.

Questions:	Answers:
1. Given	
P and $\forall \mathrm{x}(\mathrm{P} \Rightarrow \mathrm{Q}(\mathrm{x}))$	
prove $\forall \mathrm{xQ}(\mathrm{x})$	
Construct a formal derivation	
for your proof. As rules of	
inference, use universal	
instantiation (UI), universal generalization (UG), and modus ponens.	

2. If:
(1) Someone attends BYU and wants to kayak the Colorado River.
(2) Everyone who attends BYU wants to climb Mount Timpanogos.
(3) Everyone who wants to climb Mount Timpanogos and wants to kayak the Colorado River has an outdoor mindset.

Then: There is someone who both attends BYU and has an outdoor mindset.
(a) Using an appropriate quantifier, translate the second premise to predicate calculus. (The first and third premise and the conclusion are translated for you.)
(b) Prove that the If-Then statement holds. Appropriately use instantiation and generalization of quantifiers to remove and add quantifiers in your proof.
a)

Premise (1): $\exists \mathrm{x}(\operatorname{attendsBYU(x)} \wedge$ wantsToKayakColorado(x))
Premise (2):
Premise (3): $\forall \mathrm{x}($ wantsToClimbTimp(x) \wedge wantsToKayakColorado(x) \Rightarrow outdoorMindset(x))

Conclusion: $\exists \mathrm{x}(\mathrm{attendsBYU}(\mathrm{x}) \wedge$ outdoorMindset(x))
b)

```
3. Prove:
If (\existsx(ball(x)^
    passes("Stockton", x, y) =
    score(y)) ) ^\negscore(y)
then \existsx(\negball(x) v
    \negpasses("Stockton",
    x, "Malone").
```

Give a formal derivation for your proof and justify each step.

Note: The free variable y is implicitly universally quantified.
4. Let A and B be sets. Prove:

If $x \in A$ and $A \subseteq B$ then $x \in B$

Give a formal derivation for your proof. Use UI and modus ponens in your proof.

Note: The definition of subset (or equal) for sets A and B is: A $\subseteq B \equiv \forall x(x \in A \Rightarrow x \in B)$. Just like any equivalence law, we can always use this (and any other definition) as a derivation rule. We usually justify this type of law by saying "by definition."

5. Prove:

$$
\begin{aligned}
& \text { if } P(x) \vee Q(y) \Rightarrow R(x, y) \text { and } \\
& \quad \neg P(z) \Rightarrow Q(w)
\end{aligned}
$$

then $\mathrm{R}(1, \mathrm{x})$.
Use unification in your proof.

