
Polymorphism



2 Different Uses of Inheritance
Implementation Inheritance

Subclass inherits variables and methods from 
superclass
Code reuse

Interface Inheritance (a.k.a. "subtyping")
Establish an IS-A relationship between subclass 
and superclass
Lets you write code in terms of the superclass that 
can operate on instances of the subclasses

Polymorphism (many forms)



Polymorphism Example
Shape

Line Circle Rectangle

Draw()

void RedrawScreen(Shape * shapes[], int count) {
for (int x=0; x < count; ++x) {

shapes[x]->Draw();
}

}

void main() {
Shape * shapes[3];
shapes[0] = new Line(RED, 0, 0, 10, 10);
shapes[1] = new Circle(BLACK, 25, 25, 10);
shapes[2] = new Rectangle(BLUE, 10, 10, 50, 30);
RedrawScreen(shapes, 3);

}

Does this call Shape::Draw or the Draw 
method on the object's actual class?

It depends on how you write the Shape class! 



Static vs. Dynamic Inheritance
Let Super be the superclass and Sub be the subclass

Sub * sub = new Sub();
Super * super = sub;

Static Inheritance
sub->Method(); calls Sub::Method
super->Method(); calls Super::Method
The method that is called is determined at compile-time based 
on the type of the pointer variable

Dynamic Inheritance
sub->Method(); calls Sub::Method
super->Method(); also calls Sub::Method
The method that is called is determined at run-time based on 
the actual type of the object pointed to by the variable



Static vs. Dynamic Inheritance
Dynamic InheritanceStatic Inheritance

class Super {
public:

void Method() {
…

}
};

class Sub : public Super {
public:

void Method() {
…

}
};

class Super {
public:

virtual void Method() {
…

}
};

class Sub : public Super {
public:

virtual void Method() {
…

}
};

super->Method(); calls Sub::Methodsuper->Method(); calls Super::Method



Dynamic Inheritance Example
class Shape {
protected:

Color color;

public:
Shape(Color c) {

color = c;
}
~Shape() {

return;
}
Color GetColor() {

return color;
}
virtual void Draw() {

return;
}

};

class Line : public Shape {
protected:

int x1, y1, x2, y2;

public:
Line(Color c,

int _x1, int _y1,
int _x2, int _y2) : 
Shape(c)

{
x1 = _x1; y1 = _y1;
x2 = _x2; y2 = _y2;

}
~Line() {

return;
}
virtual void Draw() {

// CODE TO DRAW A LINE
// GOES HERE

}
}; 



Dynamic Inheritance Example
Shape * obj = new Line(RED, 0, 0, 10, 10);
assert(obj->GetColor() == RED);
obj->Draw();
delete obj; This calls Line::Draw

What about this?  Which destructor gets called here,
~Shape or ~Line?
It calls ~Shape because the destructors on Shape and
Line are not virtual

This calls Shape::GetColor

Is this a problem?

Yes.  If Line's destructor deallocates resources (e.g., memory),
this will result in a resource leak



Virtual Destructors
class Shape {
protected:

Color color;

public:
Shape(Color c) {

color = c;
}
virtual ~Shape() {

return;
}
Color GetColor() {

return color;
}
virtual void Draw() {

return;
}

};

class Line : public Shape {
protected:

int x1, y1, x2, y2;

public:
Line(Color c,

int _x1, int _y1,
int _x2, int _y2) :
Shape(c)

{
x1 = _x1; y1 = _y1;
x2 = _x2; y2 = _y2;

}
virtual ~Line() {

return;
}
virtual void Draw() {

// CODE TO DRAW A LINE
// GOES HERE

}
}; 



Virtual Destructors
Shape * obj = new Line(RED, 0, 0, 10, 10);
assert(obj->GetColor() == RED);
obj->Draw();
delete obj;

Now this will call ~Line instead of ~Shape



Pure Virtual Methods
class Shape {
protected:

Color color;

public:
Shape(Color c) {

color = c;
}
virtual ~Shape() {

return;
}
virtual void Draw() = 0;

};

Shape can't really implement a useful
Draw method, so we just make it pure
virtual

The superclass does not provide a default
implementation for a pure virtual method

Trying to call the superclass' 
implementation of a pure virtual method 
will crash the program
Shape::Draw();   // disaster

You can't make a destructor pure virtual
Why not?
Subclass destructors will always
call the superclass destructor, so the 
superclass needs to implement its destructor



Pure Virtual Methods

A class that has one or more pure virtual methods is 
called an abstract class
You can't create instances of an abstract class 
because it doesn't implement all of its methods
Abstract classes can only be used as superclasses
Example: Shape



Interfaces

A class that only contains pure virtual methods is 
called an interface class
Same as Java interfaces
Any subclass that inherits from an interface class and 
implements all of its methods is said to implement 
the interface
Instances of the subclass may be polymorphically
substituted anywhere an object of the interface type 
is expected



Interface Example: InputStream

+IsOpen() : bool
+Read() : int
+Close() : void

InputStream

+IsOpen() : bool
+Read() : int
+Close() : void

FileInputStream

+IsOpen() : bool
+Read() : int
+Close() : void

HTTPInputStream

class InputStream : public ObjectCount<InputStream> {
public:
virtual ~InputStream() {}
virtual bool IsOpen() = 0;
virtual int Read() = 0;
virtual void Close() = 0;

};



Interface Example: InputStream
class URLConnection : public ObjectCount<URLConnection> {
public:
static InputStream * Open(const string & url);

};

InputStream * URLConnection::Open(const string & url) {
if (StringUtil::IsPrefix(url, "file:")) {

return new FileInputStream(url);
}
else if (StringUtil::IsPrefix(url, "http://")) {

return new HTTPInputStream(url);
}
else {

throw InvalidURLException(url);
}

}



Interface Example: InputStream
void PrintStream(InputStream * s) {

int c = s->Read();
while (c != -1) {

cout << (char)c;
c = s->Read();

}
}

void main(int argc, char * argv[]) {
InputStream * doc = URLConnection::Open(argv[1]);
PrintStream(doc);
doc->Close();
delete doc;

}



Virtual Methods in Chess 

You are required to use virtual methods in your 
Chess Program to handle the differences between the 
various chess pieces
How would you do this?



Virtual Methods in Chess
class Piece : public ObjectCount<Piece> {
protected:
ChessColor color;
ChessDirection direction;

public:
Piece(ChessColor c, ChessDirection d) {

color = c;
direction = d;

}

virtual ~Piece() {}

ChessColor GetColor() {
return color;

}

virtual set<BoardPosition> 
GetCandidateMoves(Board * board, BoardPosition pos) = 0;

};



Virtual Methods in Chess
Piece

Pawn Rook Knight Bishop Queen King


	Polymorphism
	2 Different Uses of Inheritance
	Polymorphism Example
	Static vs. Dynamic Inheritance
	Static vs. Dynamic Inheritance
	Dynamic Inheritance Example
	Dynamic Inheritance Example
	Virtual Destructors
	Virtual Destructors
	Pure Virtual Methods
	Pure Virtual Methods
	Interfaces
	Interface Example: InputStream
	Interface Example: InputStream
	Interface Example: InputStream
	Virtual Methods in Chess
	Virtual Methods in Chess
	Virtual Methods in Chess

