

Code Complete, Chapter 25, Code-Tuning Strategies

Improving performance
 check requirements (does it really have to be that fast?)
 program design (interactions between components)
 class and routine design (choosing good data structures & algorithms)
 faster hardware
 more efficient language (interpreted languages are slow)
 table on pg. 600 (pg. 15 in PDF)
 better compiler (turn on compiler’s optimizations)
 operating system interactions (too many system calls, which are slow)
 remove programming errors
 passing large objects by value
 leaving debugging code turned on (tracing, logging, etc.)
 leaving asserts turned on
 memory hierarchy
 registers
 cpu cache
 ram
 disk (virtual memory)
 remote computer

 avoid unnecessary I/O operations
 bring data into memory and operate on it there instead of
 manipulating it on disk or across a network
 locality of reference to avoid cache misses and virtual memory paging
 example on pg. 599 (pg. 14 in PDF)
 row-major order more efficient than column major order
 code tuning (not the most effective)

code optimizations usually make a program harder to read
 readability is very important
 don't optimize until you know where program is spending its time
 program spends 80% of its time in 20% of its code (Boehm)
 4% of the code accounts for 50% of the execution time (Knuth)
 on the other hand, you should avoid doing things that are unnecessarily
 inefficient (use good programming practices)

modular design allows only the critical parts to be optimized or replaced
without affecting other code

1. Good design
2. Make it work
3. Profile
4. Optimize critical pieces

always measure the effect of an optimization
 profilers
 optimization may actually harm performance

Run profiler on Web Cloner on rodham-server
-pg flag to compile AND link
run program to generate gmon.out
run gprof to print reports
 gprof –p bin/cloner gmon.out # print flat profile
 gprof –q bin/cloner gmon.out # print call graph

Code Complete, Chapter 26, Code-Tuning Techniques

Logic

 Stop when you know the answer
 example on pg. 611 (pg. 3 in PDF)

 Order tests by frequency
 example on pg. 612 (pg. 4/5 in PDF)

 Compare performance of similar logic structures
 switch vs. cascaded if-else
 timing table on pg. 614 (pg. 6 in PDF)

 Substitute table lookups for complicated expressions
 example on pg. 615 (pg. 7 in PDF)

 Use lazy evaluation
 Avoid doing work until the result of the work is needed
 If the result is never needed, the work is never done
 Example:
 A program uses a large table of values, but only a small
 fraction of the values are used in any given run.
 Rather than computing the entire table up front, just compute
 the entries that are actually needed dynamically

Loops

 Unswitching
 example on pg. 616 (pg. 9 in PDF)

 Combining Loops
 example on pg. 617/618 (pg. 10 in PDF)

 Unrolling
 example on pg. 618/619 (pg. 11 in PDF)
 single and double unroll

 Minimizing the work inside loops
 example on pg. 620 (pg. 13 in PDF)

 Sentinel Values
 example on pg. 621/622 (pg. 14/15 in PDF)

 Putting the busiest loop on the inside
 example on pg. 623 (pg. 16 in PDF)

 Before
 lcv init's cond check lcv increments
 outer 1 100 100
 inner 100 500 500

 After
 lcv init's cond check lcv increments
 outer 1 5 5
 inner 5 500 500

 Replace multiplications that depend on the loop index with addition
 example on pg. 624 (pg. 17 in PDF)

Data Transformations

 Use integers rather than floating-point numbers
 example on pg. 625 (pg. 18 in PDF)

 Use the fewest array dimensions possible
 example on pg. 625/626 (pg. 19 in PDF)

 Minimize array references
 array references take time (remember Manual Indexing for 2D arrays)
 example on pg. 626/627 (pg. 20 in PDF)

 Store sizes of variable-length data structures rather than computing on
 demand
 strings store length variable (as opposed to C-strings where length
 must be computed)
 data structures such as BSTs and hash tables store current number of
 elements

 Sort key indexes rather than complete objects
 when sorting arrays of large objects, moving large objects around is
 expensive, instead create an index array that contains (key,
 obj ref), and sort the index array instead
 this technique may allow an in-memory sort when objects are too
 large to store in memory

 Use caching
 store previously computed results and reuse when possible
 example on pg. 628/629 (pg. 21/22 in PDF)

Expressions

 Exploit algebraic identities
 not A and not B [3 operations]
 not (A or B) [2 operations]
 sqrt(x) < sqrt(y) <==> x < y
 timing table on pg. 630 (pg. 23 in PDF)

 Use strength reduction
 replace an expensive operation with a cheaper one
 show list of strength reductions on pg. 630 (pg. 24 in PDF)

 Initialize at compile time
 example on pg. 632 (pg. 26 in PDF)

 Be wary of system routines
 system routines provide lots of precision
 this makes them slow
 often the precision is unnecessary, and we can write less precise
 routines that are much faster
 example on pg. 633/634 (pg. 26/27 in PDF)

 Use the correct type of constants
 example on pg. 635 (pg. 28 in PDF)

 Precompute results
 example on pg. 636/637 (pg. 29/30 in PDF)

 Eliminate common subexpressions
 example on pg. 638/639 (pg. 32 in PDF)

Routines

 Inline routines
 inline functions in C++

 Recode in a lower-level language
 Java => C/C++
 C/C++ => Assembly
 example on pg. 641/642 (pg. 35/36 in PDF)

