
Review
 Nested objects:
 Initializing: member initializer list
 Construction: inside-out
 Destruction: outside-in
 Example:

class Circle {

private:
 Point center;
 int radius;
 string label;

public:
 Circle() : center(0, 0), radius(1), label("NONE") {
 return;
 }

 Circle(Point _center, int _radius, string _label) :
 center(_center), radius(_radius), label(_label) {

 return;
 }
};

Inheritance
 Two Uses:

1) Code Reuse
2) Polymorphism

Code Reuse
 Existing class provides functionality that we need in a new class
 Two techniques for reusing an existing class: 1) Composition 2) Inheritance
 Composition (a.k.a. Delegation)
 SalesTaxCalculator for U.S. zip codes (use in e-commerce web site)
 (Private) Inheritance
 Stack class (or ClassRoll class) could inherit from ArrayList class
 Composition requires code to instantiate delegate objects

Instead, we could inherit code from super-class without modification
May want to use private inheritance to hide subclassing relationship

 The existing class may do something similar to what we need, but not exactly.
In this case we can:

Override super-class methods in the subclass and make them behave differently
 Add processing before/after calling super-class method
 Totally replace super-class method in subclass (i.e., don’t call super-class
 method at all)
Add new functionality in the subclass (new methods and/or variables)

 Existing class does something similar to what you need, but not exactly
 Need a SalesTaxCalculator that handles U.S. and Canada
 You would like to modify the existing class to do what you need, but you might not have
 the source code, or you don’t want to risk of breaking existing clients of the class
 You could write a new SuperSalesTaxCalculator class that composes SalesTaxCalculator

 Or, you could extend the super-class by creating a subclass, overriding methods, adding
new variables/methods to extend the super-class

Polymorphism
 Super-class defines a concept with corresponding method interface
 Subclasses represent specializations of the super-class
 Printer (HP, Lexmark, Xerox, …)

Shape (Rectangle, Ellipse, Polygon, Curve, …)
 SUBTYPING
 Subclasses override super-class methods to implement subclass-specific behavior
 Printer::DrawText, Printer::DrawLine, Printer::DrawImage, …
 Subclass objects can be substituted for super-class objects without breaking the program
 (Liskov Substitution Principle)
 Subclass methods should be called when invoked through super-class pointer

Code Reuse Example
 BoundedStringStack example

Just like a class with nested objects has multiple parts, classes that inherit from other
classes also consist of multiple parts (A <- B <- C). C instances consist of three parts (A
part, B part, C part)

 Private vs. Public inheritance
 Construction order: top-down
 Destruction order: bottom-up
 While this example demonstrates reuse, it is not a good example of polymorphism
 (BoundedStringStack violates the Stack contract)
 Exam question example (what would this program print out?)

