Questions:	Answers:
1. Given the universal set	
U = {a, b, c, d, e, f, 1, 2, 3, 4, 5, 6, 7, 8, 9}	
let A = {a, b}, B = {a, c, 2, 4, 6}, C = {1, 2, 3, 4} and D = \emptyset .	
Evaluate each expression:	
a) D	
b) $D \in A$	
c) B	
d) $A \cap B$	
e) $(U - B) \cup C$	
f) C \subseteq B	
2. Prove: $A \cap A = A$	
Use the definition of \cap . Justify each step in your proof.	
(Hint: convert left side to right side.)	

Name

Sec

3. Prove: $(A - B) \cap C \subseteq A \cap C$	
Use the definitions of set difference, intersection, and subset. Justify each step in your proof.	
(Hint: turn the problem into an implication and do a deductive proof.)	
4. Show that we cannot prove:	
if $A \cup B = A \cup C$, then $B = C$.	
To show that something cannot be proved, you should always give any one counter example —preferably the simplest one you can find. This shows that the statement cannot be a tautology because there is at least one case for which the statement to be proved is false. A counter example must satisfy all the premises and violate the conclusion (i.e. for the implication to be proved, $P \Rightarrow Q$, P must be true and Q must be false).	
5. Using set laws, reduce:	
$(A \cap B) \cup (A \cap \sim B)$ to A	
Justify each transformation with one or more laws	

6. Using set laws, reduce:	
$((\mathbf{A} \cup \mathbf{B}) \cap (U \cup \sim \mathbf{B})) \cup (\sim \mathbf{B} \cup (\mathbf{B} \cap \sim \mathbf{C}) \cup \mathbf{C})$	
to <i>U</i> (the universe of all elements).	
Justify each transformation with one or more laws.	
7. Given the universal set:	
U = {a, b, c, d, e, f, 1, 2, 3, 4, 5, 6, 7, 8, 9}	
let A = {a,b}, B={a,c,2,4,6}, C= {1,2,3,4} and D=Ø.	
Evaluate each expression:	
a) A× B	
b) the relation on $A \times C$ in which the second element of the ordered pairs is larger than 3.	

c) $ A \times B \times C $ d) $C \times D \subseteq A \times B$
d) $C \times D \subseteq A \times B$