
Memory Management (II)

Object Counting

"Object counting" is one technique for avoiding
memory leaks
When the program starts, initialize the object count
to zero
Every time an object is constructed, increment the
object count
Every time an object is destructed, decrement the
object count
Just before the program terminates, verify that the
object count is zero

int objectCount = 0;

class A {
public:

A() { ++objectCount; … }
~A() { --objectCount; … }
…

};

class B {
public:

B() { ++objectCount; … }
~B() { --objectCount; … }
…

};

void main() {
…
cout << "Object Count: " << objectCount << endl;

}

Object Counting

Object Counting
Adding code to manage the object count to every
class is tedious
It is convenient to put this code in a base class from
which other classes may inherit this functionality

class ObjectCount {
private:

static int creations;
static int deletions;

public:
ObjectCount() { ++creations; }
~ObjectCount() { ++deletions; }
static int GetCreations() { return creations; }
static int GetDeletions() { return deletions; }
static int GetObjectCount() { return creations-deletions; }
…

};

Object Counting#include "ObjectCount.h"

class A : public ObjectCount {
public:

A() { … }
~A() { … }
…

};

class B : public ObjectCount {
public:

B() { … }
~B() { … }
…

};

void main() {
…
cout << "Object Count: " <<

ObjectCount::GetObjectCount() <<
endl;

}

Object Counting

If the object count isn't zero at the end of the program,
how do we fix it?
To figure out where the leak is, we need to know what
kinds of objects aren't being freed
The ObjectCount class tells us that there's a memory
leak, but it doesn't help us figure out which objects are
being leaked

ObjectCount only keeps a single global counter
If there are dozens of classes in the program, how can
we determine the types of objects that are being
leaked?

Object Counting

In addition to the global counter, we can also keep
track of object counts on a per-class basis
If the global count indicates that there is a memory
leak, we can then query each class individually for its
object count
This tells us what kinds of objects are being leaked,
and gives us some clues about where the problem
might be
The ObjectCountBase and ObjectCount classes from
the CS240 Utilities provide global and per-class object
counts

#include "ObjectCount.h"

class A : public ObjectCount<A> {
Public:

A() { … }
~A() { … }
…

};

class B : public ObjectCount {
Public:

B() { … }
~B() { … }
…

};

void main() {
…
if (ObjectCountBase::GetGlobalObjectCount() != 0) {

cout << "A: " << ObjectCount<A>::GetClassObjectCount() << endl;
cout << "B: " << ObjectCount::GetClassObjectCount() << endl;

}
}

Object Counting
Utilities

Resource Management
Memory isn't the only kind of resource that must be
carefully managed
Other kinds of resources that can be allocated and
freed include:

Files
Network connections
GUI resources - windows, widgets, fonts, cursors, etc.
Database connections

These resources are allocated and freed using OS
system calls
Any of them can be leaked if they aren't properly
freed

Error Conditions & Resource Leaks
Resource leaks are especially likely when errors occur
Your code should ensure that dynamically-allocated
resources are ALWAYS freed, not just when
everything goes well

char * buffer = new char[data_size];
ifstream file("somefile");
if (!file) {

cout << "Could not open file" << endl;
return;

}
// read data into buffer
// process the data
delete [] buffer;

Error Conditions & Resource Leaks
Does this code have a potential resource leak?

char * buffer = new char[data_size];
DoSomething(buffer);
delete [] buffer;

Yes! If DoSomething throws an exception, buffer is
never deleted

How do we solve this type of problem in Java?
FileReader file;
try {

file = new FileReader("somefile");
DoSomething(file);

}
finally {

file.close();
}

Error Conditions & Resource Leaks
C++ doesn't have "finally", so how do we solve this
type of problem in C++?

Destructors
Whenever you dynamically allocate a resource, wrap
it in an object whose destructor frees the resource
Destructors are always called when an object goes
out of scope, even when a function "returns" or an
exception is thrown
class CharArrayDeallocator {
private:

char * array;
public:

CharArrayDeallocator(char * a) { array = a; }
~CharArrayDeallocator() { delete [] array; }

};

Error Conditions & Resource Leaks
char * buffer = new char[data_size];
CharArrayDeallocator cad(buffer);
ifstream file("somefile");
if (!file) {

cout << "Could not open file" << endl;
return;

}
// read data into buffer
// process data
//delete [] buffer;

char * buffer = new char[data_size];
CharArrayDeallocator cad(buffer);
DoSomething(buffer);
//delete [] buffer;

Error Conditions & Resource Leaks
This style of programming prevents resource leaks,
but it's a little awkward
The next step is to add methods to the wrapper class
so that all access to the resource is performed
through the object itself

int CountWords(const string & fileName) {
int count = 0;
string word;
ifstream file(fileName);
while (true) {

file >> word;
if (file) {

++count;
}
else {

return count;
}

}
}

Example: ifstream

File is automatically closed
by the ifstream destructor
(You don't have to call file.close,
but you can if you want to)

File is automatically opened
by the ifstream constructor

Smart Pointers
A common example of wrapping dynamically-
allocated resources in objects is "smart pointers"
Smart pointers are like regular pointers, except they
automatically delete the referenced object when they
go out of scope
void DoStuff() {

Widget * w = new Widget();
w->DoSomething();
w->DoSomethingElse();
cout << *w << endl;

}

Memory leak! We never deleted w, and our
only pointer to it has been lost

Smart Pointers
C++ provides a smart pointer class named auto_ptr
that helps us avoid this common programming error
#include <memory>
Use auto_ptr<Widget> instead of Widget *
#include <memory>
using namespace std;

void DoStuff() {
auto_ptr<Widget> w = new Widget();
w->DoSomething();
w->DoSomethingElse();
cout << *w << endl;

}

No memory leak. The smart pointer
automatically deletes the object when it goes
out of scope

Smart Pointers
Notice that we are able to use the -> and * operators
on our smart pointer, just like with regular pointers
void DoStuff() {

auto_ptr<Widget> w = new Widget();
w->DoSomething();
w->DoSomethingElse();
cout << *w << endl;

}

Why does this work?
The auto_ptr class overloads the -> and * operators

Smart Pointers
auto_ptr also has a copy constructor and operator =
void DoDifferentStuff() {

auto_ptr<Widget> w = new Widget();
auto_ptr<Widget> x = w;
auto_ptr<Widget> y;
y = x;
…

}

Why does this code work? Doesn't it try to delete the
same object three times?

No. The auto_ptr copy constructor and operator =
transfer ownership of the object from one auto_ptr to
another so that only one of them will delete it (w and
x are null by the time their destructors are called)

Reference Counting Utilities

auto_ptr is great, but it's only useful when there's
just one reference to an object
With reference counted objects, there can be many
references to an object
We want to delete a reference counted object only
when the last reference has gone away
The CS240 Utilities provide a smart pointer class that
works with reference counted objects

Reference Counting Utilities
To make a reference counted class, subclass the
Referencable base class
Referencable stores a reference count and provides
AddRef and ReleaseRef methods for managing the
reference count
#include "Referencable.h"

class Widget : public Referencable { … };

void DoStuff() {
Widget * w = new Widget();
w->AddRef();
w->DoSomething();
DoSomethingElse(w);
if (w->ReleaseRef() == 0) {

delete w;
}

}

Manually managing reference
counts is extremely error-prone

Reference Counting Utilities
Rather than managing reference counts manually,
use the Reference smart pointer class
#include "Referencable.h"
#include "Reference.h"

class Widget : public Referencable { … };

void DoStuff() {
Reference<Widget> w = new Widget();
w->DoSomething();
DoSomethingElse(w);

}
The Reference constructor
automtically calls AddRef

The Reference destructor
automtically calls ReleaseRef
and deletes the object if the
count becomes zero

	Memory Management (II)
	Object Counting
	Object Counting
	Object Counting
	Object Counting
	Object Counting
	Object Counting
	Object Counting Utilities
	Resource Management
	Error Conditions & Resource Leaks
	Error Conditions & Resource Leaks
	Error Conditions & Resource Leaks
	Error Conditions & Resource Leaks
	Error Conditions & Resource Leaks
	Smart Pointers
	Smart Pointers
	Smart Pointers
	Smart Pointers
	Reference Counting Utilities
	Reference Counting Utilities
	Reference Counting Utilities

