in positions firstElement through sortBoundary-1 are 70
always sorted. In each pass through the loop, sortBoundary 71
is increased, and the element at the position of the 72
new sortBoundary probably isn't in its sorted place in the 73
array, so it's inserted into the proper place somewhere 74
between firstElement and sortBoundary. */ 75
for (76
int sortBoundary = firstElement+1; 77
sortBoundary <= lastElement; 78
sortBoundary++ 79
) { 80
int insertVal = data[sortBoundary]; 81
int insertPos = sortBoundary; 82
while (insertVal < data[insertPos-1]) { 83
data[insertPos] = data[insertPos-1]; 84
insertPos = insertPos-1; 85
} 86
data[insertPos] = insertVal; 87
} 88
/* Replace original lower-boundary element */ 89
data[firstElement-1] = lowerBoundary; 90
} 91

This code is the same as Listing 31-1’s. Although most people would agree that 92

the code’s layout is much better than the first example’s, the code is still not very 93

readable. The layout is still crowded and offers no clue to the routine’s logical 94

organization. It’s at about 0 on the number line of bad-to-good layout. The first 95

example was contrived, but the second one isn’t at all uncommon. I’ve seen pro-96

grams several thousand lines long with layout at least as bad as this; with no 97

documentation and bad variable names, overall readability was worse than in this 98

example. This code is formatted for the computer. There’s no evidence that the 99

author expected the code to be read by humans. Listing 31-3 is an improvement. 100

Listing 31-3. Java layout example #3. 101
/* Use the insertion sort technique to sort the "data" array in ascending 102
order. This routine assumes that data[firstElement] is not the 103
first element in data and that data[firstElement-1] can be accessed. 104
*/ 105
 106
public void InsertionSort(int[] data, int firstElement, int lastElement) { 107
 // Replace element at lower boundary with an element guaranteed to be 108
 // first in a sorted list. 109
 int lowerBoundary = data[firstElement-1]; 110
 data[firstElement-1] = SORT_MIN; 111
 112
 /* The elements in positions firstElement through sortBoundary-1 are 113

Code Complete 31. Layout and Style Page 4

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

 always sorted. In each pass through the loop, sortBoundary 114
 is increased, and the element at the position of the 115
 new sortBoundary probably isn't in its sorted place in the 116
 array, so it's inserted into the proper place somewhere 117
 between firstElement and sortBoundary. 118
 */ 119
 for (int sortBoundary = firstElement + 1; sortBoundary <= lastElement; 120
 sortBoundary++) { 121
 int insertVal = data[sortBoundary]; 122
 int insertPos = sortBoundary; 123
 while (insertVal < data[insertPos - 1]) { 124
 data[insertPos] = data[insertPos - 1]; 125
 insertPos = insertPos - 1; 126
 } 127
 data[insertPos] = insertVal; 128
 } 129
 130
 // Replace original lower-boundary element 131
 data[firstElement - 1] = lowerBoundary; 132
} 133

This layout of the routine is a strong positive on the number line of bad-to-good 134

layout. The routine is now laid out according to principles that are explained 135

throughout this chapter. The routine has become much more readable, and the 136

effort that has been put into documentation and good variable names is now evi-137

dent. The variable names were just as good in the earlier examples, but the lay-138

out was so poor that they weren’t helpful. 139

The only difference between this example and the first two is the use of white 140

space—the code and comments are exactly the same. White space is of use only 141

to human readers—your computer could interpret any of the three fragments 142

with equal ease. Don’t feel bad if you can’t do as well as your computer! 143

Still another formatting example is shown in Figure 31-1. It’s based on a source-144

code format developed by Ronald M. Baecker and Aaron Marcus (1990). In ad-145

dition to using white space as the previous example did, it uses shading, different 146

typefaces, and other typographic techniques. Baecker and Marcus have devel-147

oped a tool that automatically prints normal source code in a way similar to that 148

shown in Figure 31-1. Although the tool isn’t commercially available, this sam-149

ple is a glimpse of the source-code layout support that tools will offer within the 150

next few years. 151

The Fundamental Theorem of Formatting 152

The Fundamental Theorem of Formatting is that good visual layout shows the 153

logical structure of a program. 154

FURTHER READING For
details on the typographic
approach to formatting
source code, see Human Fac-
tors and Typography for
More Readable Programs
(Baecker and Marcus 1990).

Code Complete 31. Layout and Style Page 5

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

Making the code look pretty is worth something, but it’s worth less than showing 155

the code’s structure. If one technique shows the structure better and another 156

looks better, use the one that shows the structure better. This chapter presents 157

numerous examples of formatting styles that look good but misrepresent the 158

code’s logical organization. In practice, prioritizing logical representation usu-159

ally doesn’t create ugly code—unless the logic of the code is ugly. Techniques 160

that make good code look good and bad code look bad are more useful than 161

techniques that make all code look good. 162

Human and Computer Interpretations of a Program 163

Layout is a useful clue to the structure of a program. Whereas the computer 164

might care exclusively about braces or begin and end, a human reader is apt to 165

draw clues from the visual presentation of the code. Consider the code fragment 166

in Listing 31-4, in which the indentation scheme makes it look to a human as if 167

three statements are executed each time the loop is executed. 168

F31xx01 169

Figure 31-1. 170

Source-code formatting that exploits typographic features. 171

Listing 31-4. Java example of layout that tells different stories to hu-172

mans and computers. 173
// swap left and right elements for whole array 174
for (i = 0; i < MAX_ELEMENTS; i++) 175
 leftElement = left[i]; 176
 left[i] = right[i]; 177
 right[i] = leftElement; 178

If the code has no enclosing braces, the compiler will execute the first statement 179

MAX_ELEMENTS times and the second and third statements one time each. The 180

indentation makes it clear to you and me that the author of the code wanted all 181

three statements to be executed together and intended to put braces around them. 182

That won’t be clear to the compiler. 183

Listing 31-5 is another example: 184

Listing 31-5. Another Java example of layout that tells different stories 185

to humans and computers. 186
x = 3+4 * 2+7; 187

A human reader of this code would be inclined to interpret the statement to mean 188

that x is assigned the value (3+4) * (2+7), or 63. The computer will ignore the 189

white space and obey the rules of precedence, interpreting the expression as 3 + 190

(4*2) + 7, or 18. The point is that a good layout scheme would make the visual 191

KEY POINT

Any fool can write code
that a computer can un-
derstand. Good pro-
grammers write code that
humans can understand.
—Martin Fowler

Code Complete 31. Layout and Style Page 6

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

structure of a program match the logical structure, or tell the same story to the 192

human that it tells to the computer. 193

How Much Is Good Layout Worth? 194

Our studies support the claim that knowledge of pro-195

gramming plans and rules of programming discourse can have 196

a significant impact on program comprehension. In their book 197

called [The] Elements of [Programming] Style, Kernighan and 198

Plauger also identify what we would call discourse rules. Our 199

empirical results put teeth into these rules: It is not merely a 200

matter of aesthetics that programs should be written in a par-201

ticular style. Rather there is a psychological basis for writing 202

programs in a conventional manner: programmers have 203

strong expectations that other programmers will follow these 204

discourse rules. If the rules are violated, then the utility af-205

forded by the expectations that programmers have built up 206

over time is effectively nullified. The results from the experi-207

ments with novice and advanced student programmers and 208

with professional programmers described in this paper pro-209

vide clear support for these claims. 210

Elliot Soloway and Kate Ehrlich 211

In layout, perhaps more than in any other aspect of programming, the difference 212

between communicating with the computer and communicating with human 213

readers comes into play. The smaller part of the job of programming is writing a 214

program so that the computer can read it; the larger part is writing it so that other 215

humans can read it. 216

In their classic paper “Perception in Chess,” Chase and Simon reported on a 217

study that compared the abilities of experts and novices to remember the posi-218

tions of pieces in chess (1973). When pieces were arranged on the board as they 219

might be during a game, the experts’ memories were far superior to the novices’. 220

When the pieces were arranged randomly, there was little difference between the 221

memories of the experts and the novices. The traditional interpretation of this 222

result is that an expert’s memory is not inherently better than a novice’s but that 223

the expert has a knowledge structure that helps him or her remember particular 224

kinds of information. When new information corresponds to the knowledge 225

structure—in this case, the sensible placement of chess pieces—the expert can 226

remember it easily. When new information doesn’t correspond to a knowledge 227

structure—the chess pieces are randomly positioned—the expert can’t remember 228

it any better than the novice. 229

CROSS-REFERENCE Goo
d layout is one key to read-
ability. For details on the
value of readability, see Sec-
tion 34.3, “Write Programs
for People First, Computers
Second.”

Code Complete 31. Layout and Style Page 7

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

A few years later, Ben Shneiderman duplicated Chase and Simon’s results in the 230

computer-programming arena and reported his results in a paper called “Explora-231

tory Experiments in Programmer Behavior” (1976). Shneiderman found that 232

when program statements were arranged in a sensible order, experts were able to 233

remember them better than novices. When statements were shuffled, the experts’ 234

superiority was reduced. Shneiderman’s results have been confirmed in other 235

studies (McKeithen et al. 1981, Soloway and Ehrlich 1984). The basic concept 236

has also been confirmed in the games Go and bridge and in electronics, music, 237

and physics (McKeithen et al. 1981). 238

After I published the first edition of this book, Hank, one of the programmers 239

who reviewed the manuscript commented that, “I was surprised that you didn’t 240

argue more strongly in favor of a brace style that looks like this: 241

for (...) 242
 { 243
 } 244

“I was surprised that you even included the brace style that looked like this: 245

for (...) { 246
} 247

“I thought that, with both Tony and me arguing for the first style, you’d prefer 248

that.” 249

I responded, “You mean you were arguing for the first style, and Tony was argu-250

ing for the second style, don’t you? Tony argued for the second style, not the 251

first.” 252

Hank responded, “That’s funny. The last project Tony and I worked on together, 253

I preferred style #2, and Tony preferred style #1. We spent the whole project 254

arguing about which style was best. I guess we talked one another into preferring 255

each other’s styles!” 256

This experience as well as the studies cited above suggest that structure helps 257

experts to perceive, comprehend, and remember important features of programs. 258

Given the variety of styles of layout and the tenacity with which programmers 259

cling to their own styles, even when they’re vastly different from other styles, 260

it’s easy to believe that the details of a specific method of structuring a program 261

are much less important than the fact that the program is structured at all. 262

Layout as Religion 263

The importance to comprehension and memory of structuring one’s environment 264

in a familiar way has led some researchers to hypothesize that layout might harm 265

an expert’s ability to read a program if the layout is different from the scheme 266

KEY POINT

Code Complete 31. Layout and Style Page 8

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

the expert uses (Sheil 1981, Soloway and Ehrlich 1984). That possibility, com-267

pounded by the fact that layout is an aesthetic as well as a logical exercise, 268

means that debates about program formatting often sound more like religious 269

wars than philosophical discussions. 270

At a coarse level, it’s clear that some forms of layout are better than others. The 271

successively better layouts of the same code at the beginning of the chapter made 272

that evident. This book won’t steer clear of the finer points of layout just because 273

they’re controversial. Good programmers should be open-minded about their 274

layout practices and accept practices proven to be better than the ones they’re 275

used to, even if adjusting to a new method results in some initial discomfort. 276

 277

F31xx01 278

Figure 31-1 279

Source code formatting can be a religious topic to some developers. If you’re mixing 280

software and religion, you might read Section 34.9, “Thou Shalt Rend Software and 281

Religion Asunder” before reading the rest of this chapter. 282

Objectives of Good Layout 283

Many decisions about layout details are a matter of subjective aesthetics—often, 284

you can accomplish the same goal in many ways. You can make debates about 285

subjective issues less subjective if you explicitly specify the criteria for your 286

preferences. Explicitly, then, a good layout scheme should: 287

Accurately represent the logical structure of the code 288

That’s the Fundamental Theorem of Formatting again—the primary purpose of 289

good layout is to show the logical structure of the code. Typically, programmers 290

use indentation and other white space to show the logical structure. 291

Consistently represent the logical structure of the code 292

Some styles of layout have rules with so many exceptions that it’s hard to follow 293

the rules consistently. A good style applies to most cases. 294

The results point out the
fragility of programming
expertise: advanced pro-
grammers have strong
expectations about what
programs should look
like, and when those ex-
pectations are violated—
in seemingly innocuous
ways—their performance
drops drastically.
—Elliot Soloway and
Kate Ehrlich

Code Complete 31. Layout and Style Page 9

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

Improve readability 295

An indentation strategy that’s logical but that makes the code harder to read is 296

useless. A layout scheme that calls for spaces only where they are required by 297

the compiler is logical but not readable. A good layout scheme makes code eas-298

ier to read. 299

Withstand modifications 300

The best layout schemes hold up well under code modification. Modifying one 301

line of code shouldn’t require modifying several others. 302

In addition to these criteria, minimizing the number of lines of code needed to 303

implement a simple statement or block is also sometimes considered. 304

How to Put the Layout Objectives to Use 305

You can use the criteria for a good layout scheme to ground a discussion of lay-306

out so that the subjective reasons for preferring one style over another are 307

brought into the open. 308

Weighting the criteria in different ways might lead to different conclusions. For 309

example, if you feel strongly that minimizing the number of lines used on the 310

screen is important—perhaps because you have a small computer screen—you 311

might criticize one style because it uses two more lines for a routine parameter 312

list than another. 313

31.2 Layout Techniques 314

You can achieve good layout by using a few layout tools in several different 315

ways. This section describes each of them. 316

White Space 317

Usewhitespacetoenhancereadability. White space, including spaces, tabs, line 318

breaks, and blank lines, is the main tool available to you for showing a pro-319

gram’s structure. 320

You wouldn’t think of writing a book with no spaces between words, no para-321

graph breaks, and no divisions into chapters. Such a book might be readable 322

cover to cover, but it would be virtually impossible to skim it for a line of 323

thought or to find an important passage. Perhaps more important, the book’s lay-324

out wouldn’t show the reader how the author intended to organize the informa-325

tion. The author’s organization is an important clue to the topic’s logical organi-326

zation. 327

KEY POINT

CROSS-REFERENCE Som
e researchers have explored
the similarity between the
structure of a book and the
structure of a program. For
information, see “The Book
Paradigm for Program
Documentation” in Section
32.5.

Code Complete 31. Layout and Style Page 10

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

Breaking a book into chapters, paragraphs, and sentences shows a reader how to 328

mentally organize a topic. If the organization isn’t evident, the reader has to pro-329

vide the organization, which puts a much greater burden on the reader and adds 330

the possibility that the reader may never figure out how the topic is organized. 331

The information contained in a program is denser than the information contained 332

in most books. Whereas you might read and understand a page of a book in a 333

minute or two, most programmers can’t read and understand a naked program 334

listing at anything close to that rate. A program should give more organizational 335

clues than a book, not fewer. 336

Grouping 337

From the other side of the looking glass, white space is grouping, making sure 338

that related statements are grouped together. 339

In writing, thoughts are grouped into paragraphs. A well-written paragraph con-340

tains only sentences that relate to a particular thought. It shouldn’t contain extra-341

neous sentences. Similarly, a paragraph of code should contain statements that 342

accomplish a single task and that are related to each other. 343

Blank lines 344

Just as it’s important to group related statements, it’s important to separate unre-345

lated statements from each other. The start of a new paragraph in English is iden-346

tified with indentation or a blank line. The start of a new paragraph of code 347

should be identified with a blank line. 348

Using blank lines is a way to indicate how a program is organized. You can use 349

them to divide groups of related statements into paragraphs, to separate routines 350

from one another, and to highlight comments. 351

Although this particular statistic may be hard to put to work, a study by Gorla, 352

Benander, and Benander found that the optimal number of blank lines in a pro-353

gram is about 8 to 16 percent. Above 16 percent, debug time increases dramati-354

cally (1990). 355

Indentation 356

Use indentation to show the logical structure of a program. As a rule, you should 357

indent statements under the statement to which they are logically subordinate. 358

Indentation has been shown to be correlated with increased programmer com-359

prehension. The article “Program Indentation and Comprehensibility” reported 360

that several studies found correlations between indentation and improved com-361

prehension (Miaria et al. 1983). Subjects scored 20 to 30 percent higher on a test 362

of comprehension when programs had a two-to-four-spaces indentation scheme 363

than they did when programs had no indentation at all. 364

HARD DATA

HARD DATA

Code Complete 31. Layout and Style Page 11

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

The same study found that it was important to neither under-emphasize nor over-365

emphasize a program’s logical structure. The lowest comprehension scores were 366

achieved on programs that were not indented at all. The second lowest were 367

achieved on programs that used six-space indentation. The study concluded that 368

two-to-four-space indentation was optimal. Interestingly, many subjects in the 369

experiment felt that the six-space indentation was easier to use than the smaller 370

indentations, even though their scores were lower. That’s probably because six-371

space indentation looks pleasing. But regardless of how pretty it looks, six-space 372

indentation turns out to be less readable. This is an example of a collision be-373

tween aesthetic appeal and readability. 374

Parentheses 375

Use more parentheses than you think you need. Use parentheses to clarify ex-376

pressions that involve more than two terms. They may not be needed, but they 377

add clarity and they don’t cost you anything. For example, how are the following 378

expressions evaluated? 379

C++ Version: 12 + 4 % 3 * 7 / 8 380

Visual Basic Version: 12 + 4 mod 3 * 7 \ 8 381

The key question is, did you have to think about how the expressions are evalu-382

ated? Can you be confident in your answer without checking some references? 383

Even experienced programmers don’t answer confidently, and that’s why you 384

should use parentheses whenever there is any doubt about how an expression is 385

evaluated. 386

31.3 Layout Styles 387

Most layout issues have to do with laying out blocks, the groups of statements 388

below control statements. A block is enclosed between braces or keywords: { 389

and } in C++ and Java; if-then-endif in Visual Basic; and other similar structures 390

in other languages. For simplicity, much of this discussion uses begin and end 391

generically, assuming that you can figure out how the discussion applies to 392

braces in C++ and Java or other blocking mechanisms in other languages. The 393

following sections describe four general styles of layout: 394

• Pure blocks 395

• Emulating pure blocks 396

• using begin-end pairs (braces) to designate block boundaries 397

• Endline layout 398

HARD DATA

Code Complete 31. Layout and Style Page 12

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

Pure Blocks 399

Much of the layout controversy stems from the inherent awkwardness of the 400

more popular programming languages. A well-designed language has clear block 401

structures that lend themselves to a natural indentation style. In Visual Basic, for 402

example, each control construct has its own terminator, and you can’t use a con-403

trol construct without using the terminator. Code is blocked naturally. Some ex-404

amples in Visual Basic are shown in Listing 31-6, Listing 31-7, and Listing 31-8: 405

Listing 31-6. Visual Basic example of a pure if block. 406
If pixelColor = Color_Red Then 407
 statement1 408
 statement2 409
 ... 410
End If 411

Listing 31-7. Visual Basic example of a pure while block. 412
While pixelColor = Color_Red 413
 statement1 414
 statement2 415
 ... 416
Wend 417

Listing 31-8. Visual Basic example of a pure case block. 418
Select Case pixelColor 419
 Case Color_Red 420
 statement1 421
 statement2 422
 ... 423
 Case Color_Green 424
 statement1 425
 statement2 426
 ... 427
 Case Else 428
 statement1 429
 statement2 430
 ... 431
End Select 432

A control construct in Visual Basic always has a beginning statement—If-Then, 433

While, and Select-Case in the examples—and it always has a corresponding End 434

statement. Indenting the inside of the structure isn’t a controversial practice, and 435

the options for aligning the other keywords are somewhat limited. Listing 31-9 is 436

an abstract representation of how this kind of formatting works: 437

Listing 31-9. Abstract example of the pure-block layout style. 438
A �������������������� 439
B ������������ 440

Code Complete 31. Layout and Style Page 13

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

C ��������������� 441
D ���� 442

In this example, statement A begins the control construct and statement D ends 443

the control construct. The alignment between the two provides solid visual clo-444

sure. 445

The controversy about formatting control structures arises in part from the fact 446

that some languages don’t require block structures. You can have an if-then fol-447

lowed by a single statement and not have a formal block. You have to add a 448

begin-end pair or opening and closing braces to create a block rather than getting 449

one automatically with each control construct. Uncoupling begin and end from 450

the control structure—as languages like C++ and Java do with { and }—leads to 451

questions about where to put the begin and end. Consequently, many indentation 452

problems are problems only because you have to compensate for poorly de-453

signed language structures. Various ways to compensate are described in the 454

following sections. 455

Emulating Pure Blocks 456

A good approach in languages that don’t have pure blocks is to view the begin 457

and end keywords (or { and } tokens) as extensions of the control construct 458

they’re used with. Then it’s sensible to try to emulate the Visual Basic format-459

ting in your language. Listing 31-10is an abstract view of the visual structure 460

you’re trying to emulate: 461

Listing 31-10. Abstract example of the pure-block layout style. 462
A �������������������� 463
B ������������ 464
C ��������������� 465
D ���� 466

In this style, the control structure opens the block in statement A and finishes the 467

block in statement D. This implies that the begin should be at the end of state-468

ment A and the end should be statement D. In the abstract, to emulate pure 469

blocks, you’d have to do something like Listing 31-11: 470

Listing 31-11. Abstract example of emulating the pure-block style. 471
A ��������������{� 472
B �������������� 473
C ����������������� 474
D }� 475

Some examples of how the style looks in C++ are shown in Listing 31-12, List-476

ing 31-13, and Listing 31-14: 477

Listing 31-12. C++ example of emulating a pure if block. 478
if (pixelColor == Color_Red) { 479

Code Complete 31. Layout and Style Page 14

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

 statement1; 480
 statement2; 481
 ... 482
} 483

Listing 31-13. C++ example of emulating a pure while block. 484
while (pixelColor == Color_Red) { 485
 statement1; 486
 statement2; 487
 ... 488
} 489

Listing 31-14. C++ example of emulating a pure switch/case block. 490
switch (pixelColor) { 491
 case Color_Red: 492
 statement1; 493
 statement2; 494
 ... 495
 break; 496
 case Color_Green: 497
 statement1; 498
 statement2; 499
 ... 500
 break; 501
 default: 502
 statement1; 503
 statement2; 504
 ... 505
 break; 506
} 507

This style of alignment works pretty well. It looks good, you can apply it consis-508

tently, and it’s maintainable. It supports the Fundamental Theorem of Formatting 509

in that it helps to show the logical structure of the code. It’s a reasonable style 510

choice. This style is standard in Java and common in C++. 511

Using begin-end pairs (braces) to Designate Block 512

Boundaries 513

A substitute for a pure block structure is to view begin-end pairs as block 514

boundaries. If you take that approach, you view the begin and the end as state-515

ments that follow the control construct rather than as fragments that are part of it. 516

Graphically, this is the ideal, just as it was with the pure-block emulation shown 517

again in Listing 31-15: 518

Listing 31-15. Abstract example of the pure-block layout style. 519

Code Complete 31. Layout and Style Page 15

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

A ������������������� 520
B ������������ 521
C �������������� 522
D ���� 523

But in this style, to treat the begin and the end as parts of the block structure 524

rather than the control statement, you have to put the begin at the beginning of 525

the block (rather than at the end of the control statement) and the end at the end 526

of the block (rather than terminating the control statement). In the abstract, you’ll 527

have to do something like Listing 31-16. 528

Listing 31-16. Abstract example of using begin and end as block 529

boundaries. 530
A �������������������� 531
 {���������������� 532
B ����������������� 533
C ����������������� 534
 }� 535

Some examples of how using begin and end as block boundaries looks in C++ 536

are shown in Listing 31-17, Listing 31-18, and Listing 31-19: 537

Listing 31-17. C++ example of using begin and end as block boundaries 538

in an if block. 539
if (pixelColor == Color_Red) 540
 { 541
 statement1; 542
 statement2; 543
 ... 544
 } 545

Listing 31-18. C++ example of using begin and end as block boundaries 546

in a while block. 547
while (pixelColor == Color_Red) 548
 { 549
 statement1; 550
 statement2; 551
 ... 552
 } 553

Listing 31-19. C++ example of using begin and end as block boundaries 554

in a switch/case block. 555
switch (pixelColor) 556
 { 557
 case Color_Red: 558
 statement1; 559
 statement2; 560
 ... 561
 break; 562

Code Complete 31. Layout and Style Page 16

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

 case Color_Green: 563
 statement1; 564
 statement2; 565
 ... 566
 break; 567
 default: 568
 statement1; 569
 statement2; 570
 ... 571
 break; 572
 } 573

This alignment style works well. It supports the Fundamental Theorem of For-574

matting by exposing the code’s underlying logical structure. Its only limitation is 575

that it can’t be applied literally in switch/case statements in C++ and Java, as 576

shown by Listing 31-19. (The break keyword is a substitute for the closing 577

brace, but there is no equivalent to the opening brace.) 578

Endline Layout 579

Another layout strategy is “endline layout,” which refers to a large group of lay-580

out strategies in which the code is indented to the middle or end of the line. The 581

endline indentation is used to align a block with the keyword that began it, to 582

make a routine’s subsequent parameters line up under its first parameter, to line 583

up cases in a case statement, and for other similar purposes. Listing 31-20 is an 584

abstract example: 585

Listing 31-20. Abstract example of the endline layout style. 586
A ������ ��������������������������� 587
B ��������������� 588
C ��������������� 589
D �� 590

In this example, statement A begins the control construct and statement D ends 591

it. Statements B, C, and D are aligned under the keyword that began the block in 592

statement A. The uniform indentation of B, C, and D shows that they’re grouped 593

together. Listing 31-21 is a less abstract example of code formatted using this 594

strategy: 595

Listing 31-21. Visual Basic example of endline layout of a while block. 596
While (pixelColor = Color_Red) 597
 statement1; 598
 statement2; 599
 ... 600
 Wend 601

Code Complete 31. Layout and Style Page 17

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

In the example, the begin is placed at the end of the line rather than under the 602

corresponding keyword. Some people prefer to put begin under the keyword, but 603

choosing between those two fine points is the least of this style’s problems. 604

The endline layout style works acceptably in a few cases. Listing 31-22 is an 605

example in which it works: 606

Listing 31-22. A rare Visual Basic example in which endline layout 607

seems appealing. 608
If (soldCount > 1000) Then 609
 markdown = 0.10 610
 profit = 0.05 611
 Else 612
 markdown = 0.05 613
 End If 614

In this case, the Then, Else, and End If keywords are aligned, and the code fol-615

lowing them is also aligned. The visual effect is a clear logical structure. 616

If you look critically at the earlier case-statement example, you can probably 617

predict the unraveling of this style. As the conditional expression becomes more 618

complicated, the style will give useless or misleading clues about the logical 619

structure. Listing 31-23 is an example of how the style breaks down when it’s 620

used with a more complicated conditional: 621

Listing 31-23. A more typical Visual Basic example, in which endline 622

layout breaks down. 623
If (soldCount > 10 And prevMonthSales > 10) Then 624
 If (soldCount > 100 And prevMonthSales > 10) Then 625
 If (soldCount > 1000) Then 626
 markdown = 0.1 627
 profit = 0.05 628
 Else 629
 markdown = 0.05 630
 End If 631
 Else 632
 markdown = 0.025 633
 End If 634
 Else 635
 markdown = 0.0 636
 End If 637

What’s the reason for the bizarre formatting of the Else clauses at the end of the 638

example? They’re consistently indented under the corresponding keywords, but 639

it’s hard to argue that their indentations clarify the logical structure. And if the 640

code were modified so that the length of the first line changed, the endline style 641

would require that the indentation of corresponding statements be changed. This 642

The else keyword is aligned
with the then keyword above

it.

CODING HORROR

Code Complete 31. Layout and Style Page 18

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

poses a maintenance problem that pure block, pure-block emulation, and using 643

begin-end to designate block boundaries do not. 644

You might think that these examples are contrived just to make a point, but this 645

style has been persistent despite its drawbacks. Numerous textbooks and pro-646

gramming references have recommended this style. The earliest book I saw that 647

recommended this style was published in the mid-1970s and the most recent was 648

published in 2003. 649

Overall, endline layout is inaccurate, hard to apply consistently, and hard to 650

maintain. You’ll see other problems with endline layout throughout the chapter. 651

Which Style Is Best? 652

If you’re working in Visual Basic, use pure-block indentation. (The Visual Basic 653

IDE makes it hard not to use this style anyway.) 654

In Java, standard practice is to use pure-block indentation. 655

In C++, you might simply choose the style you like or the one that is preferred 656

by the majority of people on your team. Either pure-block emulation or begin-657

end block boundaries work equally well. The only study that has compared the 658

two styles found no statistically significant difference between the two as far as 659

understandability is concerned (Hansen and Yim 1987). 660

Neither of the styles is foolproof, and each requires an occasional “reasonable 661

and obvious” compromise. You might prefer one or the other for aesthetic rea-662

sons. This book uses pure block style in its code examples, so you can see many 663

more illustrations of how that style works just by skimming through the exam-664

ples. Once you’ve chosen a style, you reap the most benefit from good layout 665

when you apply it consistently. 666

31.4 Laying Out Control Structures 667

The layout of some program elements is primarily a matter of aesthetics. Layout 668

of control structures, however, affects readability and comprehensibility and is 669

therefore a practical priority. 670

Fine Points of Formatting Control-Structure Blocks 671

Working with control-structure blocks requires attention to some fine details. 672

Here are some guidelines: 673

CROSS-REFERENCE For
details on documenting con-
trol structures, see “Com-
menting Control Structures”
in Section 32.5. For a discus-
sion of other aspects of con-
trol structures, see Chapters
14 through 19.

Code Complete 31. Layout and Style Page 19

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

Avoid unindented begin-end pairs 674

In the style shown in Listing 31-24, the begin-end pair is aligned with the control 675

structure, and the statements that begin and end enclose are indented under be-676

gin. 677

Listing 31-24. Java example of unindented begin-end pairs. 678
for (int i = 0; i < MAX_LINES; i++) 679
{ 680
 ReadLine(i); 681
 ProcessLine(i); 682
} 683

Although this approach looks fine, it violates the Fundamental Theorem of For-684

matting; it doesn’t show the logical structure of the code. Used this way, the 685

begin and end aren’t part of the control construct, but they aren’t part of the 686

statement(s) after it either. 687

Listing 31-25 is an abstract view of this approach: 688

Listing 31-25. Abstract example of misleading indentation. 689
A �������������������� 690
B ������� 691
C �������� 692
D �������������� 693
E ���� 694

In this example, is statement B subordinate to statement A? It doesn’t look like 695

part of statement A, and it doesn’t look as if it’s subordinate to it either. If you 696

have used this approach, change to one of the two layout styles described earlier, 697

and your formatting will be more consistent. 698

Avoid double indentation with begin and end 699

A corollary to the rule against nonindented begin-end pairs is the rule against 700

doubly indented begin-end pairs. In this style, shown in Listing 31-26, begin and 701

end are indented and the statements they enclose are indented again: 702

Listing 31-26. Java example of inappropriate double indentation of 703

begin-end block. 704
for (int i = 0; i < MAX_LINES; i++) 705
 { 706
 ReadLine(i); 707
 ProcessLine(i); 708
 } 709

This is another example of a style that looks fine but violates the Fundamental 710

Theorem of Formatting. One study showed no difference in comprehension be-711

tween programs that are singly indented and programs that are doubly indented 712

(Miaria et al. 1983), but this style doesn’t accurately show the logical structure 713

The begin is aligned with the
for.

The statements are indented
under begin.

The end is aligned with the
for.

CODING HORROR

The statements below the
begin are indented as if they

were subordinate to it.

Code Complete 31. Layout and Style Page 20

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

of the program; ReadLine() and ProcessLine() are shown as if they are logically 714

subordinate to the begin-end pair, and they aren’t. 715

The approach also exaggerates the complexity of a program’s logical structure. 716

Which of the structures shown in Listing 31-27 and Listing 31-28 looks more 717

complicated? 718

Listing 31-27. Abstract Structure 1. 719
�������������������� 720
 ����� 721
 ��������� 722
 ������������ 723
 ����� 724

Listing 31-28. Abstract Structure 2. 725
�������������������� 726
 ����� 727
 ���������� 728
 ������������� 729
 ����� 730

Both are abstract representations of the structure of the for loop. Abstract Struc-731

ture 1 looks more complicated even though it represents the same code as Ab-732

stract Structure 2. If you were to nest statements to two or three levels, double 733

indentation would give you four or six levels of indentation. The layout that re-734

sulted would look more complicated than the actual code would be. Avoid the 735

problem by using pure-block emulation or by using begin and end as block 736

boundaries and aligning begin and end with the statements they enclose. 737

Other Considerations 738

Although indentation of blocks is the major issue in formatting control struc-739

tures, you’ll run into a few other kinds of issues. Here are some more guidelines: 740

Use blank lines between paragraphs 741

Some blocks of code aren’t demarcated with begin-end pairs. A logical block—a 742

group of statements that belong together—should be treated the way paragraphs 743

in English are. Separate them from each other with blank lines. Listing 31-29 744

shows an example of paragraphs that should be separated. 745

Listing 31-29. C++ example of code that should be grouped and sepa-746

rated. 747
cursor.start = startingScanLine; 748
cursor.end = endingScanLine; 749
window.title = editWindow.title; 750
window.dimensions = editWindow.dimensions; 751
window.foregroundColor = userPreferences.foregroundColor; 752

Code Complete 31. Layout and Style Page 21

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

cursor.blinkRate = editMode.blinkRate; 753
window.backgroundColor = userPreferences.backgroundColor; 754
SaveCursor(cursor); 755
SetCursor(cursor); 756

This code looks all right, but blank lines would improve it in two ways. First, 757

when you have a group of statements that don’t have to be executed in any par-758

ticular order, it’s tempting to lump them all together this way. You don’t need to 759

further refine the statement order for the computer, but human readers appreciate 760

more clues about which statements need to be performed in a specific order and 761

which statements are just along for the ride. The discipline of putting blank lines 762

throughout a program makes you think harder about which statements really be-763

long together. The revised fragment in Listing 31-30 shows how this collection 764

should really be organized. 765

Listing 31-30. C++ example of code that is appropriately grouped and 766

separated. 767
window.dimensions = editWindow.dimensions; 768
window.title = editWindow.title; 769
window.backgroundColor = userPreferences.backgroundColor; 770
window.foregroundColor = userPreferences.foregroundColor; 771
 772
cursor.start = startingScanLine; 773
cursor.end = endingScanLine; 774
cursor.blinkRate = editMode.blinkRate; 775
SaveCursor(cursor); 776
SetCursor(cursor); 777

The reorganized code shows that two things are happening. In the first example, 778

the lack of statement organization and blank lines, and the old aligned-equals-779

signs trick, make the statements look more related than they are. 780

The second way in which using blank lines tends to improve code is that it opens 781

up natural spaces for comments. In the code above, a comment above each block 782

would nicely supplement the improved layout. 783

Format single-statement blocks consistently 784

A single-statement block is a single statement following a control structure, such 785

as one statement following an if test. In such a case, begin and end aren’t needed 786

for correct compilation and you have the three style options shown in Listing 31-787

31. 788

Listing 31-31. Java example of style options for single-statement 789

blocks. 790
if (expression) 791
 one-statement; 792
 793

CROSS-REFERENCE If
you use the Pseudocode Pro-
gramming Process, your
blocks of code will be sepa-
rated automatically. For de-
tails, see Chapter 9, “The
Pseudocode Programming
Process.”

These lines set up a text win-
dow.

These lines set up a cursor
and should be separated from

the preceding lines.

Style 1

Code Complete 31. Layout and Style Page 22

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

if (expression) { 794
 one-statement; 795
} 796
 797
if (expression) 798
 { 799
 one-statement; 800
 } 801
 802
if (expression) one-statement; 803

There are arguments in favor of each of these approaches. Style 1 follows the 804

indentation scheme used with blocks, so it’s consistent with other approaches. 805

Style 2 (either 2a or 2b) is also consistent, and the begin-end pair reduces the 806

chance that you’ll add statements after the if test and forget to add begin and end. 807

This would be a particularly subtle error because the indentation would tell you 808

that everything is OK, but the indentation wouldn’t be interpreted the same way 809

by the compiler. Style 3’s main advantage over Style 2 is that it’s easier to type. 810

Its advantage over Style 1 is that if it’s copied to another place in the program, 811

it’s more likely to be copied correctly. Its disadvantage is that in a line-oriented 812

debugger, the debugger treats the line as one line and the debugger doesn’t show 813

you whether it executes the statement after the if test. 814

I’ve used Style 1 and have been the victim of incorrect modification many times. 815

I don’t like the exception to the indentation strategy caused by Style 3, so I avoid 816

it altogether. On a group project, I favor either variation of Style 2 for its consis-817

tency and safe modifiability. Regardless of the style you choose, use it consis-818

tently and use the same style for if tests and all loops. 819

For complicated expressions, put separate conditions on separate lines 820

Put each part of a complicated expression on its own line. Listing 31-32 shows 821

an expression that’s formatted without any attention to readability: 822

Listing 31-32. Java example of an essentially unformatted (and unread-823

able) complicated expression. 824
if ((('0' <= inChar) && (inChar <= '9')) || (('a' <= inChar) && 825
 (inChar <= 'z')) || (('A' <= inChar) && (inChar <= 'Z'))) 826
 ... 827

This is an example of formatting for the computer instead of for human readers. 828

By breaking the expression into several lines, as in Listing 31-33, you can im-829

prove readability. 830

Listing 31-33. Java example of a readable complicated expression. 831

Style 2a

Style 2b

Style 3

Code Complete 31. Layout and Style Page 23

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

if ((('0' <= inChar) && (inChar <= '9')) || 832
 (('a' <= inChar) && (inChar <= 'z')) || 833
 (('A' <= inChar) && (inChar <= 'Z'))) 834
 ... 835

The second fragment uses several formatting techniques—indentation, spacing, 836

number-line ordering, and making each incomplete line obvious—and the result 837

is a readable expression. Moreover, the intent of the test is clear. If the expres-838

sion contained a minor error, such as using a z instead of a Z, it would be obvi-839

ous in code formatted this way, whereas the error wouldn’t be clear with less 840

careful formatting. 841

Avoid gotos 842

The original reason to avoid gotos was that they made it difficult to prove that a 843

program was correct. That’s a nice argument for all the people who want to 844

prove their programs correct, which is practically no one. The more pressing 845

problem for most programmers is that gotos make code hard to format. Do you 846

indent all the code between the goto and the label it goes to? What if you have 847

several gotos to the same label? Do you indent each new one under the previous 848

one? Here’s some advice for formatting gotos: 849

• Avoid gotos. This sidesteps the formatting problem altogether. 850

• Use a name in all caps for the label the code goes to. This makes the label 851

obvious. 852

• Put the statement containing the goto on a line by itself. This makes the goto 853

obvious. 854

• Put the label the goto goes to on a line by itself. Surround it with blank lines. 855

This makes the label obvious. Outdent the line containing the label to the left 856

margin to make the label as obvious as possible. 857

Listing 31-34 shows these goto layout conventions at work. 858

Listing 31-34. C++ example of making the best of a bad situation (using 859

goto). 860
void PurgeFiles(ErrorCode & errorCode) { 861
 FileList fileList; 862
 int numFilesToPurge = 0; 863
 MakePurgeFileList(fileList, numFilesToPurge); 864
 865
 errorCode = FileError_Success; 866
 int fileIndex = 0; 867
 while (fileIndex < numFilesToPurge) { 868
 DataFile fileToPurge; 869
 if (!FindFile(fileList[fileIndex], fileToPurge)) { 870
 errorCode = FileError_NotFound; 871

CROSS-REFERENCE An-
other technique for making
complicated expressions
readable is to put them into
boolean functions. For details
on putting complicated ex-
pressions into boolean func-
tions and other readability
techniques, see Section 19.1,
“Boolean Expressions.”

CROSS-REFERENCE For
details on the use of gotos,
see in Section 17.3, “goto.”

Goto labels should be
left-aligned in all caps
and should include the
programmer’s name,
home phone number, and
credit card number.

—Abdul Nizar

CROSS-REFERENCE For
other methods of addressing
this problem, see “Error
Processing and gotos” in
Section 17.3.

Code Complete 31. Layout and Style Page 24

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

 goto END_PROC; 872
 } 873
 874
 if (!OpenFile(fileToPurge)) { 875
 errorCode = FileError_NotOpen; 876
 goto END_PROC; 877
 } 878
 879
 if (!OverwriteFile(fileToPurge)) { 880
 errorCode = FileError_CantOverwrite; 881
 goto END_PROC; 882
 } 883
 884
 if (!Erase(fileToPurge)) { 885
 errorCode = FileError_CantErase; 886
 goto END_PROC; 887
 } 888
 fileIndex++; 889
 } 890
 891
END_PROC: 892
 893
 DeletePurgeFileList(fileList, numFilesToPurge); 894
} 895

The C++ example in Listing 31-34 is relatively long so that you can see a case in 896

which an expert programmer might conscientiously decide that a goto is the best 897

design choice. In such a case, the formatting shown is about the best you can do. 898

No endline exception for case statements 899

One of the hazards of endline layout comes up in the formatting of case state-900

ments. A popular style of formatting cases is to indent them to the right of the 901

description of each case, as shown in Listing 31-35. The big problem with this 902

style is that it’s a maintenance headache. 903

Listing 31-35. C++ example of hard-to-maintain endline layout of a case 904

statement. 905
switch (ballColor) { 906
 case BallColor_Blue: Rollout(); 907
 break; 908
 case BallColor_Orange: SpinOnFinger(); 909
 break; 910
 case BallColor_FluorescentGreen: Spike(); 911
 break; 912
 case BallColor_White: KnockCoverOff(); 913
 break; 914
 case BallColor_WhiteAndBlue: if (mainColor == BallColor_White) { 915

Here’s a goto.

Here’s a goto.

Here’s a goto.

Here’s a goto.

Here’s the goto label. The
intent of the capitalization and

layout is to make the label
hard to miss.

CROSS-REFERENCE For
details on using case state-
ments, see Section 15.2,
“case Statements.”

Code Complete 31. Layout and Style Page 25

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

 KnockCoverOff(); 916
 } 917
 else if (mainColor == BallColor_Blue) { 918
 RollOut(); 919
 } 920
 break; 921
 default: FatalError("Unrecognized kind of ball."); 922
 break; 923
} 924

If you add a case with a longer name than any of the existing names, you have to 925

shift out all the cases and the code that goes with them. The large initial indenta-926

tion makes it awkward to accommodate any more logic, as shown in the 927

WhiteAndBlue case. The solution is to switch to your standard indentation in-928

crement. If you indent statements in a loop three spaces, indent cases in a case 929

statement the same number of spaces, as in Listing 31-36: 930

Listing 31-36. C++ example of good standard indentation of a case 931

statement. 932
switch (ballColor) { 933
 case BallColor_Blue: 934
 Rollout(); 935
 break; 936
 case BallColor_Orange: 937
 SpinOnFinger(); 938
 break; 939
 case BallColor_FluorescentGreen: 940
 Spike(); 941
 break; 942
 case BallColor_White: 943
 KnockCoverOff(); 944
 break; 945
 case BallColor_WhiteAndBlue: 946
 if (mainColor = BallColor_White) { 947
 KnockCoverOff(); 948
 } 949
 else if (mainColor = BallColor_Blue) { 950
 RollOut(); 951
 } 952
 break; 953
 default: 954
 FatalError("Unrecognized kind of ball."); 955
 break; 956
} 957

This is an instance in which many people might prefer the looks of the first ex-958

ample. For the ability to accommodate longer lines, consistency, and maintain-959

ability, however, the second approach wins hands down. 960

Code Complete 31. Layout and Style Page 26

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

If you have a case statement in which all the cases are exactly parallel and all the 961

actions are short, you could consider putting the case and action on the same 962

line. In most instances, however, you’ll live to regret it. The formatting is a pain 963

initially and breaks under modification, and it’s hard to keep the structure of all 964

the cases parallel as some of the short actions become longer ones. 965

31.5 Laying Out Individual Statements 966

This section explains many ways to improve individual statements in a program. 967

Statement Length 968

A common rule is to limit statement line length to 80 characters. Here are the 969

reasons: 970

• Lines longer than 80 characters are hard to read. 971

• The 80-character limitation discourages deep nesting. 972

• Lines longer than 80 characters often won’t fit on 8.5” x 11” paper. 973

• Paper larger than 8.5” x 11” is hard to file. 974

With larger screens, narrow typefaces, laser printers, and landscape mode, the 975

arguments for the 80-character limit aren’t as compelling as they used to be. A 976

single 90-character-long line is usually more readable than one that has been 977

broken in two just to avoid spilling over the 80th column. With modern technol-978

ogy, it’s probably all right to exceed 80 columns occasionally. 979

Using Spaces for Clarity 980

Add white space within a statement for the sake of readability: 981

Use spaces to make logical expressions readable 982

The expression 983

while(pathName[startPath+position]<>';') and 984
 ((startPath+position)<length(pathName)) do 985

is about as readable as Idareyoutoreadthis. 986

As a rule, you should separate identifiers from other identifiers with spaces. If 987

you use this rule, the while expression looks like this: 988

while (pathName[startPath+position] <> ';') and 989
 ((startPath + position) < length(pathName)) do 990

CROSS-REFERENCE For
details on documenting indi-
vidual statements, see
“Commenting Individual
Lines” in Section 32.5.

Code Complete 31. Layout and Style Page 27

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

Some software artists might recommend enhancing this particular expression 991

with additional spaces to emphasize its logical structure, this way: 992

while (pathName[startPath + position] <> ';') and 993
 ((startPath + position) < length(pathName)) do 994

This is fine, although the first use of spaces was sufficient to ensure readability. 995

Extra spaces hardly ever hurt, however, so be generous with them. 996

Use spaces to make array references readable 997

The expression 998

grossRate[census[groupId].gender,census[groupId].ageGroup] 999

is no more readable than the earlier dense while expression. Use spaces around 1000

each index in the array to make the indexes readable. If you use this rule, the 1001

expression looks like this: 1002

grossRate[census[groupId].gender, census[groupId].ageGroup] 1003

Use spaces to make routine arguments readable 1004

What is the fourth argument to the following routine? 1005

ReadEmployeeData(maxEmps,empData,inputFile,empCount,inputError); 1006

Now, what is the fourth argument to the following routine? 1007

GetCensus(inputFile, empCount, empData, maxEmps, inputError); 1008

Which one was easier to find? This is a realistic, worthwhile question because 1009

argument positions are significant in all major procedural languages. It’s com-1010

mon to have a routine specification on one half of your screen and the call to the 1011

routine on the other half, and to compare each formal parameter with each actual 1012

parameter. 1013

Formatting Continuation Lines 1014

One of the most vexing problems of program layout is deciding what to do with 1015

the part of a statement that spills over to the next line. Do you indent it by the 1016

normal indentation amount? Do you align it under the keyword? What about 1017

assignments? 1018

Here’s a sensible, consistent approach that’s particularly useful in Java, C, C++, 1019

Visual Basic, and other languages that encourage long variable names. 1020

Make the incompleteness of a statement obvi 1021
ous 1022

Sometimes a statement must be broken across lines, either because it’s longer 1023

than programming standards allow or because it’s too absurdly long to put on 1024

one line. Make it obvious that the part of the statement on the first line is only 1025

Code Complete 31. Layout and Style Page 28

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

part of a statement. The easiest way to do that is to break up the statement so that 1026

the part on the first line is blatantly incorrect syntactically if it stands alone. 1027

Some examples are shown in Listing 31-37: 1028

Listing 31-37. Java examples of obviously incomplete statements. 1029
while (pathName[startPath + position] != ';') && 1030
 ((startPath + position) <= pathName.length()) 1031
... 1032
 1033
totalBill = totalBill + customerPurchases[customerID] + 1034
 SalesTax(customerPurchases[customerID]); 1035
... 1036
 1037
DrawLine(window.north, window.south, window.east, window.west, 1038
 currentWidth, currentAttribute); 1039
... 1040

In addition to telling the reader that the statement isn’t complete on the first line, 1041

the break helps prevent incorrect modifications. If the continuation of the state-1042

ment were deleted, the first line wouldn’t look as if you had merely forgotten a 1043

parenthesis or semicolon—it would clearly need something more. 1044

Keep closely related elements together 1045

When you break a line, keep things together that belong together—array refer-1046

ences, arguments to a routine, and so on. The example shown in Listing 31-38is 1047

poor form: 1048

Listing 31-38. Java example of breaking a line poorly. 1049
customerBill = PreviousBalance(paymentHistory[customerID]) + LateCharge(1050
 paymentHistory[customerID]); 1051

Admittedly, this line break follows the guideline of making the incompleteness 1052

of the statement obvious, but it does so in a way that makes the statement unnec-1053

essarily hard to read. You might find a case in which the break is necessary, but 1054

in this case it isn’t. It’s better to keep the array references all on one line. Listing 1055

31-39 shows better formatting: 1056

Listing 31-39. Java example of breaking a line well. 1057
customerBill = PreviousBalance(paymentHistory[customerID]) + 1058
 LateCharge(paymentHistory[customerID]); 1059

Indent routine-call continuation lines the standard amount 1060

If you normally indent three spaces for statements in a loop or a conditional, in-1061

dent the continuation lines for a routine by three spaces. Some examples are 1062

shown in Listing 31-40: 1063

The && signals that the
statement isn’t complete.

The plus sign (+) signals that
the statement isn’t complete.

The comma (,) signals that
the statement isn’t complete.

CODING HORROR

Code Complete 31. Layout and Style Page 29

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

Listing 31-40. Java examples of indenting routine-call continuation 1064

lines using the standard indentation increment. 1065
DrawLine(window.north, window.south, window.east, window.west, 1066
 currentWidth, currentAttribute); 1067
SetFontAttributes(faceName[fontId], size[fontId], bold[fontId], 1068
 italic[fontId], syntheticAttribute[fontId].underline, 1069
 syntheticAttribute[fontId].strikeout); 1070

One alternative to this approach is to line up the continuation lines under the first 1071

argument to the routine, as shown in Listing 31-41: 1072

Listing 31-41. Java examples of indenting a routine-call continuation 1073

line to emphasize routine names. 1074
DrawLine(window.north, window.south, window.east, window.west, 1075
 currentWidth, currentAttribute); 1076
SetFontAttributes(faceName[fontId], size[fontId], bold[fontId], 1077
 italic[fontId], syntheticAttribute[fontId].underline, 1078
 syntheticAttribute[fontId].strikeout); 1079

From an aesthetic point of view, this looks a little ragged compared to the first 1080

approach. It is also difficult to maintain as routine names changes, argument 1081

names change, and so on. Most programmers tend to gravitate toward the first 1082

style over time. 1083

Make it easy to find the end of a continuation line 1084

One problem with the approach shown above is that you can’t easily find the end 1085

of each line. Another alternative is to put each argument on a line of its own and 1086

indicate the end of the group with a closing parenthesis. Listing 31-42 shows 1087

how it looks. 1088

Listing 31-42. Java examples of formatting routine-call continuation 1089

lines one argument to a line. 1090
DrawLine(1091
 window.north, 1092
 window.south, 1093
 window.east, 1094
 window.west, 1095
 currentWidth, 1096
 currentAttribute 1097
); 1098
 1099
SetFontAttributes(1100
 faceName[fontId], 1101
 size[fontId], 1102
 bold[fontId], 1103
 italic[fontId], 1104
 syntheticAttribute[fontId].underline, 1105
 syntheticAttribute[fontId].strikeout 1106

Code Complete 31. Layout and Style Page 30

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

); 1107

This approach takes up a lot of real estate. If the arguments to a routine are long 1108

object-field references or pointer names, however, as the last two are, using one 1109

argument per line improves readability substantially. The); at the end of the 1110

block makes the end of the call clear. You also don’t have to reformat when you 1111

add a parameter; you just add a new line. 1112

In practice, usually only a few routines need to be broken into multiple lines. 1113

You can handle others on one line. Any of the three options for formatting mul-1114

tiple-line routine calls works all right if you use it consistently. 1115

Indent control-statement continuation lines the standard amount 1116

If you run out of room for a for loop, a while loop, or an if statement, indent the 1117

continuation line by the same amount of space that you indent statements in a 1118

loop or after an if statement. Two examples are shown in Listing 31-43: 1119

Listing 31-43. Java examples of indenting control-statement continua-1120

tion lines. 1121
while ((pathName[startPath + position] != ';') && 1122
 ((startPath + position) <= pathName.length())) { 1123
 ... 1124
} 1125
 1126
for (int employeeNum = employee.first + employee.offset; 1127
 employeeNum < employee.first + employee.offset + employee.total; 1128
 employeeNum++) { 1129
 ... 1130
} 1131

This meets the criteria set earlier in the chapter. The continuation part of the 1132

statement is done logically—it’s always indented underneath the statement it 1133

continues. The indentation can be done consistently—it uses only a few more 1134

spaces than the original line. It’s as readable as anything else, and it’s as main-1135

tainable as anything else. In some cases you might be able to improve readability 1136

by fine-tuning the indentation or spacing, but be sure to keep the maintainability 1137

trade-off in mind when you consider fine-tuning. 1138

Do not align right sides of assignment statements 1139

In the first edition of this book I recommended aligning the right sides of state-1140

ments containing assignments as shown in Listing 31-44: 1141

Listing 31-44. Java example of endline layout used for assignment-1142

statement continuation—bad practice. 1143
customerPurchases = customerPurchases + CustomerSales(CustomerID); 1144
customerBill = customerBill + customerPurchases; 1145
totalCustomerBill = customerBill + PreviousBalance(customerID) + 1146

 This continuation line is
indented the standard number

of spaces...

...as is this one.

CROSS-REFERENCE Som
etimes the best solution to a
complicated test is to put it
into a boolean function. For
examples, see “Making
Complicated Expressions
Simple” in Section 19.1.

Code Complete 31. Layout and Style Page 31

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

 LateCharge(customerID); 1147
customerRating = Rating(customerID, totalCustomerBill); 1148

With the benefit of 10 years’ hindsight, I have found that while this indentation 1149

style might look attractive it becomes a headache to maintain the alignment of 1150

the equals signs as variable names change, code is run through tools that substi-1151

tute tabs for spaces and spaces for tabs. It is also hard to maintain as lines are 1152

moved among different parts of the program that have different levels of indenta-1153

tion. 1154

For consistency with the other indentation guidelines as well as maintainability, 1155

treat groups of statements containing assignment operations just as you would 1156

treat other statements, as Listing 31-45 shows: 1157

Listing 31-45. Java example of standard indentation for assignment-1158

statement continuation—good practice. 1159
customerPurchases = customerPurchases + CustomerSales(CustomerID); 1160
customerBill = customerBill + customerPurchases; 1161
totalCustomerBill = customerBill + PreviousBalance(customerID) + 1162
 LateCharge(customerID); 1163
customerRating = Rating(customerID, totalCustomerBill); 1164

Indent assignment-statement continuation lines the standard amount 1165

In Listing 31-45, the continuation line for the third assignment statement is in-1166

dented the standard amount. This is done for the same reasons that assignment 1167

statements in general are not formatted in any special way—general readability 1168

and maintainability. 1169

Using Only One Statement per Line 1170

Modern languages such as C++ and Java allow multiple statements per line. The 1171

power of free formatting is a mixed blessing, however, when it comes to putting 1172

multiple statements on a line: 1173

i = 0; j = 0; k = 0; DestroyBadLoopNames(i, j, k); 1174

This line contains several statements that could logically be separated onto lines 1175

of their own. 1176

One argument in favor of putting several statements on one line is that it requires 1177

fewer lines of screen space or printer paper, which allows more of the code to be 1178

viewed at once. It’s also a way to group related statements, and some program-1179

mers believe that it provides optimization clues to the compiler. 1180

These are good reasons, but the reasons to limit yourself to one statement per 1181

line are more compelling: 1182

Code Complete 31. Layout and Style Page 32

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

• Putting each statement on a line of its own provides an accurate view of a 1183

program’s complexity. It doesn’t hide complexity by making complex 1184

statements look trivial. Statements that are complex look complex. State-1185

ments that are easy look easy. 1186

• Putting several statements on one line doesn’t provide optimization clues to 1187

modern compilers. Today’s optimizing compilers don’t depend on format-1188

ting clues to do their optimizations. This is illustrated later in this section. 1189

• With statements on their own lines, the code reads from top to bottom, in-1190

stead of top to bottom and left to right. When you’re looking for a specific 1191

line of code, your eye should be able to follow the left margin of the code. It 1192

shouldn’t have to dip into each and every line just because a single line 1193

might contain two statements. 1194

• With statements on their own lines, it’s easy to find syntax errors when your 1195

compiler provides only the line numbers of the errors. If you have multiple 1196

statements on a line, the line number doesn’t tell you which statement is in 1197

error. 1198

• With one statement to a line, it’s easy to step through the code with line-1199

oriented debuggers. If you have several statements on a line, the debugger 1200

executes them all at once, and you have to switch to assembler to step 1201

through individual statements. 1202

• With one to a line, it’s easy to edit individual statements—to delete a line or 1203

temporarily convert a line to a comment. If you have multiple statements on 1204

a line, you have to do your editing between other statements. 1205

In C++, avoid using multiple operations per line (side effects) 1206

Side effects are consequences of a statement other than its main consequence. In 1207

C++, the ++ operator on a line that contains other operations is a side effect. 1208

Likewise, assigning a value to a variable and using the left side of the assign-1209

ment in a conditional is a side effect. 1210

Side effects tend to make code difficult to read. For example, if n equals 4, what 1211

is the printout of the statement shown in Listing 31-46? 1212

Listing 31-46. C++ example of an unpredictable side effect. 1213
PrintMessage(++n, n + 2); 1214

Is it 4 and 6? Is it 5 and 7? Is it 5 and 6? The answer is None of the above. The 1215

first argument, ++n, is 5. But the C++ language does not define the order in 1216

which terms in an expression or arguments to a routine are evaluated. So the 1217

compiler can evaluate the second argument, n + 2, either before or after the first 1218

argument; the result might be either 6 or 7, depending on the compiler. Listing 1219

31-47 shows how you should rewrite the statement so that the intent is clear: 1220

CROSS-REFERENCE Cod
e-level performance optimi-
zations are discussed in
Chapter 25, “Code-Tuning
Strategies,” and Chapter 26,
“Code-Tuning Techniques.”

Code Complete 31. Layout and Style Page 33

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

Listing 31-47. C++ example of avoiding an unpredictable side effect. 1221
++n; 1222
PrintMessage(n, n + 2); 1223

If you’re still not convinced that you should put side effects on lines by them-1224

selves, try to figure out what the routine shown in Listing 31-48 does: 1225

Listing 31-48. C example of too many operations on a line. 1226
strcpy(char * t, char * s) { 1227
 while (*++t = *++s) 1228
 ; 1229
} 1230

Some experienced C programmers don’t see the complexity in that example be-1231

cause it’s a familiar function; they look at it and say, “That’s strcpy().” In this 1232

case, however, it’s not quite strcpy(). It contains an error. If you said, “That’s 1233

strcpy()” when you saw the code, you were recognizing the code, not reading it. 1234

This is exactly the situation you’re in when you debug a program: The code that 1235

you overlook because you “recognize” it rather than read it can contain the error 1236

that’s harder to find than it needs to be. 1237

The fragment shown in Listing 31-49 is functionally identical to the first and is 1238

more readable: 1239

Listing 31-49. C example of a readable number of operations on each 1240

line. 1241
strcpy(char * t, char * s) { 1242
 do { 1243
 ++t; 1244
 ++s; 1245
 *t = *s; 1246
 } 1247
 while (*t != '\0'); 1248
} 1249

In the reformatted code, the error is apparent. Clearly, t and s are incremented 1250

before *s is copied to *t. The first character is missed. 1251

The second example looks more elaborate than the first, even though the opera-1252

tions performed in the second example are identical. The reason it looks more 1253

elaborate is that it doesn’t hide the complexity of the operations. 1254

Improved performance doesn’t justify putting multiple operations on the same 1255

line either. Because the two strcpy() routines are logically equivalent, you would 1256

expect the compiler to generate identical code for them. When both versions of 1257

the routine were profiled, however, the first version took 4.81 seconds to copy 1258

5,000,000 strings and the second took 4.35 seconds. 1259

CROSS-REFERENCE For
details on code tuning, see
Chapter 25, “Code-Tuning
Strategies,” and Chapter 26,
“Code-Tuning Techniques.”

Code Complete 31. Layout and Style Page 34

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

In this case, the “clever” version carries an 11 percent speed penalty, which 1260

makes it look a lot less clever. The results vary from compiler to compiler, but in 1261

general they suggest that until you’ve measured performance gains, you’re better 1262

off striving for clarity and correctness first, performance second. 1263

Even if you read statements with side effects easily, take pity on other people 1264

who will read your code. Most good programmers need to think twice to under-1265

stand expressions with side effects. Let them use their brain cells to understand 1266

the larger questions of how your code works rather than the syntactic details of a 1267

specific expression. 1268

Laying Out Data Declarations 1269

Use only one data declaration per line 1270

As shown in the examples above, you should give each data declaration its own 1271

line. It’s easier to put a comment next to each declaration if each one is on its 1272

own line. It’s easier to modify declarations because each declaration is self-1273

contained. It’s easier to find specific variables because you can scan a single col-1274

umn rather than reading each line. It’s easier to find and fix syntax errors be-1275

cause the line number the compiler gives you has only one declaration on it. 1276

Quickly—in the data declaration in Listing 31-50, what type of variable is 1277

currentBottom? 1278

Listing 31-50. C++ example of crowding more than one variable declara-1279

tion onto a line. 1280
int rowIndex, columnIdx; Color previousColor, currentColor, nextColor; Point 1281
previousTop, previousBottom, currentTop, currentBottom, nextTop, nextBottom; Font 1282
previousTypeface, currentTypeface, nextTypeface; Color choices[NUM_COLORS]; 1283

This is an extreme example. But it is not too far removed from a much more 1284

common style shown in Listing 31-51: 1285

Listing 31-51. C++ example of crowding more than one variable declara-1286

tion onto a line. 1287
int rowIndex, columnIdx; 1288
Color previousColor, currentColor, nextColor; 1289
Point previousTop, previousBottom, currentTop, currentBottom, nextTop, nextBottom; 1290
Font previousTypeface, currentTypeface, nextTypeface; 1291
Color choices[NUM_COLORS]; 1292

This is not an uncommon style of declaring variables, and the variable is still 1293

hard to find because all the declarations are jammed together. The variable’s type 1294

is hard to find too. 1295

Now, what is nextColor’s type in Listing 31-52? 1296

CROSS-REFERENCE For
details on documenting data
declarations, see “Comment-
ing Data Declarations” in
Section 32.5. For aspects of
data use, see Chapters 10
through 13.

CODING HORROR

CODING HORROR

Code Complete 31. Layout and Style Page 35

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

Listing 31-52. C++ example of readability achieved by putting only one 1297

variable declaration on each line. 1298
int rowIndex; 1299
int columnIdx; 1300
Color previousColor; 1301
Color currentColor; 1302
Color nextColor; 1303
Point previousTop; 1304
Point previousBottom; 1305
Point currentTop; 1306
Point currentBottom; 1307
Point nextTop; 1308
Point nextBottom; 1309
Font previousTypeface; 1310
Font currentTypeface; 1311
Font nextTypeface; 1312
Color choices[NUM_COLORS]; 1313

The variable nextColor was probably easier to find than nextTypeface was in 1314

Listing 31-51. This style is characterized by one declaration per line and a com-1315

plete declaration including the variable type on each line. 1316

Admittedly, this style chews up a lot of screen space—20 lines instead of the 3 in 1317

the first example, although those 3 lines were pretty ugly. I can’t point to any 1318

studies that show that this style leads to fewer bugs or greater comprehension. If 1319

Sally Programmer, Jr. asked me to review her code, however, and her data decla-1320

rations looked like the first example, I’d say, “No way—too hard to read.” If 1321

they looked like the second example, I’d say, “Uh...maybe I’ll get back to you.” 1322

If they looked like the final example, I would say, “Certainly—it’s a pleasure.” 1323

Declare variables close to where they’re first used 1324

A style that’s preferable to declaring all variables in a big block is to declare 1325

each variable close to where it’s first used. This reduces “span” and “live time” 1326

and facilitates refactoring code into smaller routines when necessary. For more 1327

details, see “Keep Variables Live for As Short a Time As Possible” in Section 1328

10.4. 1329

Order declarations sensibly 1330

In the example above, the declarations are grouped by types. Grouping by types 1331

is usually sensible since variables of the same type tend to be used in related op-1332

erations. In other cases, you might choose to order them alphabetically by vari-1333

able name. Although alphabetical ordering has many advocates, my feeling is 1334

that it’s too much work for what it’s worth. If your list of variables is so long that 1335

alphabetical ordering helps, your routine is probably too big. Break it up so that 1336

you have smaller routines with fewer variables. 1337

Code Complete 31. Layout and Style Page 36

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

In C++, put the asterisk next to the variable name in pointer declarations 1338
or declare pointer types 1339

It’s common to see pointer declarations that put the asterisk next to the type, as 1340

in Listing 31-53: 1341

Listing 31-53. C++ example of asterisks in pointer declarations. 1342
EmployeeList* employees; 1343
File* inputFile; 1344

The problem with putting the asterisk next to the type name rather than the vari-1345

able name is that, when you put more than one declaration on a line, the asterisk 1346

will apply only to the first variable even though the visual formatting suggests it 1347

applies to all variables on the line. 1348

You can avoid this problem by putting the asterisk next to the variable name 1349

rather than the type name, as in Listing 31-54: 1350

Listing 31-54. C++ example of using asterisks in pointer declarations. 1351
EmployeeList *employees; 1352
File *inputFile; 1353

This approach has the weakness of suggesting that the asterisk is part of the vari-1354

able name, which it isn’t. The variable can be used either with or without the 1355

asterisk. 1356

The best approach is to declare a type for the pointer and use that instead. An 1357

example is shown in Listing 31-55: 1358

Listing 31-55. C++ example of good uses of a pointer type in declara-1359

tions. 1360
EmployeeListPointer employees; 1361
FilePointer inputFile; 1362

The particular problem addressed by this approach can be solved either by re-1363

quiring all pointers to be declared using pointer types, as shown in Listing 31-55, 1364

or by requiring no more than one variable declaration per line. Be sure to choose 1365

at least one of these solutions! 1366

31.6 Laying Out Comments 1367

Comments done well can greatly enhance a program’s readability. Comments 1368

done poorly can actually hurt it. The layout of comments plays a large role in 1369

whether they help or hinder readability. 1370

CROSS-REFERENCE For
details on other aspects of
comments, see Chapter 32,
“Self-Documenting Code.”

Code Complete 31. Layout and Style Page 37

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

Indent a comment with its corresponding code 1371

Visual indentation is a valuable aid to understanding a program’s logical struc-1372

ture, and good comments don’t interfere with the visual indentation. For exam-1373

ple, what is the logical structure of the routine shown in Listing 31-56? 1374

Listing 31-56. Visual Basic example of poorly indented comments. 1375
For transactionId = 1 To totalTransactions 1376
' get transaction data 1377
 GetTransactionType(transactionType) 1378
 GetTransactionAmount(transactionAmount) 1379
 1380
' process transaction based on transaction type 1381
 If transactionType = Transaction_Sale Then 1382
 AcceptCustomerSale(transactionAmount) 1383
 1384
 Else 1385
 If transactionType = Transaction_CustomerReturn Then 1386
 1387
' either process return automatically or get manager approval, if required 1388
 If transactionAmount >= MANAGER_APPROVAL_LEVEL Then 1389
 1390
' try to get manager approval and then accept or reject the return 1391
' based on whether approval is granted 1392
 GetMgrApproval(isTransactionApproved) 1393
 If (isTransactionApproved) Then 1394
 AcceptCustomerReturn(transactionAmount) 1395
 Else 1396
 RejectCustomerReturn(transactionAmount) 1397
 End If 1398
 Else 1399
 1400
' manager approval not required, so accept return 1401
 AcceptCustomerReturn(transactionAmount) 1402
 End If 1403
 End If 1404
 End If 1405
Next 1406

In this example you don’t get much of a clue to the logical structure because the 1407

comments completely obscure the visual indentation of the code. You might find 1408

it hard to believe that anyone ever makes a conscious decision to use such an 1409

indentation style, but I’ve seen it in professional programs and know of at least 1410

one textbook that recommends it. 1411

The code shown in Listing 31-57 is exactly the same as in Listing 31-56, except 1412

for the indentation of the comments. 1413

CODING HORROR

Code Complete 31. Layout and Style Page 38

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

Listing 31-57. Visual Basic example of nicely indented comments. 1414
For transactionId = 1 To totalTransactions 1415
 ' get transaction data 1416
 GetTransactionType(transactionType) 1417
 GetTransactionAmount(transactionAmount) 1418
 1419
 ' process transaction based on transaction type 1420
 If transactionType = Transaction_Sale Then 1421
 AcceptCustomerSale(transactionAmount) 1422
 1423
 Else 1424
 If transactionType = Transaction_CustomerReturn Then 1425
 1426
 ' either process return automatically or get manager approval, if required 1427
 If transactionAmount >= MANAGER_APPROVAL_LEVEL Then 1428
 1429
 ' try to get manager approval and then accept or reject the return 1430
 ' based on whether approval is granted 1431
 GetMgrApproval(isTransactionApproved) 1432
 If (isTransactionApproved) Then 1433
 AcceptCustomerReturn(transactionAmount) 1434
 Else 1435
 RejectCustomerReturn(transactionAmount) 1436
 End If 1437
 Else 1438
 ' manager approval not required, so accept return 1439
 AcceptCustomerReturn(transactionAmount) 1440
 End If 1441
 End If 1442
 End If 1443
Next 1444

In Listing 31-57, the logical structure is more apparent. One study of the effec-1445

tiveness of commenting found that the benefit of having comments was not con-1446

clusive, and the author speculated that it was because they “disrupt visual scan-1447

ning of the program” (Shneiderman 1980). From these examples, it’s obvious 1448

that the style of commenting strongly influences whether comments are disrup-1449

tive. 1450

Set off each comment with at least one blank line 1451

If someone is trying to get an overview of your program, the most effective way 1452

to do it is to read the comments without reading the code. Setting comments off 1453

with blank lines helps a reader scan the code. An example is shown in Listing 1454

31-58: 1455

Listing 31-58. Java example of setting off a comment with a blank line. 1456
// comment zero 1457

Code Complete 31. Layout and Style Page 39

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

CodeStatementZero; 1458
CodeStatementOne; 1459
 1460
// comment one 1461
CodeStatementTwo; 1462
CodeStatementThree; 1463

Some people use a blank line both before and after the comment. Two blanks use 1464

more display space, but some people think the code looks better than with just 1465

one. An example is shown in Listing 31-59: 1466

Listing 31-59. Java example of setting off a comment with two blank 1467

lines. 1468
 1469
// comment zero 1470
 1471
CodeStatementZero; 1472
CodeStatementOne; 1473
 1474
// comment one 1475
 1476
CodeStatementTwo; 1477
CodeStatementThree; 1478

Unless your display space is at a premium, this is a purely aesthetic judgment 1479

and you can make it accordingly. In this, as in many other areas, the fact that a 1480

convention exists is more important than the convention’s specific details. 1481

31.7 Laying Out Routines 1482

Routines are composed of individual statements, data, control structures, com-1483

ments—all the things discussed in the other parts of the chapter. This section 1484

provides layout guidelines unique to routines. 1485

Use blank lines to separate parts of a routine 1486

Use blank lines between the routine header, its data and named-constant declara-1487

tions (if any), and its body. 1488

Use standard indentation for routine arguments 1489

The options with routine-header layout are about the same as they are in a lot of 1490

other areas of layout: no conscious layout, endline layout, or standard indenta-1491

tion. As in most other cases, standard indentation does better in terms of accu-1492

racy, consistency, readability, and modifiability. 1493

Listing 31-60 shows two examples of routine headers with no conscious layout: 1494

CROSS-REFERENCE For
details on documenting rou-
tines, see “Commenting Rou-
tines” in Section 32.5. For
details on the process of writ-
ing a routine, see Section 9.3,
“Constructing Routines Us-
ing the PPP.” For a discus-
sion of the differences be-
tween good and bad routines,
see Chapter 7, “High-Quality
Routines.”

Code Complete 31. Layout and Style Page 40

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

Listing 31-60. C++ examples of routine headers with no conscious lay-1495

out. 1496
bool ReadEmployeeData(int maxEmployees,EmployeeList *employees, 1497
 EmployeeFile *inputFile,int *employeeCount,bool *isInputError) 1498
... 1499
 1500
void InsertionSort(SortArray data,int firstElement,int lastElement) 1501

These routine headers are purely utilitarian. The computer can read them as well 1502

as it can read headers in any other format, but they cause trouble for humans. 1503

Without a conscious effort to make the headers hard to read, how could they be 1504

any worse? 1505

The second approach in routine-header layout is the endline layout, which usu-1506

ally works all right. Listing 31-61 shows the same routine headers reformatted: 1507

Listing 31-61. C++ example of routine headers with mediocre endline 1508

layout. 1509
bool ReadEmployeeData(int maxEmployees, 1510
 EmployeeList *employees, 1511
 EmployeeFile *inputFile, 1512
 int *employeeCount, 1513
 bool *isInputError) 1514
... 1515
void InsertionSort(SortArray data, 1516
 int firstElement, 1517
 int lastElement) 1518

The endline approach is neat and aesthetically appealing. The main problem is 1519

that it takes a lot of work to maintain, and styles that are hard to maintain aren’t 1520

maintained. Suppose that the function name changes from ReadEmployeeData() 1521

to ReadNewEmployeeData(). That would throw the alignment of the first line off 1522

from the alignment of the other four lines. You’d have to reformat the other four 1523

lines of the parameter list to align with the new position of maxEmployees 1524

caused by the longer function name. And you’d probably run out of space on the 1525

right side since the elements are so far to the right already. 1526

The examples shown in Listing 31-62, formatted using standard indentation, are 1527

just as appealing aesthetically but take less work to maintain. 1528

Listing 31-62. C++ example of routine headers with readable, maintain-1529

able standard indentation. 1530
public bool ReadEmployeeData(1531
 int maxEmployees, 1532
 EmployeeList *employees, 1533
 EmployeeFile *inputFile, 1534
 int *employeeCount, 1535

CROSS-REFERENCE For
more details on using routine
parameters, see Section 7.5,
“How to Use Routine Pa-
rameters.”

Code Complete 31. Layout and Style Page 41

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

 bool *isInputError 1536
) 1537
... 1538
 1539
public void InsertionSort(1540
 SortArray data, 1541
 int firstElement, 1542
 int lastElement 1543
) 1544

This style holds up better under modification. If the routine name changes, the 1545

change has no effect on any of the parameters. If parameters are added or de-1546

leted, only one line has to be modified—plus or minus a comma. The visual cues 1547

are similar to those in the indentation scheme for a loop or an if statement. Your 1548

eye doesn’t have to scan different parts of the page for every individual routine 1549

to find meaningful information; it knows where the information is every time. 1550

This style translates to Visual Basic in a straightforward way, though it requires 1551

the use of line-continuation characters, as shown in Listing 31-63: 1552

Listing 31-63. Visual Basic example of routine headers with readable, 1553

maintainable standard indentation. 1554
Public Sub ReadEmployeeData (_ 1555
 ByVal maxEmployees As Integer, _ 1556
 ByRef employees As EmployeeList, _ 1557
 ByRef inputFile As EmployeeFile, _ 1558
 ByRef employeeCount As Integer, _ 1559
 ByRef isInputError As Boolean _ 1560
) 1561

31.8 Laying Out Classes 1562

Here are several guidelines for laying out code within a class. The next section 1563

contains guidelines for laying out code within a file. 1564

Laying Out Class Interfaces 1565

In laying out class interfaces, the convention is to present the class members in 1566

the following order: 1567

1. Header comment that describes the class and provides any notes about the 1568

overall usage of the class 1569

2. Constructors and destructors 1570

Here’s the “_” character used
As a line-continuation charac-

ter.

CROSS-REFERENCE For
details on documenting
classes, see “Commenting
Classes, Files, and Programs”
in Section 32.5. For details
on the process of creating
classes, see Section 9.1,
“Summary of Steps in Build-
ing Classes and Routines.”
For a discussion of the differ-
ences between good and bad
classes, see Chapter 6,
“Working Classes.”

Code Complete 31. Layout and Style Page 42

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

3. Public routines 1571

4. Protected routines 1572

5. Private routines and member data 1573

Laying Out Class Implementations 1574

Class implementations are generally laid out in this order: 1575

1. Header comment that describes the contents of the file the class is in 1576

2. Class data 1577

3. Public routines 1578

4. Protected routines 1579

5. Private routines 1580

If you have more than one class in a file, identify each class clearly 1581

Routines that are related should be grouped together into classes. A reader scan-1582

ning your code should be able to tell easily which class is which. Identify each 1583

class clearly by using several blank lines between it and the classes next to it. A 1584

class is like a chapter in a book. In a book, you start each chapter on a new page 1585

and use big print for the chapter title. Emphasize the start of each class similarly. 1586

An example of separating classes is shown in Listing 31-64. 1587

Listing 31-64. C++ example of formatting the separation between 1588

classes. 1589
// create a string identical to sourceString except that the 1590
// blanks are replaced with underscores. 1591
void EditString::ConvertBlanks(1592
 char *sourceString, 1593
 char *targetString 1594
) { 1595
 Assert(strlen(sourceString) <= MAX_STRING_LENGTH); 1596
 Assert(sourceString != NULL); 1597
 Assert(targetString != NULL); 1598
 int charIndex = 0; 1599
 do { 1600
 if (sourceString[charIndex] == " ") { 1601
 targetString[charIndex] = '_'; 1602
 } 1603
 else { 1604
 targetString[charIndex] = sourceString[charIndex]; 1605

This is the last routine in a
class.

Code Complete 31. Layout and Style Page 43

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

 } 1606
 charIndex++; 1607
 } while sourceString[charIndex] != '\0'; 1608
} 1609
 1610
//-- 1611
// MATHEMATICAL FUNCTIONS 1612
// 1613
// This class contains the program's mathematical functions. 1614
//-- 1615
 1616
// find the arithmetic maximum of arg1 and arg2 1617
int Math::Max(int arg1, int arg2) { 1618
 if (arg1 > arg2) { 1619
 return arg1; 1620
 } 1621
 else { 1622
 return arg2; 1623
 } 1624
} 1625
 1626
 1627
// find the arithmetic minimum of arg1 and arg2 1628
int Math::Min(int arg1, int arg2) { 1629
 if (arg1 < arg2) { 1630
 return arg1; 1631
 } 1632
 else { 1633
 return arg2; 1634
 } 1635
} 1636

Avoid overemphasizing comments within classes. If you mark every routine and 1637

comment with a row of asterisks instead of blank lines, you’ll have a hard time 1638

coming up with a device that effectively emphasizes the start of a new class. An 1639

example is shown in Listing 31-65. 1640

Listing 31-65. C++ example of overformatting a class. 1641
//** 1642
//** 1643
// MATHEMATICAL FUNCTIONS 1644
// 1645
// This class contains the program//s mathematical functions. 1646
//** 1647
//** 1648
 1649
//** 1650

The beginning of the new
class is marked with several
blank lines and the name of

the class.

This is the first routine in a
new class.

This routine is separated from
the previous routine by blank

lines only.

Code Complete 31. Layout and Style Page 44

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

// find the arithmetic maximum of arg1 and arg2 1651
//** 1652
int Math::Max(int arg1, int arg2) { 1653
//** 1654
 if (arg1 > arg2) { 1655
 return arg1; 1656
 } 1657
 else { 1658
 return arg2; 1659
 } 1660
} 1661
 1662
//** 1663
// find the arithmetic maximum of arg1 and arg2 1664
//** 1665
int Math::Min(int arg1, int arg2) { 1666
//** 1667
 if (arg1 < arg2) { 1668
 return arg1; 1669
 } 1670
 else { 1671
 return arg2; 1672
 } 1673
} 1674

In this example, so many things are highlighted with asterisks that nothing is 1675

really emphasized. The program becomes a dense forest of asterisks. Although 1676

it’s more an aesthetic than a technical judgment, in formatting, less is more. 1677

If you must separate parts of a program with long lines of special characters, de-1678

velop a hierarchy of characters (from densest to lightest) instead of relying ex-1679

clusively on asterisks. For example, use asterisks for class divisions, dashes for 1680

routine divisions, and blank lines for important comments. Refrain from putting 1681

two rows of asterisks or dashes together. An example is shown in Listing 31-66. 1682

Listing 31-66. C++ example of good formatting with restraint. 1683
//** 1684
// MATHEMATICAL FUNCTIONS 1685
// 1686
// This class contains the program's mathematical functions. 1687
//** 1688
 1689
//-- 1690

Code Complete 31. Layout and Style Page 45

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

// find the arithmetic maximum of arg1 and arg2 1691
//-- 1692
int Math::Max(int arg1, int arg2) { 1693
 if (arg1 > arg2) { 1694
 return arg1; 1695
 } 1696
 else { 1697
 return arg2; 1698
 } 1699
} 1700
 1701
//-- 1702
// find the arithmetic minimum of arg1 and arg2 1703
//-- 1704
int Math::Min(int arg1, int arg2) { 1705
 if (arg1 < arg2) { 1706
 return arg1; 1707
 } 1708
 else { 1709
 return arg2; 1710
 } 1711
} 1712

This advice about how to identify multiple classes within a single file applies 1713

only when your language restricts the number of files you can use in a program. 1714

If you’re using C++, Java, Visual Basic or other languages that support multiple 1715

source files, put only one class in each file unless you have a compelling reason 1716

to do otherwise (such as including a few small classes that make up a single pat-1717

tern). Within a single class, however, you might still have subgroups of routines, 1718

and you can group them using techniques such as the ones shown here. 1719

Laying Out Files and Programs 1720

Beyond the formatting techniques for routines is a larger formatting issue. How 1721

do you organize routines within a file, and how do you decide which routines to 1722

put in a file in the first place? 1723

Put one class in one file 1724

A file isn’t just a bucket that holds some code. If your language allows it, a file 1725

should hold a collection of routines that supports one and only one purpose. A 1726

file reinforces the idea that a collection of routines are in the same class. 1727

The lightness of this line com-
pared to the line of asterisks

visually reinforces the fact that
the routine is subordinate to

the class.

CROSS-REFERENCE For
documentation details, see
“Commenting Classes, Files,
and Programs” in Section
32.5.

Code Complete 31. Layout and Style Page 46

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

All the routines within a file make up the class. The class might be one that the 1728

program really recognizes as such, or it might be just a logical entity that you’ve 1729

created as part of your design. 1730

Classes are a semantic language concept. Files are a physical operating-system 1731

concept. The correspondence between classes and files is coincidental and con-1732

tinues to weaken over time as more environments support putting code into data-1733

bases or otherwise obscuring the relationship between routines, classes, and files. 1734

Give the file a name related to the class name 1735

Most projects have a one-to-one correspondence between class names and file 1736

names. A class named CustomerAccount would have files named 1737

CustomerAccount.cpp and CustomerAccount.h, for example. 1738

Separate routines within a file clearly 1739

Separate each routine from other routines with at least two blank lines. The blank 1740

lines are as effective as big rows of asterisks or dashes, and they’re a lot easier to 1741

type and maintain. Use two or three to produce a visual difference between blank 1742

lines that are part of a routine and blank lines that separate routines. An example 1743

is shown in Listing 31-67: 1744

Listing 31-67. Visual Basic example of using blank lines between rou-1745

tines. 1746
'find the arithmetic maximum of arg1 and arg2 1747
Function Max(arg1 As Integer, arg2 As Integer) As Integer 1748
 If (arg1 > arg2) Then 1749
 Max = arg1 1750
 Else 1751
 Max = arg2 1752
 End If 1753
End Function 1754
 1755
 1756
 1757
'find the arithmetic minimum of arg1 and arg2 1758
Function Min(arg1 As Integer, arg2 As Integer) As Integer 1759
 If (arg1 < arg2) Then 1760
 Min = arg1 1761
 Else 1762
 Min = arg2 1763
 End If 1764
end Function 1765

Blank lines are easier to type than any other kind of separator and look at least as 1766

good. Three blank lines are used here so that the separation between routines is 1767

more noticeable than the blank lines within each routine. 1768

CROSS-REFERENCE For
details on the differences
between classes and routines
and how to make a collection
of routines into a class, see
Chapter 6, “Working
Classes.”

At least two blank lines sepa-
rate the two routines.

Code Complete 31. Layout and Style Page 47

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

Sequence routines alphabetically 1769

An alternative to grouping related routines in a file is to put them in alphabetical 1770

order. If you can’t break a program up into classes or if your editor doesn’t allow 1771

you to find functions easily, the alphabetical approach can save search time. 1772

In C++, order the source file carefully 1773

Here’s the standard order of source-file contents in C++: 1774

File-description comment 1775

#include files 1776

Constant definitions 1777

Enums 1778

Macro function definitions 1779

Type definitions 1780

Global variables and functions imported 1781

Global variables and functions exported 1782

Variables and functions that are private to the file 1783

Classes 1784

CHECKLIST: Layout 1785

General 1786

� Is formatting done primarily to illuminate the logical structure of the code? 1787

� Can the formatting scheme be used consistently? 1788

� Does the formatting scheme result in code that’s easy to maintain? 1789

� Does the formatting scheme improve code readability? 1790

Control Structures 1791

� Does the code avoid doubly indented begin-end or {} pairs? 1792

� Are sequential blocks separated from each other with blank lines? 1793

� Are complicated expressions formatted for readability? 1794

� Are single-statement blocks formatted consistently? 1795

� Are case statements formatted in a way that’s consistent with the formatting 1796

of other control structures? 1797

CC2E.COM/ 3194

Code Complete 31. Layout and Style Page 48

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

� Have gotos been formatted in a way that makes their use obvious? 1798

Individual Statements 1799

� Is white space used to make logical expressions, array references, and rou-1800

tine arguments readable? 1801

� Do incomplete statements end the line in a way that’s obviously incorrect? 1802

� Are continuation lines indented the standard indentation amount? 1803

� Does each line contain at most one statement? 1804

� Is each statement written without side effects? 1805

� Is there at most one data declaration per line? 1806

Comments 1807

� Are the comments indented the same number of spaces as the code they 1808

comment? 1809

� Is the commenting style easy to maintain? 1810

Routines 1811

� Are the arguments to each routine formatted so that each argument is easy to 1812

read, modify, and comment? 1813

� Are blank lines used to separate parts of a routine? 1814

Classes, Files and Programs 1815

� Is there a one-to-one relationship between classes and files for most classes 1816

and files? 1817

� If a file does contain multiple classes, are all the routines in each class 1818

grouped together and is the class clearly identified? 1819

� Are routines within a file clearly separated with blank lines? 1820

� In lieu of a stronger organizing principle, are all routines in alphabetical se-1821

quence? 1822

 1823

Additional Resources 1824

Most programming textbooks say a few words about layout and style, but thor-1825

ough discussions of programming style are rare; discussions of layout are rarer 1826

still. The following books talk about layout and programming style. 1827

Kernighan, Brian W. and Rob Pike. The Practice of Programming, Reading, 1828

Mass.: Addison Wesley, 1999. Chapter 1 of this book discusses programming 1829

style focusing on C and C++. 1830

CC2E.COM/ 3101

Code Complete 31. Layout and Style Page 49

© 1993-2003 Steven C. McConnell. All Rights Reserved. 1/13/2004 2:47 PM
H:\books\CodeC2Ed\Reviews\Web\31-LayoutAndStyle.doc

Vermeulen, Allan, et al. The Elements of Java Style, Cambridge University 1831

Press, 2000. 1832

Bumgardner, Greg, Andrew Gray, and Trevor Misfeldt, 2004. The Elements of 1833

C++ Style, Cambridge University Press, 2004. 1834

Kernighan, Brian W., and P. J. Plauger. The Elements of Programming Style, 2d 1835

ed. New York: McGraw-Hill, 1978. This is the classic book on programming 1836

style—the first in the genre of programming-style books. 1837

For a substantially different approach to readability, see the discussion of Donald 1838

Knuth’s “literate programming” listed below. 1839

Knuth, Donald E. Literate Programming. Cambridge University Press, 2001. 1840

This is a collection of papers describing the “literate programming” approach of 1841

combining a programming language and a documentation language. Knuth has 1842

been writing about the virtues of literate programming for about 20 years, and in 1843

spite of his strong claim to the title Best Programmer on the Planet, literate pro-1844

gramming isn’t catching on. Read some of his code to form your own conclu-1845

sions about the reason. 1846

Key Points 1847

• The first priority of visual layout is to illuminate the logical organization of 1848

the code. Criteria used to assess whether the priority is achieved include ac-1849

curacy, consistency, readability, and maintainability. 1850

• Looking good is secondary to the other criteria—a distant second. If the 1851

other criteria are met and the underlying code is good, however, the layout 1852

will look fine. 1853

• Visual Basic has pure blocks and the conventional practice in Java is to use 1854

pure block style, so you can use a pure-block layout if you program in those 1855

languages. In C++, either pure-block emulation or begin-end block bounda-1856

ries work well. 1857

• Structuring code is important for its own sake. The specific convention you 1858

follow may be less important than the fact that you follow some convention 1859

consistently. A layout convention that’s followed inconsistently might actu-1860

ally hurt readability. 1861

• Many aspects of layout are religious issues. Try to separate objective prefer-1862

ences from subjective ones. Use explicit criteria to help ground your discus-1863

sions about style preferences. 1864

