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Abstract

In this paper we present a new parallel sorting algorithm which maximizes the overlap

between the disk� network� and CPU subsystems of a processing node� This algorithm is

shown to be of similar complexity to known e�cient sorting algorithms� The pipelining e�ect

exploited by our algorithm should lead to higher levels of performance on distributed memory

parallel processors� In order to achieve the best results using this strategy� the CPU� network

and disk operations must take comparable time� We suggest acceptable levels of system

balance for sorting machines and analyze the performance of the sorting algorithm as system

parameters vary�

� Introduction

Sorting is one of the most studied problems in computer science� It is also of great practical
importance because of the number of sorting operations that occur in database manipulations�
Many algorithms have been suggested that perform e�cient sorting on parallel computers� The
algorithm presented here maximizes the overlap between computations� communications and I	O
in distributed memory parallel processors� This overlap enables the algorithm to achieve speedup
values that would be unattainable with a non
overlapped version�
We will address the problem of sorting a data set of N tuples which is small enough to reside

in internal memory� but begins and ends on disk� We use the term Internal Sorting of External
Data �ISED� to refer to this problem� Initially� the data in the le to be sorted is distributed
throughout the local disks connected to the processing elements� This distributed memory�
distributed disk processor model has been suggested previously for high performance database
use ��� ���� At the conclusion of the algorithm� the sorted le will also be distributed in non

overlapping sorted runs on the processors� disks� We will assume a multicomputer model where
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each processor has a local disk� local memory and a network connection with other processors�
Most of the current generation of multicomputers have DMA controllers to transfer data between
processors and disk controllers� These controllers can perform the transfer of data from the disk
to memory without direct processor intervention� We will assume this model for our analysis�
Several approaches have been used to achieve parallel solutions to the sorting problem� Divide

and conquer or merge
based sorts begin with an equal number of elements distributed to each
of the processors� Each processor sorts its part of the total le and then each pair of processors
merge their sorted lists� This process continues until the nal processor performs a sequential
merge of two sorted halves of the le� The speedup attainable through this approach is limited
by the large �O�N�� sequential component of the algorithm in the nal merge �����
Partition
based sorts avoid the sequential merge by distributing the data in such a way that

each processor�s part of the data does not overlap with any other processor�s data� The per

formance of partition sorts is limited by how evenly the data is divided among the processors�
Our algorithm is similar to the quickmerge algorithm proposed by Quinn ���� and relies on the
statistical sampling theory presented in DeWitt ���� Our main contribution lies in the customiza

tion of the algorithm so that it overlaps communication� computation� and I	O� Our overlapped
sorting algorithm �OVS� holds a comparative advantage over non
overlapped algorithms in the
following areas�

� Because of the overlap between computation and I	O� OVS has the potential of nearly
doubling the speedup attainable on parallel machines�

� Interprocessor communication in the algorithm does not degrade the speedup of the algo

rithm because it occurs while other computations are being performed�

� The tra�c on the communication network is distributed throughout the run time of the
algorithm� OVS performs communications throughout the algorithm instead of having all
processors compete for the network at once�

In the rst phase of the OVS algorithm� all of the processors take a statistical sample of the
data contained on their local disk� They then sort the samples and determine splitting vectors
for their sample of the le� All of the processors then communicate to build a global splitting
vector to be used throughout the sort�
During the second phase� the processors divide the remainder of the le to be sorted into k

blocks� Each processor will perform three overlapping activities for iterations � � i � k�

� Initiate a read operation to retrieve the ith block of unsorted data�

� Start the DMA write of sorted subblocks from the sort in iteration �i��� to their destination
processors� Also start the DMA read of sorted subblocks from other processors�

� Sort the block of data from the �i � ��th disk read and merge sorted subblocks from the
�i� ��th iteration�

The disk read� network communication and computation steps are pipelined so that they can
occur at the same time� During the last phase of the algorithm� the sorted runs from each
iteration are merged and written to the disk�
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Through overlapping computations� communications and I	O� signicant improvements can be
made in the speedup attainable in sorting on parallel computers� The algorithm presented here is
tailored to exploit this concurrency while adding minimal additional computational complexity�
We review previous sorting algorithms which have contributed to this algorithm in Section ��
In Section � we present a formal description of the sorting algorithm� A complexity analysis
of the algorithm is performed in Section �� Section � compares this algorithm to other parallel
algorithms for varied levels of system balance�

� Related Research

Several articles ��� �� ��� and books ��� �� survey previous research in sorting algorithms� We will
not attempt to review all of the related work here� but will provide an overview of the sorting
algorithms which have contributed to this research and will compare them to the OVS algorithm�

��� Parallel Sorting by Regular Sampling �PSRS�

Parallel sorting by regular sampling ���� is a partition
based sort which has demonstrated good
speedup characteristics for the internal sorting problem� The regular sampling algorithm was
presented as an internal sorting algorithm but could be customized to perform internal sorting
of external data� Figure � shows the sequence of operations the algorithm performs to to sort N
keys on p processors�

�� During the rst phase of the algorithm each of the p processors sorts a contiguous list of
size N�p using sequential quicksort� From this list� p � � evenly spaced samples are taken
on each of the p processors� This sampling strategy insures that the number of records to
be merged by the processor with the most records will be no more than twice the average
number of records merged by a processor� Minimizing this data skew has been shown to be
extremely important in parallel database algorithms ��� ����

�� During the second phase� the p�p � �� samples are sorted and p � � evenly spaced pivots
are taken from the set of samples� Each processor then nds where each of the p� � pivots
divides its list using p� � binary searches� Each processor then sends a subset of the sorted
list to each of the other processors� using the p � � pivot values� Processor q will receive
sorted sublists with values between pivot q and q � ��

�� During the last phase of the algorithm� each processor merges the p�� sorted sublists� The
pivot values established in the second phase of the algorithm insure that the nal sorted
lists on each processor will be non
overlapping� Since the whole data set has been used to
come up with the pivot values� no processor will have more than �N�p elements to merge
in the nal phase of the algorithm�

The principle limitation of customizing the PSRS algorithm for internal sorting of external
data is that the sequential sort in phase one can not start until all of the N�p keys are available�
The customized algorithm would have to read all of the N records from disk before phase one
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could begin� This eliminates the opportunity for overlapping computation and disk I	O� An

other drawback of the PSRS algorithm in external sorting is that the network communication of
sorted sublists is concentrated at the end of phase two and cannot be overlapped with sorting
computations� The OVS algorithm to be presented in this paper eliminates these two barriers�

��� Probabilistic Splitting �PS�

The probabilistic splitting ��� algorithm is another partition
based algorithm which relies on a
probabilistic sample of the unsorted data to determine pivot values� Good load balance is crucial
to the performance of parallel sorting algorithms� PSRS insures a good balance by sampling the
entire data set� The PS algorithm relies on the premise that there is a high probability that a
much smaller number of samples can be used to achieve an equivalent level of load balance� The
PS algorithm has three phases�

�� The rst phase of the algorithm takes a sample of the data items on the local disk of the
processor� Instead of a simple random sample of size ps on a p processor system� a sample
consisting of p simple random samples of size s is taken� one from each processor� This
technique is known as �stratied random sampling� ����� Let �� for skew� denote the ratio
of the maximumnumber of records sorted by a processor over the average number of records
sorted by a processor� Then with N records to be sorted on p processors the maximum
number of records to be sorted by one processor is �N�p� Blelloch et al� ��� proved that if
s is the number of samples each processor takes from the data le� the probability Pr that
there will be more than �N�p records on any processor is given by�

Pr � Ne��������
��s��

Solving for the number of samples required for a condence level of �� � Pr��

s �
� ln�N�Pr�

��� ������

These samples are then sent to a central processor which sorts the samples and broadcasts
the resultant p� � pivot values to the other processors�

�� Once the pivot values are known� all processors read the records from their local disks and
put them into buckets corresponding to the processors that the records are destined for�
The PS algorithm is designed for external sorting� where the data to be sorted does not
t into memory� When memory is full of partitioned data� the processors redistribute the
records so that each key is at the appropriate destination processor�

�� Once the data has been distributed� the processors use a sequential sorting algorithm to
sort at most �N�p records which are then written to disk�

One of the main assumptions made by the PS algorithm is that there is no overlap between
I	O operations� CPU operations or network tra�c� The statistical sampling nature of the algo

rithm� however� makes it a good candidate for overlapped execution� A good overlapped sorting
algorithm will determine the pivot values as early as possible in the execution of the algorithm
so that network communications and I	O can be overlapped�
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��� Other Sampling Issues

Although the PS algorithm has many attractive properties� the bound on the number of samples
taken to build the pivot values is still too large to allow us to overlap I	O and sorting e�ectively�
Since the samples must be taken at random� they will all require a separate disk I	O� For a
��������� record le� the PS bound would suggest that we need ��� random samples to achieve
a ��� condence level that the skew would be less than ���� During a disk read operation� the
entire sector must be transferred from disk into memory before the data can be accessed� The
time required to read in a single record on a disk is about the same as that required to read a
whole sector� For common database parameters of � Kbyte sectors and ��� byte tuples ����� the
PS algorithm will read ��� of the records during the sampling phase for a �� processor system�
For �� processors� ��� of the le will have been read in the sampling phase� This strategy is
clearly not suited well to machines with large numbers of processors�
Page level stratied sampling �PLSS� has been suggested by Seshadri as a more e�cient

method of determining pivot values for a data set ����� By using all of the records in the disk
sector or �page�� equivalent condence levels in skew values can be obtained using fewer disk
I	O operations� Seshadri proves that using all of the keys in a sector as sample values will always
result in lower skew values than tuple level stratied sampling� He also derives a new bound on
the number of samples necessary to achieve a given skew� The number of samples required by
Seshadri�s bound is dependent on the number of processors and the size of the le to be sorted
and requires signicantly fewer samples for a given condence level� For these reasons we will
use page level stratied sampling with Seshadri�s bound to determine the pivot values for our
sorting algorithm�
The probability Pr that stratied sampling will result in pivot values with more than �N�p

records between pivots is given as ����

Pr � min�P�� P��

where

P� � p�s
�
p� a

p� �

�ps�s

�

P� � pA��N�p�
�
�� rN��N�p

�
��� � r�

and

r �
��N�p � ���N � �N�p � � � �ps� s��

��N�k � � � �s� ����N � �N�k � ��
�

A�m� is dened as

A�m� �

�
ks

s� �

��
ms���N �m�ks��s���

Nks

��
ks� �s� ��

N �m

�
�
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where nm is dened as the falling factorial� nm � n�n�������n�m��� with m a positive integer�
Tables � and � show the number of samples required for Seshadri�s bound as the number of
processors and the number of records in the le varies� The percentage of the le sampled was
calculated by assuming that each tuple was ��� bytes long and that the whole � Kbyte sector
was read for each sample� Using page level sampling� a good set of pivot values can be gathered
while performing a small percentage of the total I	Os required to read in the le�

��� External Sorting

Other researchers have attempted to overlap computations and disk accesses in external sorting
problems� A parallel le sorting algorithm has been implemented on the JASMIN hardware and
software system which utilizes input streams to pipeline I	O and computation phases ���� This
external sort is characteristic of other external sorting algorithms in that it utilizes a merge sort
in the nal phase of the algorithm� The performance for these algorithms is again limited by the
sequential merge of O�N� elements�

� Overlapped Sorting �OVS�

The overlapped sorting algorithm presented here is designed to maximize the overlap between
I	O� network and CPU functions� Our algorithm contains features from the PSRS and PS
algorithm along with signicant modications to enable overlap� An overview of the algorithm
is given in Figure ��

�� During the rst stage of the algorithm� the pivot values are determined by collecting a page
level stratied sample� Each processor reads s pages from the disk and sorts the samples�
The samples are sent to one processor which merges the ps elements and picks p� � evenly
spaced pivot values and broadcasts the pivot values to the rest of the processors�

�� During the second phase of OVS� each processor divides the unsorted data into k blocks and
for each iteration i� where � � i � k� the processors overlap the following three operations�

�a� Initiate a read of the ith �N�p��k records from the disk�

�b� Sort the block of data read in iteration i� � using sequential quicksort and merge the
p � � sorted subblocks received from the network in iteration i� ��

�c� Initiate p� � network sends of the data sorted in iteration i� � and initialize the DMA
hardware to receive the data sent by other processors�

Figure � illustrates the execution of the second phase of the OVS algorithm� A pipeline is
formed with data originating on disk being fed into the sort operation of the next iteration�
Sorted data is then output to the network stage of the pipeline� Records received from the
network are then merged to form one of k sorted sublists�

�� At the end of the second phase of the algorithm� each processor will have k sorted sublists
of maximum length �N

kp
� During the third phase� each processor will merge the k sorted
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Table �� Samples per processor for p � ��� � � ���� �� records per page� N varying �����
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sublists to create the nal sorted run� The sorted records can be written to disk as they are
merged so that CPU and I	O times can be overlapped�

� Complexity Analysis

In this section we will examine di�erences in the complexity between the PSRS algorithm and
the OVS algorithm� The number of iterations k used in the algorithm will be specied as a
function of other system parameters� We will also see that the number of computations in the
various phases of the OVS algorithm are within a constant of the corresponding phases in the
PSRS algorithm� Unit will be dened as the time necessary to perform a comparison between
two keys� We will denote Cs as the constant �in Units� for the sorting operation and Cm as
the constant for merging� Given similar complexity values� the OVS algorithm holds signicant
advantages� since it is able to overlap execution of various functions�

��� Sampling

The sampling phase of the OVS algorithm must be performed before the pipeline of the last two
phases can be started� During the sampling phase each processor will read s random records�
sort these records and send the s records to a single processor where they will be merged� Evenly
spaced pivot values will then be broadcast to all of the processors and phase � of the algorithm
will begin�
Parallel sorting is particularly attractive for large databases� For data sets with greater than

��������� tuples per processor the sampling phase of the OVS algorithm takes an insignicant
fraction of the total time for the algorithm� Table � shows the percentage of network� disk and
CPU time spent in the sampling phase of the algorithm for N � �� ���� ��� � p with a ���
condence level in a skew of ��� or less� For the networking gures we assumed that ps tuples
would have to pass through the bisectional bandwidth of the network during the sampling phase
compared to N records worst case during the whole algorithm� Bisectional bandwidth is dened
as the rate at which communication can take place between one half of a computer and the other
����� The percentage of disk time compares the number of tuples which were read in during
the sampling phase �assuming �� tuples per sector� with the total number of tuples� The CPU
column in Table � compares the sorting and merging time spent during the sampling phase to
the total computational time of the algorithm� For more than ���� processors a parallel merge
scheme would be more a more e�cient way to generate the sample� Table � shows that for large
databases� the time spent in the sampling phase of the OVS algorithm is small compared to the
rest of the algorithm� We will ignore it in our overall complexity analysis�

��� Disk I�O

The PSRS algorithm requires all data to be available in memory when the sort begins� In
applying PSRS to the problem of ISED we must extend the algorithm to include disk accesses�
The most e�cient way to read the records from the disk is to read them all in a single block
transfer� With Ds as the startup time �in Units� for a disk I	O and Dr as the number of Units
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necessary to transfer a single record from disk to memory� the time to read a single processor�s
share of the data le assuming contiguous records T PSRS

diskread � Ds � �N�p�Dr� Time values will
be specied in terms of the time necessary to perform a comparison between key values on the
given CPU in order to simplify other analysis�
The OVS algorithm performs k separate disk I	O operations to read in the data for an I	O

complexity of

TOVS
diskread � k

�
Ds �

N

kp
Dr

�

� kDs �
N

p
Dr

The OVS algorithm performs �k � �� more disk I	O startups than the PSRS algorithm during
the read phase� The writes to disk could be overlapped with either algorithm� resulting in time

TOV S
diskwrite � kDs �

�N

p
Dr

The total disk time for disk I	O with the overlap algorithm is

TOVS
disk � �kDs �

N��� ��

p
Dr

��� Sorting

The sorting phase of the PSRS algorithm requires average time

T PSRS
sort � Cs

N

p
log

�
N

p

�

to sort the N�p records on each processor� The OVS algorithm performs k sorts of length N
kp

for
average time complexity

TOVS
sort � kCs

N

kp
log

�
N

kp

�

� Cs
N

p
log

�
N

kp

�

We will simplify later calculations by noting that

TOVS
sort � Cs

N

p
log

�
N

p

�
when k � p

With a data distribution which produces O�n�� comparisons for quicksort�

T PSRS
sort � Cs

N�

p�

��



and

TOV S
sort � kCs

N�

�kp��
� Cs

N�

kp�
�

With either average or worst case data distribution� the number of computations in the OVS
sorting phase is less than or equal to that of the PSRS algorithm for positive integer values of k�

��� Network Transfers

In the worst case data distribution for sorting� the network time will be limited by the bisectional
bandwidth of the interconnection network� We will dene �s as the network message startup time
expressed in number of Units� �r is the inverse of the bisectional bandwidth of the interconnection
network� It will be measured in the number of Units necessary to transfer one record through
the bisectional bandwidth of a multicomputer� The time necessary for network transfers in the
PSRS algorithm is T PSRS

net � p�s �N��r�� The OVS algorithm takes

TOV S
net � k

�
p�s �

N

k
�r

�

� kp�s �N��r�

for �k � �� times more network startup times than are required for the PSRS algorithm� We
will show in later sections that the message startup time is not signicant when compared to the
transfer time in the sorting algorithm�

��	 Merging

In the merging phase for the the regular sampling algorithm� p sorted sublists of length N�p� are
merged using a heap merge algorithm to form a per
processor sorted segment of the data� The
regular sampling algorithm guarantees that the skew will be less than �� The merging complexity
is

T PSRS
merge � Cm

�N

p
log�p��

For each of the k iterations in phase two of the OVS algorithm� p subblocks of maximum
length �N

kp�
will be received over the network� At some point during the algorithm� kp of these

subblocks must be merged together to form a single sorted list of length no more than �N
p
� We

have considered three methods for performing this merge�

�� The approach used in the OVS algorithm consists of a merge of subblocks from each iteration
to form k sublists of length �N

kp
� The heap merge of each of these subblocks during phase

two of the algorithm will take time

T phase�
merge � kCm

�N

kp
log�p� � Cm

�N

p
log�p��

��



These k sublists are then merged to form a single sorted list during phase three� The
complexity of this nal stage is

T final
merge � Cm

�N

p
log�k��

The expected total time for this method

TOV S
merge � Cm

�
�N

p
log�p� �

�N

p
log�k�

�
�

As long as k � p the merge phase of the OVS and PSRS algorithms will both be of order
N log�p��

�� A second method for merging the subblocks is to keep a single� ever
growing sorted list which
contains all of the records received up to that point in the algorithm� For each iteration�
the algorithm merges the small subblocks using a heap merge algorithm and then merges
this combined list with the growing sorted list� This merging algorithm has complexity
kCm

�N
kp

log�p� for the small lists and Cm
�N
kp
�� � � � � � � � k� for the two way merge for a

total of

Cm

�
�N

p
log�p� �

k�k � ���N

kp

�
� Cm

�
�N

p
log�p� �

�k � ���N

p

�
�

With k a positive integer� method one has lower complexity since

�N

p
log�p� �

�N

kp
log�k� �

�N

p
log�p� �

�k � ���N

p
�

�� A third method for merging the subblocks is to merge the p sorted subblocks of length at
most �N

kp�
with the growing sorted list in a p�� way heap merge each iteration� This merging

algorithm has complexity Cmk�k ����N
kp

log�p� ��� Comparing the complexities of method
one and method three�

�N

p
log�p� �

�N

kp
log�k� � k

�N

p
log�p�

since log�p� � �
k
log�k� � k log�p� for all k � p� Again method � has lower complexity and

was chosen for the merging method in the OVS algorithm�

��
 Totals

Given the complexity for each phase of the OVS algorithm� we can now evaluate the overall
algorithm� The CPU time in phase two of the OVS algorithm is

T phase�
sort�merge � Cs

N

p
log

�
N

p

�
� Cm

�N

p
log�p�

��



assuming k � p using average case analysis� Combining the disk and network time with CPU
time

TOVS
phase� � max�TOV S

diskread� T
phase�
sort�merge� T

OVS
net �

� max

�
kDs �

N

p
Dr� Cs

N

p
log

�
N

p

�
� Cm

�N

p
log�p�� kp�s �N��r�

�
���

The total expected time for the OVS algorithm is

TOVS
total � TOV S

phase� �max
�
TOV S
diskwrite� T

final
merge

�

� max

�
kDs �

N

p
Dr� Cs

N

p
log

�
N

p

�
� Cm

�N

p
log�p�� kp�s �N��r�

�
�

max

�
�kDs �

�N

p
Dr��

�
Cm

�N

p
log�k�

��
� ���

In the asymptotic case with N � p the computational complexity of the sorting and merging
operations performed by the OVS algorithm is

TOVS
sort � TOVS

merge � Cs
N

p
log�

N

p
� � Cm

�
�N

p
log�p� �

�N

p
log�k�

�

� Cs
N

p
log�N�� Cs

N

p
log�p� � Cm

�N

p
log�kp�

� O

�
N

p
log�N�

�
�

which is optimal for the comparison based sorting problem ����

��� Selecting k

We can use pipeline theory ��� to determine the appropriate number of iterations �k� for phase
�� The disk read� sorting� network transfer and merging operations can be likened to four
instructions being executed by a CPU pipeline� The number of iterations can be likened to the
number of stages in the pipeline� We will use f�N� to denote the time necessary to complete the
sorting operation and will assume that the disk� network and merging operations take similar
time� The time to complete all four operations in terms of f�N� is

Tpipeline �

��	
�


�f�N� as k 	 �

�� � �k � ���f�N�
k

where � � k �

f�N� as k 	


� ���

Given the expression for pipeline time� we can develop the expected decrease in execution time
due to the increased number of iterations�
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T k��
pipeline � T k

pipeline

�� � k�f�N�
k��

�� � �k � ���f�N�
k

� T k
pipeline

k� � �k

k� � �k � �
���

Hence

T k
pipeline � T k��

pipeline � T k
pipeline � T k

pipeline

�
k� � �k

k� � �k � �

�

� T k
pipeline

�
� �

k� � �k

k� � �k � �

�
�

The system parameters must be somewhat balanced in order for the pipelining to have an
e�ect� If we assume that CPU time dominates during phase two of the OVS algorithm� we can
derive the optimal value for the number of iterations k�

Theorem ��� The optimal value for the number of iterations �k� for the OVS algorithm is

k �

����� �� �
vuut
� � �

Cs
N
p
log

�
N
p

�
� Cm

�N
p
log�p�

max�Ds� p�s�

� �

Proof�

We can see from Equation �� as the the number of iterations is increased by one� there
is an additional overhead of max�Ds� p�s� due to the added disk startup time and
network message startup time� As k becomes large� the time for the algorithm
will increase� Equation � shows that as k 	 �� the expected time also increases�
Hence the function is concave up� We will derive the value for k which produces the
minimum value for execution time� The optimal value for the number of iterations
occurs when the decrease in execution time due to the increased pipeline depth is
smaller that the additional overhead� This occurs when

TOV S
phase�

�
� �

k� � �k

k� � �k � �

�
� max�Ds� p�s�� ���

Setting the two sides of Equation � equal to each other� we can derive the near
optimal value for k given the other system parameters�

TOV S
phase�

�
� �

k� � �k

k� � �k � �

�
� max�Ds� p�s�
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Substituting CPU time for TOV S
phase���

Cs
N

p
log

�
N

p

�
� Cm

�N

p
log�p�

��
��

k� � �k

k� � �k � �

�
� max�Ds� p�s�

�
Cs

N

p
log

�
N

p

�
� Cm

�N

p
log�p�

�
��� � �k� � �k � ��max�Ds� p�s�

�k� � �k � �� � �

�
�Cs

N
p
log

�
N
p

�
� Cm

�N
p
log�p�

max�Ds� p�s�

�
A �

Using the quadratic equation

k �

����� �� �
vuut� � �

Cs
N
p
log�N

p
� � Cm

�N
p
log�p�

max�Ds� p�s�

� �

�

The following example shows how Theorem ��� can be used to calculate k� We will use
experimental results from a study of sorting on a SPARCstation �� With the system conguration
and GNU C compiler used in the testing we found that Cs � ��� and Cm � ��� CPU cycles�
With N � ���� ���� ���� p � ���� � � ����Ds � ���� and �s � �� instruction times� Theorem ���
would specify k � ���

We have shown that the OVS algorithm performs a similar number of disk� network and
CPU operations to the PSRS algorithm� If the subsystems of the target processing node are well
balanced� the overlapped sorting algorithm should be able to perform better than non
overlapped
sorting algorithms� In the next section we examine the e�ect of varying system parameters on
the performance of the OVS algorithm�

� System Balance

ISED sorting is a disk intensive problem� N records must be read and written to disk while
O�N log�N�� comparison operations are performed� Additionally� in the worst case� all N records
will have to pass through the bisectional bandwidth of the interconnection network� If the disk
and network are not well balanced with the processor speed� the time spent reading and writing
data will often dominate ����� There are few guidelines as to how well balanced the subsystems
should be in order to achieve acceptable performance� In this section we will suggest system
parameters which are well suited to the overlapped sorting algorithm� We will assume that
Cm � Cs in deriving expressions for system balance� These constants may di�er in practice
depending upon the machine architecture and compiler used�
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We have shown in our sampling analysis that the last two phases of the overlapped sorting
algorithm take the majority of the time for the algorithm� In phase two the disk� network and
CPU operations can be overlapped� The best system parameters for this phase of the algorithm
would have the time for each of these operations be equal or T phase�

sort�merge � TOVS
net � TOVS

diskread�
During the third phase of the algorithm� the disk and merging time should be equal for best
system utilization� i�e�� T phase�

merge � TOVS
diskwrite�

The conditions for phase two are satised when both the network and disk times are balanced
with the CPU time�

T phase�
sort�merge � TOVS

net

�
N

p
log

�
N

p

�
�
�N

p
log�p� � kp�s �N�r

and

T phase�
sort�merge � TOV S

diskread

�
N

p
log

�
N

p

�
�
�N

p
log�p� � kDs �

N

p
Dr�

If we make the assumption that the data set will be large enough so that there will be at least
��������� records for each processor� we can simplify these equations in order to examine system
balance�
The network time consists of time for starting up a message and time for the data to pass

through the bisectional bandwidth of the network� When N � �� ���� ���p� the startup time and
transfer time are equal if p�s �

N
k
�r �

���������p
k

�r� The message startup time does not dominate
the transfer time until �s �

���������
k

�r� Even with the high latency of TCP tra�c over ethernet
the ratio is closer to �s � �����r� Assuming that the bandwidth component of the network time
dominates� the network and CPU time for phase two are balanced when

T phase�
sort�merge � TOV S

net

�
N

p
log

�
N

kp

�
�
�N

p
log�p� � N�r

� �r �

N
p
log

�
N
kp

�
� �N

p
log�p�

N

�
�

p

�
log

�
N

kp

�
� � log�p�

�
�

The disk time can also be divided into startup and transfer time� Our disk startup time Ds

includes the seek time and operating system latency to start the transfer� With N � �� ���� ���p
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the disk startup time will not dominate the transfer time until Ds � ��� ���� ����k�Dr � For
fast SCSI disks with ��msec seek time and �MByte	sec transfer rate Ds � ��msec and Dr �

���Byte	�Mbytes	sec � ���sec� For this conguration Ds � �� ���Dr which is within our limit
of Ds � ��� ���Dr for k � �� ���� Assuming that the transfer time dominates the disk startup
time the disk and CPU time for phase two are balanced when

T phase�
sort�merge � TOV S

diskread

�
N

p
log

�
N

kp

�
�
�N

p
log�p� �

N

p
Dr

� Dr � log

�
N

kp

�
� � log�p��

Phase three of the algorithm overlaps disk and merging operations� This phase will achieve
maximum overlap when

T final
merge � TOVS

diskwrite

�
�N

p
log�k� �

�N

p
Dr

� Dr � log�k�

	�� Example

A concrete example will aid in understanding the optimal system balance� We have examined
the performance of quicksort on a SPARCstation �� We determined the Unit time by dividing
the elapsed time for a sort of internal data by the number of comparisons which were counted
during the sort� Using a Unit time of ���� microseconds� ��� processors� k � ��� � � ��� and
N � ���� ���� ���

�r �
�

p

�
log

�
N

kp

�
� �k log�p�

�

� ���� comparisons	tuple

Assuming a ��� byte tuple� the bisectional bandwidth would need to be approximately ��Mbytes	second�
This bandwidth can be achieved in many of the networks currently available on multicomputers�
Using the same assumptions

Dr � log�k�

� ��� comparisons	tuple

The disk bandwidth necessary for the algorithm to run e�ciently on a SPARCstation � is ���
Mbytes	second� Some current synchronous SCSI implementations have achieved higher band

widths than this� so this does not seem unreasonable�
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	�� Model

An analytical model was developed to show that the OVS algorithm is practical on existing
parallel machines� and to compare the OVS and PSRS algorithms on machines with varying
system parameters� A sort of random integer values was performed to determine the exact
number of comparisons which occurred for the OVS algorithm� Figure � shows the speedup
values predicted on ��� processors with a ����������� tuple data set and skew equal to ��� as the
network and disk speeds vary� The system parameters of several actual machine architectures
have been labeled to show the estimated performance of the OVS algorithm on actual machines�
All of the machine plots were made assuming SCSI disks on each node with a �Mbyte	sec transfer
speed� Figure � shows a close up view of the region of maximum speedup�
Several existing machines are examined to determine architectures where the OVS algorithm

is practical� The Intel Paragon is shown to be on the plateau of maximum performance� but it is
near the point where severe performance degradation would occur if network transmission time
was increased� The network on the Paragon was assumed to have ���Mbyte	sec links congured
in a mesh ���� The IBM SP� is plotted assuming a �Mbyte	sec omega network ����� The Meiko
CS
� has a logarithmic network where bisectional bandwidth increases linearly with the number
of processors� The Meiko plot assumes that each node has a ��Mbytes	second link ����� The
IBM SP� appears to have higher disk transmission times because of the faster CPU speed� Both
the network and disk axes are given in terms of the CPU speed� The ethernet plot in Figure �
pertains to a network of SPARCstation � workstations with SCSI disks connected with ethernet�
It is obvious that the network bisectional bandwidth must be signicantly increased before a
network of workstations can e�ciently execute the OVS algorithm�
The same sort was modeled using a modied External PSRS algorithm in order to compare

the algorithms� PSRS was modied to read data from disk at the beginning of the algorithm and
then to overlap writes to disk and the merging operation at the end of the algorithm� Figure �
compares the speedup results for the two algorithms� OVS is shown to have higher speedup values
on architectures with reasonable levels of system balance� The total number of comparisons for
the OVS algorithm was less than the PSRS algorithm ����� million compares vs ���� million
compares�� The lower number of comparisons� coupled with the increased level of overlap leads
to the more favorable speedup curve for the OVS algorithm�

Proper system balance is important to achieving acceptable speedup� Modeling algorithmic
behavior can help system designers to know what e�ect their design decisions will have on the
e�ciency of an algorithm family� The overlap sorting algorithm should perform well on a wide
variety of parallel systems�

� Conclusions

Many parallel sorting algorithms have been developed which give varying levels of performance
on parallel computers� Our overlapped sorting algorithm is more amenable to internal sorting
of external data than many existing algorithms because it allows computations� network com
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Number of Number of Percent of Percent of Percent of
Processors samples Network Time Disk read CPU Time

� �� ������ ����� �����
�� �� ������ ����� �����
�� �� ������ ����� �����
�� �� ������ ����� �����
��� �� ������ ����� �����
��� �� ������ ����� ������
��� �� ������ ����� �����
���� �� ������ ����� ������

Table �� Percentage of resources used during the sampling phase for N � ������� � p� � � ����
condence level � ���� �� records per page�
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Figure �� Predicted speedup results for sorting ��� million records with the OVS algorithm on
��� processors as disk and network speeds vary� The Disk and Network axis are given in number
of Units �comparison times� to transfer a ��� byte record� Skew is assumed to be ���� Points
are plotted for the Intel Paragon� IBM SP�� Meiko CS
� and a network of SPARCstation �
workstations connected by ethernet�
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Figure �� Closer view of the maximumspeedup plane from Figure �� The Disk and Network axis
are given in number of Units �comparison times� to transfer a ��� byte tuple� Skew is assumed
to be ���� Points are plotted for the Intel Paragon� IBM SP� and Meiko CS
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Figure �� Predicted speedup for sorting ��� million records on ��� processors with the PSRS and
OVS algorithms as disk and network speeds vary� The OVS algorithm holds a clear advantage
on systems where the network� disk� and CPU speeds are well balanced�
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munications and disk I	O to occur simultaneously� Overlapping the activities of these three
subsystems improves performance�
We have shown that the complexity of this algorithm compares favorably with other e�cient

parallel sorting algorithms and have developed a computational model for the execution time of
the new sorting algorithm� The overlapped sorting algorithm is sensitive to imbalance in system
parameters� we have analyzed how variance in these system parameters a�ects performance�
The overlapped sorting algorithm provides a new way of taking advantage of the parallel disk�

network and CPU subsystems on contemporary multicomputers�
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