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Abstract— Proficiency self-assessment (PSA), which is the
ability to estimate how likely one can complete a task, is a
beneficial property for autonomous robots. Prior work devel-
oped the assumption-alignment tracking (AAT) method for PSA,
which estimates the probability that a robot will successfully
complete a task. This paper refers to the prediction made by
AAT as the first-level assessment (FLA), and further proposes a
second-level assessment (SLA) that determines whether the FLA
prediction is correct. The probability that the FLA prediction
is correct is conditioned on four features: (1) the mean distance
from a test sample to its nearest neighbors in the training
set; (2) the predicted probability of success made by the FLA;
(3) the ratio between the robot’s current performance and
its performance standard; and (4) the percentage of the task
the robot has already completed. The SLA model is trained
on the four features using a Random Forest algorithm. It is
evaluated by two metrics: discriminability, measured by the
area under the ROC curve, and calibration, measured using
expected calibration error. On a simulated navigation task and
a manipulation task by a Sawyer robot, results demonstrate
that the SLA model not only calibrates the FLA model as well
as existing calibration methods (Platt calibration and isotonic
regression), but also produces very high discriminability even
if the FLA model’s original discriminability is much lower.
Results also indicate the usefulness of each of the four features
used by the SLA model.

I. INTRODUCTION

Proficiency self-assessment (PSA), “the ability to detect
or predict success (or failure) towards a goal in a particular
environment given an agent’s sensors, computational rea-
soning resources, and effectors” [1], is a beneficial property
for safe, collaborative autonomous robot systems [2], [3].
Prior work [4], [5] presented an approach to PSA based on
assumption-alignment tracking (AAT). AAT assesses robot
proficiency using the alignment between the robot’s gen-
erators (decision-making algorithms) and the environment,
its hardware, and tasks. Alignment is determined by track-
ing the veracity of the assumptions made when designing
robot’s generators using generator-specific functions called
assumption checkers. In [4], [5], a k-nearest neighbor model
was trained on AAT data to estimate the distribution of the
robot’s task performance. Task performance was compared to
a performance standard to predict success probability, which
was then compared to various thresholds to predict a trial’s
outcome (success/failure).

This paper refers to assessing success/failure as the first-
level assessment (FLA) and addresses a second-level assess-
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Fig. 1: Schematic of first- and second-level assessments.
(a) Veracity assessment by assumption-alignment tracking.
(b) Mean distance from the test sample to its nearest neigh-
bors in the training set for the FLA model. (c) Predicted
probability of the outcome predicted by the FLA model.
(d) Ratio between the robot’s current performance and its
performance standard. (e) Percentage of the task the robot
has completed. (f) Combined features for the SLA model.

ment (SLA) concerning whether the FLA result is correct
(the predicted outcome of FLA matches the actual outcome).
The relationship between FLA and SLA is illustrated in
Fig. 1. The probability that the predicted outcome of FLA
matches the actual outcome is conditioned on four features:
(1) the mean of the distances from the test sample to its
nearest neighbors in the training data of the FLA model;
(2) the predicted probability of the predicted outcome of
FLA; (3) the ratio between the robot’s current performance
and its performance standard; and (4) the percentage of the
task the robot has already completed. We show that each
feature is needed to train the SLA model.

In [5], only discriminability between successful and un-
successful trials, measured by the area under the ROC
curve (AUC-ROC), was used to evaluate the FLA model.
However, a model with perfect discriminability can still be
poorly calibrated (e.g. neural network overconfidence [6],
[7]), which can lead to bad decision-making. This paper
additionally measures the calibration of PSA models, or
the difference between predicted and actual probabilities,
using the metric of expected calibration error (ECE, see [8],
[9], for example). Based on data from a simulated robot
navigating a maze [4] and a real-world Sawyer robot [10]
manipulating blocks, we demonstrate that a machine-learned
binary classifier trained on the above-mentioned four features
using the Random Forest (RF) algorithm [11] works well



as the SLA model. This model estimates how well FLA
outcomes match actual outcomes. We demonstrate that the
SLA model not only calibrates the FLA model as well as ex-
isting calibration methods (Platt calibration [12] and isotonic
regression [13]), but also produces high discriminability even
if the FLA model’s discriminability is much lower.

This paper makes three contributions. First, a second-
level assessment of proficiency is proposed and shown to
improve the discriminability and calibration of AAT-based
FLA models. Second, the usefulness of the four features
used by the SLA model is investigated. Finally, the paper
proposes that the AUC-ROC and ECE metrics can be used
together to more comprehensively evaluate PSA models.

II. RELATED WORK

This paper focuses on a common problem in machine
learning known as model calibration, which aims to reduce
the difference between predicted probabilities by learning al-
gorithms and true posterior probabilities [14]. The traditional
approach to model calibration is to directly post-process
the predicted probabilities [9], [15] using algorithms such
as Platt calibration [12], histogram binning [16], isotonic
regression [13], and Bayesian Binning into Quantiles [8].

There have also been calibration methods for deep neural
networks. Thulasidasan et al. [6] demonstrated that neural
networks trained by so-called mixup training [17] were
better calibrated. Various loss functions were evaluated,
including accuracy versus uncertainty calibration loss [18],
focal loss [19], and correctness ranking loss [20]. Novel
classifier network architectures were proposed in [21], [22]
that allowed networks to estimate confidence for failure/out-
of-distribution predictions.

Another related topic is uncertainty estimation aiming to
provide probability distributions for neural network predic-
tions [23]. Bayesian approaches to uncertainty estimation
represent a network’s weights, inputs, or activations [23]–
[26] as parametric probability distributions, and propagate
uncertainty through the network. By contrast, sampling-
based approaches to uncertainty estimation often use an en-
semble of networks, with each network trained with random
initialization of weights, random shuffling of training data,
or by keeping dropout at test time [27]–[29]. Some methods
combine both Bayesian and sampling-based approaches [30].

The proposed SLA is inspired by the problem considered
in [31], which asks if one can predict whether a trained
classifier will make an error on a particular test sample or
not. The predicted outcome probability feature for training
SLA models serves as a good baseline for predicting model
correctness/incorrectness in [31]. The mean distance feature
is used to indicate out-of-distribution samples in [32]. The
performance ratio and task completion percentage features
relate to mission progress, which is an important metric for
measuring robot performance [33]. Their implementations
involve computing the ratio between a part and a whole,
which is similar to [34] where the ratio between the number
of successful tasks and the total number of tasks is used to
indicate mission progress.

III. METHODOLOGY AND FORMALISM

This section first formalizes the FLA and SLA problems.
It then identifies approaches to solve these problems.

A. Assumption-Alignment Tracking

In AAT [5], system designers identify the assumptions
made by the robot’s decision-making algorithms (generators)
and create generator-specific functions, or assumption check-
ers, to track the veracity of these assumptions over time.
Formally, suppose there are m assumptions on which the
robot’s generators rely and that each assumption has one
veracity checker. Let v(t) = [v1(t), . . . , vm(t)] denote the
veracity assessment vector of the m checkers at time t. The
time series of v(t) generated in a single trial can be used to
predict the robot’s proficiency in the trial.

Suppose that the robot has a goal that requires it to achieve
a specific state. Let T denote the time at which a robot
trial ends, which occurs if either the goal is accomplished
or a time deadline is reached. Let J t denote the robot’s
performance metric at time t ≤ T , which represents the
cost accrued while the robot is pursuing its goal so that high
performance means low cost. Suppose that JT is the sum
of the cost accrued up to time t and the cost accrued from
time t through time T , yielding JT = J t + J t−T .

AAT estimates performance by producing a probability
distribution over the final performance. Because J is additive,
the estimate of the final performance based on the veracity
assessment vector at time t, denoted by ĴT

(
v(t)

)
, is:

ĴT
(
v(t)

)
= Ĵ t + Ĵ t−T

(
v(t)

)
where Ĵ t is the estimated performance so far on the mission
up to time t, and Ĵ t−T

(
v(t)

)
is the performance predicted in

the future based on the v(t). Ĵ t is usually easy to measure,
so AAT focuses on the prediction of Ĵ t−T

(
v(t)

)
.

In AAT, predicted future performance Ĵ t−T (·) is obtained
from two parts: the purported performance J

t−T
and a

scaling coefficient η. The purported performance is the
robot’s expected performance under normal circumstances
and is computed by the robot’s planner assuming that all
the generators’ assumptions hold. The scaling coefficient η
encodes how purported performance is likely to change as
assumptions are violated, and is expressed by the function
η
(
v(t)

)
. AAT estimates the final performance as

ĴT
(
v(t)

)
= Ĵ t + J

t−T · η
(
v(t)

)
. (1)

In [5], a training set X = {(vi, ηi)}, where i represents
a sample index, was collected to train a k-nearest neighbor
(kNN) model to provide a probability distribution over η for
any given v, which further yields a probability distribution
over ĴT

(
v(t)

)
applying Eq. (1), denoted by P

(
ĴT (v)

)
.

B. First-Level Assessment

The first level of assessment uses the distribution of the
performance estimate P

(
ĴT (v)

)
to predict whether the robot

succeeds or not by comparing the estimated performance
ĴT (v) to a subjectively defined performance standard.



Let Jθ denote the performance standard. Let o ∈
{success, failure} denote the actual success or failure of
a trial, which depends on whether the robot’s performance
(cost) is below Jθ or not. Define fFLA as the probability of
o being success given a veracity assessment vector:

fFLA(v) = P (o = success|v) = P
(
ĴT (v) ≤ Jθ

)
. (2)

In other words, fFLA encodes how well the predicted per-
formance compares to a performance bound.

fFLA is used to create a classifier that predicts the success
or failure of a robot trial, ô, given by

ô =

{
success if fFLA(v) > 0.5
failure otherwise . (3)

The next section introduces the second-level assessment
concerning whether ô matches o or not.

C. Second-Level Assessment

Inspired by the benefits from several fields of meta-
analysis [35], meta-research [36], and meta-assessment [37],
we hypothesize that meta-PSA can be used to improve PSA
models. To this end, this paper proposes a second-level
assessment (SLA) that determines whether the predicted out-
come from FLA matches the actual outcome. This second-
level assessment function fSLA is based on the following
four features: (1) the mean distance, d, from the test sample
to its nearest neighbors in the training data of the FLA model;
(2) the probability of the predicted outcome, λ, of FLA;
(3) the ratio, ω, between the robot’s current performance
and its performance standard; and (4) the percentage, ϵ, of
the task the robot has already completed.

The four SLA model features {d, λ, ω, ϵ} are based on
the following intuitions: (1) Smaller d indicates that there
are more similar prior experiences and therefore the FLA
prediction should be more accurate. (2) Higher λ indicates
that the FLA prediction is more certain and therefore should
be more accurate. (3) Higher ω and ϵ indicate there is less
randomness in the robot’s task and PSA and therefore the
FLA prediction should be more accurate.

These four features are computed using two sources of
data. First, recall that X = {(vi, ηi)} denotes the train-
ing data for fFLA. Second, collect a new data set Y =
{(vi, oi, ôi)} where ôi is computed by Eq. (3) using fFLA.
The four features are described as follows.

Mean Distance (d). Let d denote the mean Euclidean
distance from veracity assessment vector v ∈ Y to its nearest
neighbors in X . Mean distance is useful because AAT data
from different conditions tend to form distinct clusters [38].

Predicted Outcome Probability (λ). Given a predicted
outcome ô ∈ Y , let λ = max{fFLA(v), 1 − fFLA(v)}.
Since 1 − fFLA(v) represents the probability of predicting
failure, λ represents the probability of the outcome chosen
by the classifier. Predicted outcome probability uses the PSA
implementation from prior work on AAT [4], [5].

Performance Ratio (ω). Given a veracity assessment
vector at time t, let ω = Ĵt

ĴT
denote the ratio of the robot’s

current estimated performance (at time t) and its predicted

final performance (at time T ). Performance ratio uses the
PSA implementation from prior work on AAT [4], [5].

Completion Percentage (ϵ). Heuristics for computing the
completion percentage, denoted by ϵ, for the two case studies
are explained in Sec. V-A. Task completion percentage
requires an estimate of task progress.

Let c ∈ {correct, incorrect} denote whether the predicted
outcome from Eq. (3) is correct or not. That is,

c =

{
correct if o = ô
incorrect otherwise .

Define the SLA function fSLA as the probability of c being
correct given (d, λ, ω, ϵ),

fSLA(d, λ, ω, ϵ) = P (c = correct|d, λ, ω, ϵ). (4)

Let Y = {(di, λi, ωi, ϵi, ci)} denote the training data used
to learn a model for estimating fSLA, where the index i
denotes a specific training sample. Each (d, λ, ω, ϵ) is a
feature vector while each c is the corresponding training
target. Note that Y is produced by combining fFLA and
Y . This paper considers three common machine learning
algorithms: AdaBoost [39], Random Forest (RF), and kNN
to learn the function fSLA(d, λ, ω, ϵ) using Y.

IV. EVALUATION

This section first reviews two existing model calibration
methods that serve as a baseline against which the SLA
model will be compared. Next, two metrics are described for
evaluating model performance. Finally, test sets are described
for evaluating the baseline, FLA, and SLA methods.

A. Baseline Calibration Methods
This paper uses Platt calibration [12] and isotonic re-

gression [13] as baselines. Similar to the SLA model, both
methods use the dataset Y = {(vi, oi, ôi)} to calibrate the
FLA model. o = 1 for success and o = 0 for failure.

Recall that fFLA(v) denotes the probability for suc-
cess as predicted by the FLA model. Platt calibra-
tion corrects fFLA(v) using logistic regression between
fFLA(v) and o. The Platt calibration function, denoted by
fPlatt

(
fFLA(v)

)
= P

(
o = success|fFLA(v)

)
, is given by

fPlatt
(
fFLA(v)

)
=

1

1 + exp
(
β0 + β1fFLA(v)

) , (5)

where the β0 and β1 parameters minimize the cost function

min
β0,β1

−
∑
i

(
oi log

(
fPlatt(fFLA

i )
)

+(1− oi) log
(
1− fPlatt(fFLA

i )
))

,

(6)

where fFLA
i = fFLA(vi).

Isotonic regression calibrates fFLA(v) by optimizing
a non-decreasing function, denoted by f IR

(
fFLA(v)

)
=

P
(
o = success|fFLA(v)

)
,

argmin
f IR

∑
i

(
oi − f IR(fFLA

i )
)2
,

s.t. f IR(fFLA
i ) ≤ f IR(fFLA

j ), ∀fFLA
i ≤ fFLA

j ,

(7)

where fFLA
i , fFLA

j = fFLA(vi), f
FLA(vj), respectively.
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Fig. 2: (a) A simulated blue robot navigating to a red charger.
(b) A Sawyer robot setting up a table with various blocks.

B. Metrics for Evaluating Model Performance

In prior work for the FLA model [5], discriminability,
measured by the area under the ROC curve (or AUC-ROC),
was used to evaluate the FLA model. AUC-ROC measures
how well the model can discriminate between successful
and unsuccessful trials. This paper additionally measures
the calibration of PSA models using the ECE (Expected
Calibration Error) metric, which characterizes the difference
between the predicted and actual probabilities.

AUC-ROC is computed using the true and false positive
rates that are derived by comparing the predicted probabil-
ities for the positive class to various thresholds. This paper
considers “success” and “correct” as the two positive classes.
AUC-ROC is in [0.5, 1], with 0.5 indicating a random guess
and 1 indicating a perfect classifier.

ECE is computed as follows. The predicted probabilities
for the positive class are put into N non-overlapping bins
that have identical interval widths and cover [0, 1] together.
N = 10 is used in this paper. ECE is then given by

ECE =

N∑
i=1

αi ∗ |Ai −Bi|,

where αi is the percentage of samples in bin i, Ai is the
average of the predicted probabilities in bin i, and Bi is the
fraction of positive samples in bin i.

C. Test Set

The data set X is used to train the FLA model, whereas
the data sets Y and Y are needed to train the SLA
model (Sec. III). Finally, a test set is needed to evaluate
the SLA model along with the various baseline methods.
Let Z = {(vi, oi, ôi)} and Z = {(di, λi, ωi, ϵi, ci)} de-
note this test set, where Z is derived from Z in the
same manner that Y was derived from Y in Sec. III-
C. Recall that fFLA, fSLA, fPlatt and f IR denote the
probability for the positive class predicted by the FLA
model, SLA model, Platt calibration function and iso-
tonic regression function, respectively. Then applying Z
or Z to the four binary classifiers and associating pre-
dicted probabilities with actual classes yields the following
four sets of tuples: {(fFLA

i , oi)}, {
(
fSLA(di, λi, ωi, ϵi), ci

)
},

{
(
fPlatt(fFLA

i ), oi
)
} and {

(
f IR(fFLA

i ), oi
)
}, which are

used to compute AUC-ROCs and ECEs for the classifiers.

V. CASE STUDIES

This section describes (a) the two problems used to
evaluate the SLA model, (b) the heuristics used to estimate
the completion percentage, ϵ, (c) the datasets used to train
and evaluate the models, and (d) the experiments conducted.

A. Robot Systems

The two evaluation problems are from the same domain
as prior work on AAT. For completeness, summaries of
the problems are described below. Complete descriptions
of the AAT implementations are found in [5]. In the first
domain (Fig. 2a), a simulated robot (blue circle) is tasked
with navigating to its charger (red square) within a certain
amount of time. In so doing, the robot must avoid obstacles,
indicated by black line segments and the green circle in
Fig. 2a. The robot can either spin freely in place or move
forward (straight). The robot is equipped with a camera that
looks down on the world from above and a sensor that detects
whether or not the robot is on its charger. AAT data for the
navigation task are collected in the environment shown in
Fig 2a, as well as three other configurations of robot position,
charger position, and obstacle positions.

For the second domain, a Sawyer robot (Fig. 2b) is tasked
with manipulating nine unique blocks with three colors
(red, blue, and purple) and three shapes (circle, square,
and triangle). The robot must put those blocks in desired
positions in the center of a table within a specific amount
of time. The robot is equipped with a camera mounted on
the ceiling to perceive the table from a bird’s eye view. AAT
data for the Sawyer robot are collected from robot trials with
different initial configurations of blocks on the table.

In the navigation task, the completion percentage (ϵ) is
estimated as the ratio between the distance the robot has
already traveled and the robot’s total distance. In the Sawyer
domain, ϵ is approximated by the ratio between the number
of block swaps the robot has already executed and the total
number of swaps needed.

B. Data Collection

The datasets for the navigation task and Sawyer domain
were described in [38] and [5], respectively, and were col-
lected using the two robot systems under various running
conditions. For the navigation task, the list of running
conditions is (with number of samples for each condition in
parentheses): normal condition (3864), camera noise (9,232),
camera distortion (7,509), robot bias (7,285), robot speed
(4,157), camera noise-robot bias (10,575), camera noise-
robot speed (9,321), camera distortion-robot bias (8412),
and camera distortion-robot speed (6,471). For the Sawyer
domain, the running conditions and numbers of samples are
normal condition (3,734) and camera failure (10,110).

For each domain, the collected dataset is divided into three
separate sets: X , Y (Y) and Z(Z). For the navigation task,
the numbers of samples in X , Y (Y) and Z(Z) are 21,846,
13494 and 31,486, respectively. For the Sawyer domain, the
numbers of samples are 5,827, 2,405 and 5,612, respectively.



TABLE I: Hyper-parameter(s) for model implementations.

Algorithm Hyper-parameter(s)
AdaBoost random state = 1221
RF random state = 5369
kNN k = 15 for FLA, weights = ‘distance’
Isotonic regression y min = 0, y max = 1, out of bounds = ‘clip’

TABLE II: Performance comparison between models.

PSA models Navigation Sawyer
AUC-ROC ECE AUC-ROC ECE

SLA-AdaBoost 0.890 1.3% 0.877 4.3%
SLA-RF 0.939 0.7% 0.948 2.6%
SLA-kNN 0.900 3.9% 0.896 4.7%
FLA 0.916 9.2% 0.774 24.4%
FLA (extra data) 0.985 3.9% 0.886 17.1%
Platt calibration 0.911 0.7% 0.774 1.8%
Isotonic regression 0.918 1.3% 0.774 3.1%

C. Experiments

Three experiments were run for each case study. First,
three SLA models were trained using training dataset Y, each
using a different machine learning algorithm (AdaBoost, RF,
and kNN). Denote these algorithms as SLA-AdaBoost, SLA-
RF, and SLA-kNN. Algorithm performance is compared on
the testing dataset Z using AUC-ROC and ECE.

Second, the SLA models (trained on Y and evaluated
on Z) are compared to the following baseline models to
examine whether and by how much they improve PSA:
(1) the FLA model trained on X and evaluated on Z; (2) the
Platt calibration function trained on Y and evaluated on Z;
(3) the isotonic regression function trained on Y and Z; and
(4) the FLA model trained on X

⋃
Y and evaluated on Z. All

SLA models and calibration functions are based on the FLA
model trained on X , other than the one trained on X

⋃
Y .

The FLA model trained on X
⋃
Y is included to determine

whether any improvements in the SLA model and calibration
functions are due to the use of extra training data (Y or Y).

Finally, the third experiment measured how each of the
four features in {d, λ, ω, ϵ} contributes to the SLA model
by training the model on Y and evaluating it on Z using
different subsets of {d, λ, ω, ϵ}. The question addressed by
this experiment is whether each feature is necessary or
sufficient to produce high-performing SLA.

Models are implemented using scikit-learn [40]
in Python. Hyper-parameters are summarized in Table I.
Unmentioned hyper-parameters use default values. No pa-
rameter tuning was performed to favor SLA models.

VI. RESULTS AND DISCUSSION

A. Experiment 1: SLA Performance

The first three lines of Table II show the performance
of the three SLA implementations (SLA-AdaBoost, SLA-RF
and SLA-kNN). In the navigation task, the three algorithms
all perform well with respect to both AUC-ROC (all values
are in the range of 0.890-0.939) and ECE (all values are in

TABLE III: Results for SLA-RF with different features.

Feature(s) used
by SLA-RF

Navigation Sawyer
AUC-ROC ECE AUC-ROC ECE

λ 0.567 6.0% 0.574 15.9%
d 0.606 14.0% 0.634 24.5%
ω 0.583 16.3% 0.567 26.4%
ϵ 0.686 10.9% 0.754 2.1%
λ, d 0.781 6.9% 0.759 12.0%
λ, ω 0.675 11.2% 0.682 13.7%
λ, ϵ 0.801 5.8% 0.813 7.6%
d, ω 0.784 5.7% 0.841 4.9%
d, ϵ 0.759 4.7% 0.850 8.6%
ω, ϵ 0.881 3.7% 0.857 7.2%
λ, d, ω 0.881 2.2% 0.892 1.8%
λ, d, ϵ 0.860 2.0% 0.912 1.9%
λ, ω, ϵ 0.913 2.1% 0.912 1.6%
d, ω, ϵ 0.925 0.9% 0.941 2.6%
all 0.939 0.7% 0.948 2.6%

the range of 0.7%-3.9%). Similar results are observed in the
Sawyer domain. RF outperforms the other two algorithms
with respect to both metrics in both case studies. SLA-RF
is, therefore, chosen for the remainder of the experiments.

B. Experiment 2: Comparison to Baseline Models

Table II and Fig. 3 compare SLA-RF to the other baseline
models and calibration functions for both case studies. For
the navigation task (Fig. 3a), both Platt calibration and
Isotonic regression improve ECE from the FLA model (from
9.2% to 0.7% and 1.3%). However, they do not substantially
improve AUC-ROC (from 0.916 to 0.911 and 0.918). By
contrast, the SLA model not only reduces ECE equally well
as both calibration functions (from 9.2% to 0.7%), but also
shows a notable increase in AUC-ROC (from 0.916 to 0.939).

But would using the extra training data in the FLA model
produce the same performance improvements? The FLA
(extra data) entry in Table II shows that feeding more data
to the FLA model also improves both AUC-ROC and ECE.
Extra data improves ECE (from 9.2% to 3.9%), but the
improvement is much less than both calibration methods and
the SLA model. Interestingly, extra data improves AUC-ROC
(from 0.916 to 0.985) more than even the SLA model.

Results are similar but more pronounced in the Sawyer
domain (Fig. 3b). In this domain, the SLA model substan-
tially improves both AUC-ROC (from 0.774 to 0.948) and
ECE (from 24.4% to 2.6%). Platt calibration and Isotonic
regression substantially improve calibration error, but do not
substantially improve discriminability. Feeding more data to
the FLA model yields relatively small improvement in AUC-
ROC (from 0.774 to 0.886) and ECE (from 24.4% to 17.1%).

C. Experiment 3: Contribution of Features for SLA

Table III shows the effect of each individual feature used
in the SLA model {d, λ, ω, ϵ} across the two case studies.
In the navigation task, the SLA model in general performs
better as more features are used. The AUC-ROC and ECE
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Fig. 3: Performance of various PSA models and calibration functions for the (a) navigation task and (b) Sawyer domain.
The ideal region, which corresponds to high discriminability and low calibration error, is in the top left corner.

scores are (0.567-0.686, 6.0%-16.3%), (0.675-0.881, 3.7%-
11.2%), (0.860-0.925, 0.9%-2.2%) and (0.939, 0.7%), with
one, two, three and all features, respectively. The best AUC-
ROC and ECE are obtained with all features used.

Similar trends are observed in the Sawyer domain, with
the exception that the model with all features does not
substantially outperform the models with three features.
More specifically, adding λ to {d, ω, ϵ} only increases AUC-
ROC from 0.941 to 0.948 and does not impact ECE, while
adding d to {λ, ω, ϵ} increases AUC-ROC from 0.912 to
0.948 but worsens ECE from 1.6% to 2.6%. Subjectively
speaking, the overall model performance with all features is
still slightly better than with three features in this domain.

D. Discussion
Both baseline calibration functions fPlatt and f IR only

improve the FLA model with respect to calibration. It can be
inferred from Eqs. (5) and (7) that both calibration functions
are monotonic and do not affect the relative inequality
between any two uncalibrated probabilities (bigger/smaller
uncalibrated values would remain bigger/smaller after cali-
bration). Therefore, the baseline calibration functions should
have very little influence on the discriminability of a model,
which is supported by the results in Sec. VI-B.

One way to improve the FLA model with respect to both
discriminability and calibration is to use more training data
(Sec. VI-B). But this approach has two major limitations.
First, its improvement in discriminability depends on the
original FLA model and can be inadequate when the original
FLA model’s discriminability is low (Fig. 3b). Second, it
does not reduce calibration error as well as Platt calibration
and Isotonic regression. Thus, the SLA model outperforms
the FLA model trained on more data. As is shown in Fig. 3b,
the SLA model’s discriminability is substantially higher than
that of the FLA model, while its calibration is as good as
both baseline calibration methods.

The success of the SLA model can be attributed to two
factors: the use of more training data and the four features
it uses as input. Comparing FLA with more training data
to SLA indicates the importance of the meta-data found in
the four features in improving FLA. Each of the features is
needed to maximize performance (Table III).

The SLA approach is potentially generalizable to other
problems, as demonstrated by two observations. First, the
SLA model works well in both the simulated navigation
task and the real-world Sawyer domain. Second, two of
the features for training the SLA model have been used in
related problems. Mean distance (d) has been used for out-
of-distribution detection [32] and predicted outcome proba-
bility (λ) has been used to predict classifier failures [31].

The generalizability of the SLA approach is limited by
three factors. First, it requires additional training data, which
is not always feasible. Second, it assumes the performance
metric to be additive, otherwise the performance ratio (ω)
may not be useful. Finally, the completion percentage (ϵ) is
task-specific and can be difficult to derive for complex tasks.

VII. SUMMARY AND FUTURE WORK

Prior work has shown the effectiveness of assumption-
alignment tracking (AAT) in performing a first-level as-
sessment of proficiency self-assessment (PSA). This paper
presents a method for performing a second-level assessment
(SLA) of PSA. This SLA model predicts whether the FLA
prediction is correct using a Random Forest algorithm trained
on four features: (1) the predicted probability of the predicted
outcome of FLA; (2) the mean distance from the test sample
to its nearest neighbors in the training set; (3) the ratio
between the robot’s current performance and its performance
standard; and (4) the ratio between the amount of task
that the robot has already completed and the total amount
of task. The SLA model’s performance is evaluated by
two metrics: AUC-ROC that measures discriminability and
ECE that measures calibration. The SLA model not only
calibrates the FLA model equally well as existing calibration
methods, but also produces high discriminability even if the
FLA model’s original discriminability is much lower.

Future work should look deeper into the relation between
FLA and SLA and further explore the importance of the
meta-data found in the four features for training the SLA
model. Additionally, future work should explore how FLA
and SLA should be combined to provide better PSA results.
Future work should also test the generalizability of both
SLA and the Random Forest algorithm for building SLA
models using more sophisticated robots performing more



complex tasks. Another interesting direction of future work is
combing FLA and SLA for explainable PSA. Finally, future
work should explore how well SLA would perform if the
performance distribution from FLA is modeled differently
than using nearest neighbors.
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