
Memory Management

Memory Management

Most of the time spent debugging C++ programs will be in
finding and correcting memory bugs
Can be very difficult to find

The bug may not manifest itself until much later in the code
Types of memory errors:

Memory Leaks
Invalid Pointers

Uninitialized pointers
Dangling pointers
No value returned by a function

Out of Bounds Errors

Malloc
To understand the memory problems that may occur, you need
to understand the underlying memory management system
malloc – the basic C routine for allocating memory

The user gives the actual number of bytes
The system goes to the heap and allocates the memory
requested (if possible), plus additional memory for a
"header" that stores bookkeeping information
Typical parameters

Header size of 4 bytes
Block size a non-zero multiple of 8 bytes
Minimum block size of 8 bytes

The header information contains the size of the memory plus
a bit indicating if the memory is allocated or not

Malloc example
The Heap

Malloc example

a = malloc(80);

The Heap

a

Malloc example

a = malloc(80);
b = malloc(5);

The Heap

a b

Malloc example

a = malloc(80);
b = malloc(5);
c = malloc(500);

The Heap

a b c

Malloc example

a = malloc(80);
b = malloc(5);
c = malloc(500);
d = malloc(20);

The Heap

a b c d

Free

Used to deallocate memory
Sets the bit in the header to indicate that the
memory is available
The deallocated memory can then be allocated to
another malloc call

Free example

free(b);

The Heap

a b c d

Free

You don’t need to tell the system how much to free –
it gets it from the header
When memory is freed, it is placed on a list of
available memory
free creates fragmented memory
Can reclaim the fragmented memory by looking at
the headers and coalescing contiguous memory that
is not currently allocated

Allocating memory

After several malloc’s and free’s, how should the
system allocate memory

The open memory on the end of the heap
Blocks of space previously freed

Finding the “first fit” is fast, but may cause a lot of
fragmentation
Finding the “best fit” is slow, but reduces
fragmentation
The system keeps a “free space” list
Small chunks of memory are difficult to find a use for

Freeing storage

How do we collapse small chunks into larger ones?
Merge adjacent free blocks

Check the blocks’ headers. If two adjacent
blocks are free, join them and create a new
header
Can be done by storing a second copy of the
header at the end of the block (called a
"footer"). This makes it very easy to merge
adjacent blocks

C++ Memory Management

new – calls malloc to allocate the memory for the
object, calls the appropriate constructor, and returns
a pointer to the memory that was allocated

Do NOT use malloc in C++ - it bypasses the
constructor

delete – calls the destructor for each object being
destructed, then calls free

Do NOT use free in C++ - it bypasses the
destructor

If you have allocated an array and call delete
without the [], only the first object has its destructor
called

Debugging Memory Problems

Can be VERY time consuming
VERY difficult to find at times
Three types of memory errors

Memory leak
Dangling pointer
Out of Bounds Error

Memory Leaks
A memory Leak is when you allocate memory, stop using it, but
do not free it up.
The memory becomes unusable – the system thinks it is still
allocated, but your program no longer accesses it
Types of memory leaks

Reachable – the program still has a pointer to the memory,
but does not use it (could deallocate, but doesn’t)
Lost – the program has discarded all pointers to the memory
(can’t deallocate even if it wants to)
Possibly Lost – the program still has a pointer into the
middle of the memory block (e.g., an array). Could
deallocate the memory, but would need to move the pointer
back to the beginning before calling delete

Reasons for Memory Leaks
You allocate memory and just forget to free it

E.g., Destructor or operator = isn't correct
You allocate an array and forget to deallocate with delete[]
An error condition causes a routine to abort without properly
releasing memory

Return statements
Throwing exceptions

Misunderstanding of whose responsibility it is to free the
memory

I think you will, you think I will
Ownership of memory must be well-defined
“Owner” of memory is responsible for freeing it

Avoiding memory leaks

Whenever you call new to allocate some memory,
decide where in the code that memory will be
deleted, and also write the code to delete it
Always deallocate arrays with delete []
Make sure that all memory is freed by all possible
paths through a routine, even if errors occur
Clearly define whose responsibility it is to free heap
memory

Invalid Pointers

Always initialize pointer variables to something, even
if it’s just NULL
A pointer variable should always point to something
valid, or be NULL

Garbage pointers are dangerous
Compile with warnings turned on

Catches functions that don’t return values
g++ -Wall …

Invalid Pointers

Symptoms of invalid pointers
Data mysteriously changes value for no apparent
reason
Heap data structures become corrupted
Runtime stack becomes corrupted
Segmentation Fault will often result

Dangling Pointers
A dangling pointer occurs when you have a pointer
that points to invalid memory
This can occur when you have two pointers pointing
to the same object and you call delete on one of the
pointers but don't discard the other pointer
The freed memory may be allocated to a different
object
The second original pointer will now point to this
different object

Dangling Pointers

May stomp on the other object

May cross over the new object’s boundary and stomp
on the memory header info

May cause strange behavior on deletion

Dangling Pointer example

WebCrawler *a = new WebCrawler;

The Heap

a

Dangling Pointer example

WebCrawler *a = new WebCrawler;
WebCrawler *b = a;

The Heap

a , b

Dangling Pointer example

WebCrawler *a = new WebCrawler;
WebCrawler *b = a;
delete a;

The Heap

b

Dangling Pointer example

WebCrawler *a = new WebCrawler;
WebCrawler *b = a;
delete a;
int *c = new int;

The Heap
b

c

Dangling Pointer example

WebCrawler *a = new WebCrawler;
WebCrawler *b = a;
delete a;
int *c = new int;
int *d = new int;

The Heap
b

c d

Out of Bounds Error

C++ does not do array bounds checking

If you attempt to access memory beyond the
memory you have allocated, it won’t stop you

May stomp on another object
Data mysteriously changes
E.g., an adjacent variable on the runtime stack

May stomp on heap headers and footers

Memory Error Symptoms

Memory consumed by program increases over time, even
though it shouldn’t

Program crashes when you call new or delete because the heap
is corrupted

Variable mysteriously changes value for no apparent reason
Strange output

Pointer variable mysteriously changes value, causing the
program to crash when the pointer is dereferenced

Debugging Memory Errors

Problem – the error may not manifest itself where
the bug actually occurs in your code

You stomp on memory at one point in your code,
the program crashes much later when you try to
access the stomped on memory

The key to debugging memory errors is in locating
where the bug actually is

Debugging Memory Errors

Step One: Get a hard symptom that you can identify
Hard crash
Some kind of test that shows when the error has
occurred
Must be reproducible

Debugging Memory Errors

Step Two: Pinpoint where the error manifests itself
Debugger stack trace
Trace statements

Debugging Memory Errors

Step Three: Shrink the test data
Incrementally delete test data to get it as small as
possible without eliminating the symptom

Debugging Memory Errors

Step Four: Shrink the Code
Incrementally comment out code to get it as small
as possible without eliminating the symptom
Make one change at a time, recompile, and run
Comment code until the symptom does not
manifest itself
Look at the code that was most recently
commented out

Debugging Memory Errors

Step Five: Determine exactly where the error was
caused

Tools for finding memory errors

Debugging versions of new/delete
VC++ demo

Static code analyzers
Compilers (e.g., g++ -Wall)
Commercial static analysis packages

Runtime memory analyzers
Valgrind demo
Debugger watchpoints

Homegrown tools

Memory Watcher

When you allocate memory and initialize it, make
copies of the memory's address and contents
At various points in your code, check to see if the
memory location still has its original value (if it
doesn't, somebody stomped on it)

class MemoryWatcher {
…

public:
void Watch(void * addr, int bytes);
void ReleaseWatch(void * addr);
void Check();

};

Memory Watcher example

MemoryWatcher mw;
…
int *i = new int(15);
mw.Watch(i, sizeof(int));
…
mw.Check();

Memory Allocation Tracker

An alternative method to the memory watcher is a
memory allocation tracker
Write a class that keeps track of all allocated memory
Notify MemoryTracker object whenever memory is
allocated or freed

class MemoryTracker {
…

public:
void Allocated(void * addr, int bytes, string where);
void Freed(void * addr, string where);
void PrintMemoryInfo();

};

Memory Allocation Tracker

When MemoryTracker::Freed is called
If the address was not allocated, generate an
error message
If the address was already deallocated, generate a
different error message

Memory Allocation Tracker
example
MemoryTracker mt;
…
int *i = new int(15);
mt.Allocated(i, sizeof(int), "Foo constructor");
…
delete i;
mt.Freed(i, "Foo destructor");
…
mt.PrintMemoryInfo();

Classes that contain Pointers

You should always provide the following:
Copy Constructor
Destructor
Operator =

Trees of Pointers

If you have a data structure that has pointers which
point to other pointers, which in turn point to other
pointers, etc. – how do you ensure that things get
deleted corrctly?

By using delete, the entire structure gets deleted
The parent destructor calls the children
destructors, etc.

What about DAGs?

Reference Counting

Oftentimes a single piece of data is pointed to by
multiple pointers
One problem is knowing when to delete the object,
and who should delete it.

The object must not be deleted until everyone
using the object is done with it.
If everyone is done with it and it doesn’t get
deleted, a memory leak occurs.

Reference Counting

One approach is “reference counting”
To reference count, we keep track of the number of
pointers that point to each object
To implement reference counting:

Whenever a new pointer to an object is created,
the reference count is incremented
Whenever a pointer to the object is released, the
counter is decremented
When the counter hits zero, the object is deleted

Reference Counting

Example:

MyObject * p = new MyObject();
// create a reference counted object
p->AddRef();
// increment the object's reference count

The object’s reference count is initialized to zero, then
the method AddRef increments it each time the pointer
to the object is copied.

Reference Counting
One problem – the system may make a copy of the pointer, e.g.,

void SomeFunction(MyObject * x) {
x->AddRef(); // the system copies the pointer

// x is used in the method
. . .

// as x is about to go out of scope, we
// need to decrement the reference count
// If the object's new reference count
// becomes zero, we delete the object.

if (x->ReleaseRef() == 0) {
delete x;

}
}

Reference Counting

Forcing the user to remember when objects are copied
by the system is too error prone
To avoid this, “Smart Pointers” can be used
A smart pointer is a C++ object that

stores a regular pointer to the reference counted
object
automatically keeps track of the number of
references to it
can be used like a normal C++ pointer

it overloads the C++pointer operators (e.g., *,
->, etc.).

	Memory Management
	Memory Management
	Malloc
	Malloc example
	Malloc example
	Malloc example
	Malloc example
	Malloc example
	Free
	Free example
	Free
	Allocating memory
	Freeing storage
	C++ Memory Management
	Debugging Memory Problems
	Memory Leaks
	Reasons for Memory Leaks
	Avoiding memory leaks
	Invalid Pointers
	Invalid Pointers
	Dangling Pointers
	Dangling Pointers
	Dangling Pointer example
	Dangling Pointer example
	Dangling Pointer example
	Dangling Pointer example
	Dangling Pointer example
	Out of Bounds Error
	Memory Error Symptoms
	Debugging Memory Errors
	Debugging Memory Errors
	Debugging Memory Errors
	Debugging Memory Errors
	Debugging Memory Errors
	Debugging Memory Errors
	Tools for finding memory errors
	Memory Watcher
	Memory Watcher example
	Memory Allocation Tracker
	Memory Allocation Tracker
	Memory Allocation Tracker example
	Classes that contain Pointers
	Trees of Pointers
	Reference Counting
	Reference Counting
	Reference Counting
	Reference Counting
	Reference Counting

