
Shared Libraries



Review: Static Libraries

A static library is just a bunch of .o files that are 
stored together in an archive file
Creating a static library

ar -rcs ../lib/libcs240utils.a *.o

libcs240utils.a

Always use lib at the front and .a at the end: 

Linking with a static library
g++ -o ../bin/crawler *.o ../lib/libcs240utils.a

OR
g++ -o ../bin/crawler *.o -L../lib -lcs240utils 



Review: Static Libraries
When you link the executable, the linker copies the 
code that it needs out of the static library into the 
executable file
The executable is stand-alone (it doesn't depend on 
any other files to run)

x.o

y.o

z.o

a.o

b.o

linker
b.o

x.o

z.o

a.o

executable

libcs240utils.a



Shared Libraries
A shared library is similar to a static library, except 
that the executable does not contain a copy of the 
library's code
When the program is run, the loader loads the 
executable file into memory and all of the shared 
library files that it depends on
The loader dynamically links in the shared library 
code at runtime
The executable file is not stand-alone because it 
won't run if the necessary shared libraries are 
missing
The same idea as DLLs on MS Windows



Shared Libraries

x.o

y.o

z.o

a.o

b.o

linker b.o

a.o

libcs240utils.so

executable

libcs240utils.so



Shared Libraries

b.o

x.o

y.o

z.o

libcs240utils.so

a.o

libcs240utils.so

executable

loader

The loader dynamically 
loads and links the executable
and the shared libraries that it
depends on

Running Program



Shared Libraries
Advantages

Saves disk space because every program doesn't have its 
own copy of the library code
Saves memory because all programs that rely on a shared 
library can share one copy of it in memory
Easier to upgrade the library's code; just replace the .so file 
and all programs automatically use the new code

Disadvantages
Executable files are no longer stand-alone
Program won't run if a shared library isn't there or can't be 
found
Upgrading shared libraries can break programs that relied on 
certain behaviors in the old version of the library



Shared Libraries
Creating a shared library

The library .o files must be compiled with the -fPIC option
g++ -c -fPIC *.cpp

PIC stands for "position independent code"
The shared library itself is created like this:
g++ -shared -o ../lib/libcs240utils.so *.o

libcs240utils.so
Always use lib at the front and .so at the end: 

Linking with a shared library (same as static library)
g++ -o ../bin/chess *.o ../lib/libcs240utils.so

OR
g++ -o ../bin/chess *.o -L../lib -lcs240utils

If you use -L and -l, the linker will look for both .a
and .so files (if both .a and .so exist, the linker 
seems to prefer the .so)



Shared Libraries
How does the loader go about finding shared library files 
at runtime?

The loader looks in certain directories for shared 
libraries (/lib, /usr/lib)
System administrators can modify the list of 
directories that are searched using a program named 
ldconfig

The LD_LIBRARY_PATH environment variable can be 
set to contain a list of directories that should be 
searched



Shared Libraries
Interactively

$ export LD_LIBRARY_PATH=/users/fred/lib:/users/fred/cs240/lib
$ ./chess

Shell Script

#!/bin/bash

export LD_LIBRARY_PATH=/users/fred/lib:/users/fred/cs240/lib
./chess


	Shared Libraries
	Review: Static Libraries
	Review: Static Libraries
	Shared Libraries
	Shared Libraries
	Shared Libraries
	Shared Libraries
	Shared Libraries
	Shared Libraries
	Shared Libraries

