

Questions:	Answers:				
1. If V denotes the set of symbols \{a, b, c, 0,1$\}$, then a) $\mathrm{V}^{0}=$ b) $\mathrm{V}^{2}=$ c) $\left\|V^{3}\right\|=$					
2. Give the language (each possible string) described by the following grammar. S is the start symbol. (Recall that a language is a subset of V^{*}, where V is the alphabet.) $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{a}\|\mathrm{aTb}\| \mathrm{aTbTc} \\ & \mathrm{~T} \rightarrow \mathrm{x}\|\mathrm{xy}\| \mathrm{xyz} \end{aligned}$					
3. Describe the language (in words) generated by each of the following grammars? a) $S \rightarrow 0 S 1 \mid \varepsilon$ b) $S \rightarrow S S\|1\| 0$					
4. Given the following grammar, generate four grammatically correct sentences. The start symbol is Sentence. Sentence \rightarrow SubjectPart VerbPart SubjectPart \rightarrow Article Noun Article \rightarrow a the \| an Noun \rightarrow monkey \| banana	tree	gorilla VerbPart \rightarrow Verb Object Verb \rightarrow ate \| climbed	licked	laughed Object \rightarrow NounPart NounPart \rightarrow Article Noun	

5. Give a grammar for the language Time of Day, which accepts strings such as:

12:36 pm 1:59 am 4:00 pm 2:45 am .
In general the language has strings with hour times from 1 to 12, followed by a colon, followed by minute times from 00 to 59 , and then either am or pm.
(Use BNF notation and give good mnemonic names for concepts such as <Time of Day>, which is to be the start symbol, and <Single Hour Digit> for digits that are hour digits, i.e., 1 through 9 but not 0.)
6. Letting <S> be the start symbol, convert the following grammar into a 4-tuple as defined below:

```
<S> ::= WC<S>
<S> ::= {<L>}
<S> ::= S;
<L> ::= <L><S>
<L> ::= &
```

A context-free grammar with epsilon G is a 4tuple:
$\mathrm{G}=\left(\mathrm{V}_{\mathrm{N}}, \mathrm{V}_{\mathrm{T}}, \mathrm{S}, \Phi\right)$, where:
$-\mathrm{V}_{\mathrm{N}}$ is a set of non-terminal symbols
$-V_{T}$ is a set of terminal symbols
$-\mathrm{S} \in \mathrm{V}_{\mathrm{N}}$ is a start symbol

- Φ is a finite set of relations from V_{N} to

$$
\left(\mathrm{V}_{\mathrm{T}} \cup \mathrm{~V}_{\mathrm{N}}\right)^{+} \cup\{\varepsilon\} .
$$

Consider the terminal symbols to be individual characters-not character sequences. The symbol ε is a meta-symbol denoting the empty sequence; it is not a terminal symbol.
7. Consider the following Grammar:

```
<S> ::= Wc<S>
<S> ::= {<L>}
<S> ::= s;
<L>::= <L><S>
<L>::= \varepsilon
```

Letting <S> be the start symbol, list all possible strings consisting only of terminals for productions that can be reached by applying:
a) 1 round of productions
b) 2 rounds of productions
c) 3 rounds of productions.

Do the same for $<\mathrm{L}>$, assuming that it is the start symbol.

A "round of productions" applied to a string s of terminal and non-terminal symbols is a set of strings of terminal and non-terminal symbols that can be reached by applying productions to all non-terminals in s. In subsequent rounds, start with all strings of terminals and non-terminals generated in the previous round.

To get you started, suppose we start with <L> and do two rounds.

Round: \#1 \#2

The answer for 1 round of productions for $<\mathrm{L}>$ is ε, and the answer for 2 rounds of productions is s ;. All other generated strings have one or more non-terminals in them and are therefore not "strings consisting only of terminals." Note that when we write strings of all terminals in our answer, we drop ε unless it stands alone.

