Questions:	Answers:
1. Given the universal set	
$\begin{aligned} U= & \{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, 1,2,3,4,5,6, \\ & 7,8,9\} \end{aligned}$	
$\begin{aligned} & \text { let } A=\{a, b\}, B=\{a, c, 2,4,6\} \text {, } \\ & C=\{1,2,3,4\} \text { and } D=\varnothing \end{aligned}$	

Evaluate each expression:
a) $|\mathrm{D}|$
b) $\mathrm{D} \in \mathrm{A}$
c) \bar{B}
d) $A \cap B$
e) $(U-B) \cup C$
f) $\mathrm{C} \subseteq \mathrm{B}$
2. Prove: $\mathrm{A} \cap \mathrm{A}=\mathrm{A}$

Use the definition of \cap. Justify each step in your proof.
(Hint: convert left side to right side.)
3. Prove: $(A-B) \cap C \subseteq A \cap C$

Use the definitions of set difference, intersection, and subset. Justify each step in your proof.
(Hint: turn the problem into an implication and do a deductive proof.)
4. Show that we cannot prove:
if $\mathrm{A} \cup \mathrm{B}=\mathrm{A} \cup \mathrm{C}$, then $\mathrm{B}=\mathrm{C}$.
To show that something cannot be proved, you should always give any one counter example -preferably the simplest one you can find. This shows that the statement cannot be a tautology because there is at least one case for which the statement to be proved is false. A counter example must satisfy all the premises and violate the conclusion (i.e. for the implication to be proved, $\mathrm{P} \Rightarrow \mathrm{Q}, \mathrm{P}$ must be true and Q must be false).
5. Using set laws, reduce:
$(A \cap B) \cup(A \cap \sim B)$ to A
Justify each transformation with one or more laws
6. Using set laws, reduce:
$((\mathrm{A} \cup \mathrm{B}) \cap(U \cup \sim \mathrm{~B})) \cup$
$(\sim B \cup(B \cap \sim C) \cup C)$
to U (the universe of all elements).

Justify each transformation with one or more laws.
7. Given the universal set:
$U=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, 1,2,3,4,5,6$, $7,8,9\}$
let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}\}, \mathrm{B}=\{\mathrm{a}, \mathrm{c}, 2,4,6\}$, $C=\{1,2,3,4\}$ and $D=\varnothing$.

Evaluate each expression:
a) $\mathrm{A} \times \mathrm{B}$
b) the relation on $\mathrm{A} \times \mathrm{C}$ in which
the second element of the ordered pairs is larger than 3.
c) $|\mathrm{A} \times \mathrm{B} \times \mathrm{C}|$
d) $\mathrm{C} \times \mathrm{D} \subseteq \mathrm{A} \times \mathrm{B}$

