
CS 240 Final Exam Review

Linux

I/O redirection
Pipelines
Standard commands

C++ Pointers
How to declare
How to use
Pointer arithmetic
new, delete
Memory leaks

C++ Parameter Passing
modes

value
pointer
reference

arrays
default: by pointer

structs/objects
default: by value

C++ Classes
how to write a complete class

Constructors
default
copy
others

Destructor
operator=
operator==
other operators
instance variables
public vs. private vs. protected

C++ Inheritance
Purposes of inheritance:

code reuse
polymorphism

Syntax used for inheritance
Method binding
Static vs. dynamic binding
Ordering of method calls

constructor
destructor
operator=
sub class, super class call ordering

C++ Polymorphism
what it is

subclass substitutable for superclass
how it works

subclass method gets called
how it is implemented

v-tables
what are v-tables
how do they get used
what overhead is associated with them

C++ Memory Management
C++ memory model

stack, heap, static data
what data goes on stack, heap, or static area?
heap layout
when to use stack vs. heap
reference counting
smart pointers
Mark-and-Sweep garbage collection
2D arrays on the heap (new [][], spine-with-ribs,
manual indexing)

C++ Multi-file projects
Header files (.h)
Implementation files (.cpp)
Source tree
Compiling/linking separate files
Phases

preprocess
compile
assemble
link

C++ Libraries
Static

Linker copies the code to the executable
Executable is stand-alone
ar -rcs ../lib/libcs240utils.a *.o

Dynamic
Loader loads the needed library files at run-time
Executable is not stand-alone
g++ -shared -o ../lib/libcs240utils.so *.o

Advantages and disadvantages?

C++ Miscellaneous
Operator overloading

Templates

STL
Containers
Iterators

Software Design
Managing complexity

divide-and-conquer
abstraction (create abstractions that model application
domain)
information hiding (hide implementation details)
minimize dependencies (between parts of the system)

Finding/creating abstractions
Classes are nouns, methods are verbs
Read the specification
Use cases

Software Design
Coupling

Level of dependency between classes

Cohesion
How closely related one class's or method's
responsibilities are

Layering
Used for organizing abstractions

Software Design
Data structure selection

Data abstraction
Information hiding
The right data structure for the application

Efficiency
Access time
Complexity
Implementation, debugging costs

Software Design
Class descriptions

What are the classes and their responsibilities?
What are the member variables and methods?

Runtime interactions between objects
How do the various objects collaborate at runtime
to achieve the program's function

Software Implementation
Code a little, test a little, code a little, test a little, ...

"big bang" doesn't work
The role of "unit testing"

Two main reasons for creating routines
1. top-down decomposition of algorithms
2. avoid code duplication

Choose good names for
classes
methods
variables
etc.

Software Implementation
Avoid long parameter lists

Properly initialize data

Principles of code layout
be consistent
use whitespace to enhance readability

blank lines between paragraphs, etc.
over-parenthesize expressions
avoid deep nesting

how? Create more routines
wrap long lines effectively
one statement per line

Code Example
void HandleStuff(CORP_DATA & inputRec, int crntQtr,

EMP_DATA empRec, float & estimRevenue, float ytdRevenue,
int screenX, int screenY, COLOR_TYPE & newColor,
COLOR_TYPE & prevColor, STATUS_TYPE & status,
int expenseType)

{
for (int i = 1; i <= 100; ++i) {

inputRec.revenue[i] = 0;
inputRec.expense[i] = corpExpense[crntQtr, i];
}

UpdateCorpDatabase(EmpRec);
estimRevenue = ytdRevenue * 4.0 / (float)crntQtr ;
newColor = prevColor;
status = Success;
if (expenseType == 1) {

for (int i = 1; i <= 12; ++i)
profit[i] = revenue[i] - expense.type1[i];
}

else if (expenseType == 2) {
profit[i] = revenue[i] - expense.type2[i];
}

else if (expenseType == 3)
{
profit[i] = revenue[i] - expense.type3[i];
}

}

Defensive Programming

Asserts
Check the correctness of the assumptions we are
making

Parameter checking
Make sure the parameters we are receiving are
“correct”

Error Handling

Return codes
Return error information in the method return
value

Error state
Store error information in an object’s state

Exceptions
try
throw
catch

Testing

Unit testing
module by module
designing test cases

line coverage
branch coverage
condition coverage

System testing

Debugging

Techniques for debugging:
Code reading
Tracing
Debuggers

Find point where bug is manifest
crash
bad data
etc.

Smallest possible input that will reproduce the bug
Process of elimination to home in on offending code

Memory Errors

Types of memory errors
Memory leak
Dangling pointer
Bounds error

Strategies for debugging memory errors
Memory tracker
Memory watcher
Valgrind-style tools

Tools

Preprocessor
Compiler
Linker
Debuggers
Make
Profilers

Code Tuning

Where to look for possible optimizations
Optimize after the implementation - not as you go
Find true bottlenecks
Sources of inefficiency

unnecessary I/O operations
paging
system calls
interpreted languages
errors

Code Optimizations

Logic
Stop when you know the answer
Order tests by frequency
Compare performance of similar logic structures
Substitute table lookups for complicated
expressions
Use lazy evaluation

Code Optimizations

Loops
Unswitching
Combining Loops
Unrolling
Minimizing the work inside loops
Sentinel Values
Putting the busiest loop on the inside
Replace multiplications that depend on the loop
index with addition

Code Optimizations

Data Transformations
Use integers rather than floating-point numbers
Use the fewest array dimensions possible
Minimize array references
Store sizes of variable-length data structures
rather than computing on demand
Sort key indexes rather than complete objects
Use caching

Code Optimizations

Expressions
Exploit algebraic identities
Use strength reduction
Initialize at compile time
Be wary of system routines
Use the correct type of constants
Precompute results
Eliminate common subexpressions

	CS 240 Final Exam Review
	Linux
	C++ Pointers
	C++ Parameter Passing
	C++ Classes
	C++ Inheritance
	C++ Polymorphism
	C++ Memory Management
	C++ Multi-file projects
	C++ Libraries
	C++ Miscellaneous
	Software Design
	Software Design
	Software Design
	Software Design
	Software Implementation
	Software Implementation
	Code Example
	Defensive Programming
	Error Handling
	Testing
	Debugging
	Memory Errors
	Tools
	Code Tuning
	Code Optimizations
	Code Optimizations
	Code Optimizations
	Code Optimizations

