Questions:	Answers:													
1. Given the following grammar: ```<expr> ::= <term> \| <expr> <op1> <term> <term> ::= <darg>	<term> <op2> <darg> <darg> ::= <digit>	<darg> <digit> <digit> ::= 0	1	2	3	4	5	6	7	8	9 <op1> ::= +	- <op2> ::= *	/``` Extend this grammar to include the comparison operators, $=,<=,>=,<$, and $>$, which are all at the same level of precedence. Their precedence is below that of + and - . Your new grammar must also be unambiguous.	
2. Working from the grammar you extended in the previous problem, further extend the expression grammar to include parentheses and the unary minus sign. Your new grammar must also be unambiguous. Notes: (1) The unary minus has a higher precedence than the other operators; for instance, $-2^{*}-3$ is grouped $(-2)^{*}(-3)$. (2) As usual, parentheses dictate that parenthesized expressions execute first. (3) The unary minus applies to parenthesized expressions as well as to individual numbers. Thus, $-(2 * 3+4)$ is valid, as is $-2 * 3$. (4) Expressions like ---2 are also valid.														

3. Reduce the following grammar by crossing out rules that are "silly," "unproductive," or "unreachable" as defined in the class lecture notes. Label each crossed out rule appropriately with one of these three designations. The start symbol is S. S \rightarrow bS S \rightarrow ba S \rightarrow A S \rightarrow S A \rightarrow a A \rightarrow Bb B \rightarrow C B \rightarrow ba B \rightarrow aCC C \rightarrow aD C \rightarrow D D \rightarrow Df G \rightarrow Ha G \rightarrow a H \rightarrow Ga	

6. Give a parse table for the following grammar. (S is the start symbol.)	
1. $\mathrm{S} \rightarrow \mathrm{ABe}$	
2. A \rightarrow dB	
3. A \rightarrow aS	
4. $\mathrm{A} \rightarrow$ c	
5. \rightarrow AS	
6. \rightarrow b	

