
Standard Template Library
(STL)



Standard Template Library

The STL is part of the standard C++ library
The STL contains many class and function templates 
that may be used to store, search, and perform 
algorithms on data structures
You should implement your own data structures and 
algorithms only if the ones provided in the STL do 
not suffice
The STL consists of:

Container classes (data structures)
Iterators
Algorithms



Containers
Sequence Containers - store sequences of values

ordinary C++ arrays
vector
deque
list

Associative Containers - use "keys" to access data rather than 
position (Account #, ID, SSN, …)

set
multiset
map
multimap

Container Adapters - specialized interfaces to general containers
stack
queue
priority_queue



Sequence Containers: C++ arrays

Fixed-size
Quick random access (by index number)
Slow to insert or delete in the middle
Size cannot be changed at runtime
Accessed using operator []



Sequence Containers: vector

Resizable array
#include <vector>
vector<string> vec;

Quick random access (by index number)
operator [], at, front, back

Slow to insert or delete in the middle
insert, erase

Quick to insert or delete at the end
push_back, pop_back

Other operations
size, empty, clear, …



Sequence Containers: deque
Like vector, but with quick insert and delete at both 
ends
Resizable array

#include <deque>
deque<string> dq;

Quick random access (by index number)
operator [], at, front, back

Slow to insert or delete in the middle
insert, erase

Quick to insert or delete at both ends
push_front, pop_front, push_back, pop_back

Other operations
size, empty, clear, …



Sequence Containers: list
Doubly-linked list

#include <list>
list<string> lst;

Quick to insert or delete at any location
insert, erase, push_front, pop_front, 
push_back, pop_back

Quick access at both ends
front, back

Slow random access
no operator [], traverse using iterator

Other operations
size, empty, clear
reverse, sort, unique, merge, splice, …



Associative Containers: set
Stores a set of values (i.e., "keys")
Values are unique (stored only once)
Implemented as a balanced binary search tree

#include <set>
set<string> s;

Fast insert and delete
insert, erase

Fast search
find

Other operations
size, empty, clear, …



Associative Containers: multiset
Stores a set of values (i.e., "keys")
Like set, but values need not be unique
Implemented as a balanced binary search tree

#include <set>

multiset<string> ms;

Fast insert and delete
insert, erase

Fast search
find

Other operations
size, empty, clear, …



Associative Containers: map
Stores a set of (key, value) pairs
Each key has one value
Implemented as a balanced binary search tree

#include <map>
map<string, int> m;

Fast insert and delete
m["fred"] = 99;
insert, erase

Fast search
int x = m["fred"];
find

Other operations
size, empty, clear, …



Associative Containers: multimap
Stores a set of (key, value) pairs
Like map, but each key can have multiple values
Implemented as a balanced binary search tree

#include <map>
multimap<string, int> mm;

Fast insert and delete
insert, erase

Fast search
find

Other operations
size, empty, clear



Associative Containers: sorting
STL associative containers are implemented internally 
using a balanced BST

Key classes stored in associative containers must 
implement
bool operator <(T other)

If they don’t, you can alternatively pass a 
comparator class to the template that it should 
use to order elements
A comparator class overrides
bool operator()(T a, T b)



Associative Containers: 
comparator example

set<Employee *> employees; // BST sorts based on pointer values
// (probably not what you want)

class EmployeeComparator {
public:

bool operator() (const Employee * a, const Employee * b) {
return (a->GetID() < b->GetID());

}
};

Set<Employee *, EmployeeComparator> employees;
// BST sorts based on employee IDs
// (much better!)



Container Adapters: stack

Provides stack interface to other containers
#include <stack>

stack<string> st;

Stack operations
push, pop, top
size, empty, …

Can be used with vector, deque, or list
stack<string> st; //uses a deque by default
stack< string, vector<string> > st;
stack< string, list<string> > st;

Extra space needed to avoid >>



Container Adapters: queue

Provides queue interface to other containers
#include <queue>

queue<string> q;

Queue operations
push, pop, top
size, empty, …

Can be used with deque or list
queue<string> q; //uses a deque by default
queue< string, list<string> > q;

Extra space needed to avoid >>



Container Adapters: priority_queue

Provides priority queue interface to other containers
#include <queue>

priority_queue<int> pq;

Priority queue operations
push, pop, top
size, empty, …

Can be used with deque or vector
priority_queue<int> pq; //uses a vector by default
priority_queue< int, deque<int> > pq;

Extra space needed to avoid >>



Iterators
We need a way to iterate over the values stored in a 
container
Iteration with C++ arrays:

const int SIZE = 10;
string names[SIZE];

for (int x=0; x < SIZE; ++x) {
cout << names[x] << endl;

}

OR

string * end = names + SIZE;
for (string * cur = names; cur < end; ++cur) {

cout << *cur << endl;
}



Iterators
How do you iterate over the values stored in an STL 
container?
For vectors and deques, you can iterate like this:
vector<string> names;

names.push_back("fred");
names.push_back("wilma");
names.push_back("barney");
names.push_back("betty");

for (int x=0; x < names.size(); ++x) {
cout << names[x] << endl;

}

This style of iteration doesn't work for the other 
container types



Iterators
STL's solution to the iteration problem is based on 
iterators
Iterators are pointer-like objects that that can be 
used to access the values in a container
All containers have a method named begin that 
returns an iterator object that points to the first value 
in the container
Iterator objects overload most of the pointer 
operators

++, -- move the next or previous container value
*, -> access the value pointed to by the iterator
==, != compare iterators for equality



Iterators
How do you know when you've reached the end of 
the container's values?
All containers have a method named end that returns 
a special iterator value that represents the end of the 
container (similar to a null pointer)
set<string> names;

names.insert("fred");
names.insert("wilma");
names.insert("barney");
names.insert("betty");

set<string>::iterator it;
for (it = names.begin(); it != names.end(); ++it) {

cout << *it << endl;
}



Iterators

In what order are the container's values returned by 
iterators?
For sequences there is a natural first to last order
For sets and maps the values are returned by doing 
an in-order traversal of the underlying binary search 
tree (i.e., the values are returned in sorted order)



Iterators
You can also traverse a container in reverse order 
using reverse iterators and the rbegin and rend
container methods

set<string> names;

names.insert("fred");
names.insert("wilma");
names.insert("barney");
names.insert("betty");

set<string>::reverse_iterator rit;
for (rit = names.rbegin(); rit != names.rend(); ++rit) {

cout << *rit << endl;
}



Algorithms
The STL provides many functions that can operate on 
any STL container
These functions are called algorithms
Some STL algorithms only work on certain containers
#include <algorithm>
vector<string> names;

names.push_back("fred");
names.push_back("wilma");
names.push_back("barney");
names.push_back("betty");

unique(names.begin(), names.end());
sort(names.begin(), names.end());

vector<string>::iterator it;
for (it = names.begin(); it != names.end(); ++it) {

cout << *it << endl;
}



Algorithms
class PrintFunc {
public:

void operator ()(const string & s) const {
cout << s << endl;

}
};

vector<string> names;

names.push_back("fred");
names.push_back("wilma");
names.push_back("barney");
names.push_back("betty");

unique(names.begin(), names.end());
sort(names.begin(), names.end());

PrintFunc print;
for_each(names.begin(), names.end(), print);



Writing Classes That Work 
with the STL

Classes that will be stored in STL containers should 
explicitly define the following:

default (no-arg) constructor
copy constructor
destructor
operator =
operator ==
operator <

Not all of these are always necessary, but it might be 
easier to define them than to figure out which ones 
you actually need
Many STL programming errors can be traced to 
omitting or improperly defining these methods



STL in Web Crawler

StopWords - set<string>
PageHistory - map<string, Page *>
PageQueue - queue<Page *>
WordIndex - map<string, set<Page *> >
HTML element attributes - map<string, string>



STL in Web Cloner

PageQueue - queue<Page *>
PageHistory - map<URL, Page *>
HTML element attributes - map<string, string>



STL in Chess

Board - vector< vector<Square> >
MoveHistory - stack<Move>
Piece::GetCandidateMoves - set<BoardPosition>
Game::GetLegalMoves - set<BoardPosition>
XML element attributes - map<string, string>


	Standard Template Library�(STL)
	Standard Template Library
	Containers
	Sequence Containers: C++ arrays
	Sequence Containers: vector
	Sequence Containers: deque
	Sequence Containers: list
	Associative Containers: set
	Associative Containers: multiset
	Associative Containers: map
	Associative Containers: multimap
	Associative Containers: sorting
	Associative Containers: comparator example
	Container Adapters: stack
	Container Adapters: queue
	Container Adapters: priority_queue
	Iterators
	Iterators
	Iterators
	Iterators
	Iterators
	Iterators
	Algorithms
	Algorithms
	Writing Classes That Work with the STL
	STL in Web Crawler
	STL in Web Cloner
	STL in Chess

