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Assumption-Alignment Tracking∗
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Abstract—While the design of autonomous robots often empha-
sizes developing proficient robots, another important attribute
of autonomous robot systems is their ability to evaluate their
own proficiency. A robot should be able to assess how well it
can perform a task before, during, and after it has attempted
the task. How can autonomous robots be designed to self-assess
their behavior? This paper presents the assumption-alignment
tracking (AAT) method for designing autonomous robots that
can effectively evaluate their own performance. In AAT, the
robot (a) tracks the veracity of assumptions made by the robot’s
decision-making algorithms to measure how well these algorithms
fit, or align with, its environment and hardware systems, and
(b) uses the measurement of alignment to assess the robot’s
ability to succeed at a given task based on its past experiences.
The efficacy of AAT is illustrated through three case studies:
a simulated robot navigating in a maze-based (discrete time)
Markov chain environment, a simulated robot navigating in
a continuous environment, and a real-world robot arranging
blocks of different shapes and colors in a specific order on a
table. Results show that AAT is able to accurately predict robot
performance and, hence, determine robot proficiency in real time.

Index Terms—Robot proficiency self-assessment, assumption
alignment tracking, AAT, autonomous robot system.

I. INTRODUCTION

The design of autonomous robot systems has understand-
ably emphasized the development of proficient robots – i.e.,
robots that can effectively carry out tasks in varying environ-
ments. Developing proficient robots is an ultimate goal, but an
autonomous robot should also have the ability to identify and
predict when it can and cannot successfully carry out a task.

Proficiency self-assessment is valuable for several reasons.
First, safety dictates that autonomous systems should identify
when they will fail, are failing, and have failed to accomplish
a task [1], [2] and also be able to explain those failures [3]–
[6]. Second, because autonomous robots typically operate in
the context of a team, knowing one’s competence and limits
can improve teaming and synergistic planning [7], [8]. Third,
knowing one’s limits can be used to improve robot behavior
by, for example, deciding when to continue learning and when
to exploit one’s current knowledge [9], [10]. As such, we argue
that autonomous robot design should simultaneously focus on
both proficiency and self-evaluation of proficiency.

A few papers have directly addressed proficiency self-
assessment [11]–[13] but each has limitations. The method
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Generator Completeness:  The robot has algorithms (or 
behavior generators) necessary to perform the task

Expectation Awareness: The robot has a performance 
standard that represents acceptable/effective performance

Performance Evaluation: The robot has a performance 
estimate, which it compares to the performance standard

Fig. 1: Three components necessary for an autonomous robot
to self-assess its ability to perform a task.

proposed in [11] relies on prior knowledge that is not always
available, while the methods used in [12], [13] are limited
to specific platforms or environments. Robotic introspection
is a research area similar to proficiency self-assessment but
focuses more on identifying atypical operation modes [14]
or input data [15]–[19]. Another related direction is machine
self-confidence which is a robot’s “self-trust in its functional
abilities to accomplish assigned tasks” [20]. One general
approach to machine self-confidence is Factorized Machine
Self-confidence, which characterizes the overall confidence of
an autonomous system based on a set of factors that score
different parts of the system’s decision-making process [20]–
[24]. There is not yet a systematic method for identifying and
accurately assessing all factors and then properly integrating
them to assess the overall confidence of the robot system.

We propose that task-oriented proficiency self-assessment
requires at least three evaluations (Fig. 1). First, the robot must
determine whether it has a set of decision-making algorithms
(or behavior generators) that can be combined to perform the
desired task [11]. Second, the robot must have a performance
standard, which gives it an understanding of what constitutes
desirable (or acceptable) performance on that task. Finally, the
robot must estimate its performance and compare this estimate
to the performance standard.

While each component in Fig. 1 is necessary for per-
forming proficiency self-assessment, this paper focuses on
the third component: How can a robot effectively estimate
its performance at any time during task execution? We then
compare this performance estimate with the performance stan-
dard (which we assume is given) to assess whether the robot
can perform the task. In particular, the approach we propose
and analyze for estimating robot performance is based on
the following view of proficiency self-assessment: Proficiency
self-assessment is awareness of how well one’s ‘generators’
(i.e., decision-making algorithms) interact and align with the
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environment(s), robot hardware, and task(s) under considera-
tion. Based on this view, we propose the assumption-alignment
tracking (AAT) method that allows a robot to (a) measure how
well its generators align with its environment, hardware and
tasks by tracking the veracity of the generators’ assumptions,
and (b) estimate the robot’s performance by adjusting its
expected performance under normal circumstances according
to the measurement of alignment (see Section III). We further
propose a data-driven approach to implementing the AAT
framework (see Section IV).

We evaluate AAT through three case studies: a simulated
robot navigating in a maze-based (discrete time) Markov chain
environment, a simulated robot navigating in a continuous en-
vironment, and a real-world robot arranging blocks of different
shapes and colors in a specific order on a table (see Sec-
tion V). Empirical results in (a) scenarios where configurations
remain the same throughout a task and (b) scenarios where
configurations change in the middle of a task demonstrate that
AAT can yield interesting and accurate proficiency estimates
(see Section VI). While AAT is shown to be useful for profi-
ciency self-assessment, implementing AAT takes extra effort
that could have been put into creating more proficient robot
generators. Moreover, reducing the design effort to AAT could
have complex effects on AAT efficacy. We discuss tradeoffs
in how to allocate design effort in Section VII. Finally, we
discuss key interesting observations from the experiments in
Section VIII and present limitations of this work in Section IX.

This paper evolved from the authors’ previous work on the
topic [25]. This version of the paper extends the original work
in the three ways: First, this paper describes the methodology
more systematically and provides a more generalized frame-
work that can be applied to any discrete time state-transition
system with an additive performance metric. Included in this
formulation is a further description and analysis of different
types of veracity checkers. Second, this paper provides empir-
ical results from two additional case studies that have different
task domains and environments, including a real-world robot
system. Finally, we evaluate the proposed method not only in
scenarios with consistent configurations but also in scenarios
in which the environment or robot hardware is altered during
the mission.

II. RELATED WORK

This section reviews related literature and states how AAT
relates to and differs from prior work.

A. Veracity and Reliability Assessment

The veracity assessment in AAT shares similarities with
prior work. For example, Ramesh et al. [7] advocate for
tracking so-called robot vitals, which appear to be assessments
of assumptions made about generator outputs. Similarly, Das
et al. [4] use assessments of generator outputs to produce
explanations to assist users in fault recovery of a robot system,
and Béné and Doyen create viability tests that compare perfor-
mance to pre-defined thresholds and use the result to estimate
the resilience of an agent [26]. Finally, prior work has also
discussed fault isolation to identify causes of task failure [27],

wherein fault classes include “component faults” (hardware
or software component failures during task) and “contextual
faults” (faults related to functional system behaviors). Fault
classes can be viewed as special types of alignment checkers
that are restricted to post hoc assessment of failures.

Reliability [28] has been defined as the duration of time
in which a robot meets performance standards under defined
working conditions. Reliability metrics include mean time to
failure, mean time to repair, and mean time between fail-
ures [29], [30]. Parameters needed to compute those metrics,
such as failure time, failure-free time, and repair time can be
estimated using fuzzy logic [31] or probability theory [32],
[33]. Reliability is similar to AAT in that it evaluates actual
performance relative to a performance standard, but restricts
assessments of proficiency to maintenance goal [34]. AAT,
by contrast, assesses proficiency using the probability of
completing an achievement-oriented task or goal [34].

B. Proficiency Self-Assessment

Frasca et al. [11] introduced a general framework for robot
self-assessment which allows a robot to determine what task it
can accomplish and the probability it will accomplish it. Their
work is that the estimated success probabilities for complex
tasks rely on prior probabilities of atomic tasks. By contrast,
AAT uses training data instead of explicit prior probabilities.
Future work should consider how AAT could blend prior
probabilities with observed data to improve assessment.

Dutta and Nelson [12] developed a learning-based method
that enables a robot to measure how similar its current task is
to its previous tasks and to estimate the completion time of
the current task based on its previous experience. Similarly,
Burghouts et al. [13] proposed a method that allows a robot to
conduct self-assessment of competence by assessing whether
the current environment is known followed by (1) asking a
human for feedback about its competence if the environment
is not known or (2) generalizing its competence from earlier
experience if the environment is known. The idea of measuring
similarity between tasks or assessing whether the current
environment is known is similar to the veracity assessment in
AAT, though the veracity assessment in AAT involves not only
evaluations of environment but also evaluations of sensors,
actuators, etc. Moreover, these prior methods [12], [13] only
focus on a priori proficiency self-assessment, while AAT
supports both a priori and in situ proficiency self-assessment.

C. Robotic Introspection

AAT is related to robotic introspection, which was first in-
troduced by Aaron [14] as using data signatures that character-
ize robot operational state to differentiate between normal and
abnormal modes of operation. Grimmett et al. [15], [16] and
Triebel et al. [17] adopted introspection as the capacity of a
model to adjust the confidence of a particular prediction based
on how representative its training data is of the corresponding
test case. Daftry et al. [18] advocate for an introspective model
independent from the underlying robot system. The model
learns hidden latent representations from perceptional inputs
with a spatio-temporal convolutional neural network and then
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uses a linear Support Vector Machine that takes the latent
representations as inputs and predicts how likely perceptional
inputs would cause robot failure. Kuhn et al. [19] trained
an introspective model to predict future disengagements of
autonomous vehicles. The model uses state data describing
the dynamics of vehicles as input and learns from the previous
experience of the vehicle. Israelsen and Ahmed defined self-
assessment as an introspective assurance for establishing user
trust in an intelligent system [35]. Similar to AAT, each paper
above emphasizes the importance of identifying underlying
assumptions, either explicitly or through data-driven learning
methods. AAT differs from these papers in how evaluations of
the assumptions are used to assess the probability of success
in an achievement-oriented goal [34].

D. Machine Self-Confidence

Another notion similar to proficiency self-assessment is
known as machine self-confidence, which is a robot’s “self-
trust in its functional abilities to accomplish assigned
tasks” [20]. Several metrics have been proposed to measure
machine self-confidence. Hutchins et al. [36] represented the
self-confidence of an unmanned vehicle by measuring the
uncertainties in its sensors and planners. Kuter and Miller [37]
computed self-confidence by measuring the ability of an au-
tonomous system to foresee contingencies that could threaten
its performance, and to adapt its plan to circumvent those
conditions. Sweet et al. [38] proposed three metrics for
self-confidence in autonomous systems: success probability,
plan robustness, and quality of meta-knowledge. Zagorecki
et al. [39] considered autonomous systems that consist of
multiple Bayesian network models. They proposed to use the
Surprise Index [40] to determine which model better matches
a case to be solved and to measure the confidence of an au-
tonomous system. Kaipa et al. [41] considered the bin-picking
problem where a robot is assigned to singulate multiple parts
from a bin in a specific order. Each of these papers uses
measures of sensor uncertainties, predicted plan disruptions,
and data-driven diagnostics to assess self-confidence.

An integrated system of assessing self-confidence, known as
Factorized Machine Self-confidence (FaMSec), characterizes
the overall confidence of an autonomous system based on
a set of factors that score different parts of the system’s
decision-making process [20]–[24]. In that work, five factors
were proposed: command interpretation, model validity, solver
quality, outcome assessment, and past performance [21], [22].
Methods for assessing the outcome assessment factor [21]
and solver quality factor [23], [24] were developed. FaMSeC
was extended to assess and express uncertainties through
generalized outcome assessments formulated in terms of task-
relevant outcome semantics for UAV ISR applications [42].
The elements in FaMSeC are similar to the process of iden-
tifying assumptions, defining alignment checkers, designing
progress checkers, and training these checkers using controlled
experiments. Future work should evaluate how elements of
FaMSeC and AAT can be integrated. The self-confidence
metrics in the prior two paragraphs are similar to the progress
checkers used in this paper. Indeed, self-confidence metrics

could be used as progress checkers in future work. By contrast
to self-confidence metrics, AAT includes direct assessments of
how well explicitly identified assumptions are satisfied.

E. Metrics for Robot Proficiency Self-Assessment

Various metrics for robot proficiency self-assessment have
been summarized in [43]. Some of those metrics are related
to this work, including alignment of uncertainty and perfor-
mance, mission progress, predicted vs. actual completion time,
and reliability. For each metric, we review its definition in [43],
its related literature, and how it relates to this work.

Alignment of uncertainty and performance can be measured
as the correlation between the variance and performance of the
model’s output, which was evaluated by Fitzgerald et al. [44].
Similarly, Fleming and Daw [45] correlated the model’s uncer-
tainty to the actual error incurred by the model’s output. In this
work, we evaluate AAT performance by computing the average
predicted success/failure probability for success/failure trials
(see Fig. 10a, d, and g).

Mission progress refers to the extent to which a task has
been completed and reflects a robot’s performance and profi-
ciency. For sequential tasks, mission progress can be measured
as the number or percentage of sub-tasks completed. In [46],
[47], the estimation of mission progress involves reaching
mileposts, satisfying preconditions or postconditions, devia-
tions from scripts, and timing metrics. The progress checkers
in the present paper are application-specific implementations
of mission progress. Future work should explore how addi-
tional progress checkers can be developed and applied.

Assessment metrics can also include the distribution of
predictions and observations to recognize when a system is
not functioning well enough. For example, an approach to
measure the proficiency of a model using a Cramer Rao-like
measure of the expected value of the second moment of a log
likelihood function was studied in [48].

Predicted versus actual completion time indicates the accu-
racy in predicting the robot’s task completion time. Similarly,
Schneider et al. [49] measured the difference between the
predicted and actual time for a failure. The difference between
actual and predicted completion time is post hoc but is used
in this paper as the training target of the kNN algorithm in
order to facilitate in situ assessments.

These metrics and methods can be classified as progress
checkers (using the terminology in this paper). AAT uses
both alignment checkers and progress checkers, and future
work should evaluate how these more sophisticated progress
checkers could be combined with alignment checkers to better
perform proficiency self-assessment. Of particular interest is
exploring how general patterns of progress checkers can be
distilled from these cited prior works.

III. METHODOLOGY AND FRAMEWORK

Estimating performance in arbitrary environments and sce-
narios is challenging because it is difficult to determine
how environmental characteristics, the robot’s hardware, and
the robot’s decision-making algorithms (or generators) will
combine to impact the robot’s performance. This is difficult
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Fig. 2: A schematic of AAT for proficiency assessment.

for post hoc estimates, but even more difficult for a priori
and in situ estimates. Past work has conjectured that a robot’s
performance is a function of the complexity of the environment
in which the autonomous system operates (e.g., [50], [51]).
Unfortunately, quantifying the effect of environment complex-
ity on a robot’s task performance remains unsolved.

We assert that robot performance is sensitive to how well
its generators align with its environment and hardware. This
alignment can be determined via a set of metrics that do
not require a direct assessment of the complexity of the
environment, but rather is made by tracking the veracity of
the assumptions upon which the robot’s generators rely. We
call this assumption-alignment tracking (AAT).

Fig. 2 shows the three phases of applying AAT to assessing
robot proficiency. In phase 1, the robot designer identifies
assumptions made in the construction of the robot’s generators,
and creates (a) alignment checkers that assess the veracity of
these assumptions and (b) progress checkers that explicitly
estimate the robot’s progress in completing its tasks. In phase
2, the outcomes of these checkers over time form a time-
indexed set of veracity assessments of the identified assump-
tions, which are then converted to feature vectors. In phase 3,
feature vectors are used to model how to adjust the robot’s
purported performance (expected performance under normal
circumstances) to estimate the robot’s actual performance,
which is compared to a performance standard to determine
whether the robot is proficient or not. The rest of this section
and the next section formalize the process.

A. Trajectory, Task and Performance

Let E = S × A × S be a discrete time state transition
system that models the environment as a mathematical relation
where S denotes a suitable state space and A denotes a robot’s

available actions. Elements of this relation are (present state,
action, next state) triples.

A robot within the environment takes observations of the
environment and generates actions, as described by the robot
generator relation R = S × O × A. Elements of the robot
relation are (state, observation, action) triples, where each state
is associated with one observation and at least one action.

When the robot and environment relations are joined, a set
of time-indexed state and observation trajectories are created
with elements, respectively,

st = [s0, s1, . . . , st] and ot = [o0, o1, . . . , ot].

where s0 is an initial state and o0 is an initial observation.
A performance metric can be either a utility to be maxi-

mized or a cost to be minimized that maps a time-indexed
state trajectory to a real value. This work considers problems
in which a single task is performed by the robot and in which
there is a cost function defined for the robot metric,

C : {st} 7→ <.

This work further assumes that C is additive, such that

C(st) = C([s0, s1, . . . , sτ ]) + C([sτ , . . . , st]),

where 0 < τ < t. Future work should explore other perfor-
mance metric structures.

In practice, the robot estimates its state trajectory based on
its observation trajectory and then applies the cost function
to the estimated state trajectory to predict its final cost. For
simplicity, we explicitly define C as a mapping from an
observation trajectory to a real value,

C : {ot} 7→ <.

B. Assumptions and Veracity Assessments
As asserted in many No-Free-Lunch Theorems (e.g., [52]),

all decision-making algorithms (or generators) for autonomous
robot systems are based on assumptions or biases that dictate
their performance [53]. When these assumptions and biases
are satisfied in the real world, the robot’s behavior and its
impact on the world satisfy the designer’s intentions. However,
when the assumptions are not met, the robot’s behavior and its
impact on the world are both less predictable and less likely
to be satisfactory. Thus, the ability to differentiate between
conformity to and violation of these assumptions can provide
rich insight into a robot’s performance.

Fig. 2 illustrates two important forms of assumptions related
to a robot’s generators: assumptions about generator inputs and
generator outputs. Assumptions about generator inputs include
assumptions about the robot’s sensors, the robot’s actuators,
and the properties of the environment. For example, a mapping
system for a robot performing a navigation task might assume
that sensor readings have low variance and that the sensor
can detect the objects in the environment. Assumptions about
generator outputs relate to the properties of the outcomes of
generator decisions. For example, a robot navigation system
might be designed under the assumption that the robot’s map-
ping system will compute consistent positions of stationary
objects in the environment.
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Once the assumptions made in the design of the robot gen-
erators are identified, the system designer creates assumption
checkers that check assumption veracity. Assumption veracity
assessments can begin before the robot starts to operate in
the environment (i.e., a priori; these assessments are mainly
limited to input assumptions) and then continue throughout the
mission (i.e., in situ assessments). The resulting time series of
assessments over each of the assumptions form the alignment
profile, which is used to evaluate the robot’s ability to perform
the given task in the current environment.

Suppose that there are M assumptions made by the robot’s
generators. In AAT, at least one checker is created for each
assumption. An alignment checker is a generator-specific
function that evaluates the robot’s observations to determine
how well a generator’s assumption is satisfied. Alignment
checkers can produce boolean or real-valued assessments.
For simplicity, assume that there is exactly one alignment
checker per assumption, and denote the M alignment check-
ers as {v1(ot), v2(ot), . . . , vM (ot)}. Note that even though
technically ot is the input to each checker, many of the
alignment checkers implemented in this work require only the
current observation ot, while others (such as those assessing
stochastic properties) use only a limited number of the latest
observations. This approach to alignment checking makes the
veracity assessments sensitive to sudden changes during tasks.

Because not all assumptions can be easily checked and
because some assumptions can easily be missed, we cre-
ate a second set of checkers known as progress checkers.
Progress checkers are assessments that explicitly estimate
the robot’s progress in completing a task. They aggregate
many assumptions and hence are a sort of catch all checker.
Such checkers could be, for example, how far a robot has
traveled, the robot’s average speed, or how many subtasks
have been accomplished [46]. A progress checker is therefore
a generator- and task-specific function that returns a real-
valued estimate of progress. Suppose that there are K progress
checkers, {vM+1(ot), v2(ot), . . . , vM+K(ot)}.

The assessments made by alignment checkers and progress
checkers are combined to form the veracity assessment at
time t:

v(ot) = [v1(ot), v2(ot), . . . , vM+K(ot)]. (1)

Because some veracity assessments are noisy and benefit from
temporal smoothing, v(ot) is better represented as a feature
vector, at time t, f(ot) = [f1(ot), f2(ot), . . . fM+K(ot)] that
includes any temporal blending that must occur. There are
several ways to perform this temporal blending, and this paper
uses exponential smoothing, yielding

fk(ot) = λkfk(ot−1) + (1− λk)vk(ot), (2)

where λk ∈ [0, 1]. The initialization condition, fk(o−1), is set
to zero and is used for computing fk(o0). This paper uses
progress checkers that explicitly integrate multiple observa-
tions together. Therefore, the feature vectors for the progress
checkers are fk(ot) = vk(ot), corresponding to λk = 0.
By contrast, this paper uses λk > 0 for alignment checkers,
which benefit from temporal smoothing. Evaluating λk ∈
{0.1, 0.3, 0.5, 0.7, 0.9} in the Markov chain study showed little

sensitivity (discriminability root mean square error less than
2.14%) so λk = 0.3 is used in all evaluations.

Feature vectors give rise to the alignment profile at time t,
which is the time series of veracity assessments encoded as
feature vectors up to time t:

F(ot) = [fᵀ(o0), f
ᵀ(o1), . . . f

ᵀ(ot)]
ᵀ. (3)

Here, the superscript ᵀ denotes “transpose”. The alignment
profile gives insight into how well the robot’s generators will
interact with its environment and hardware systems. It can thus
be used to estimate the robot’s performance.

C. Estimating Performance

The estimate of the final performance is a function of
the observations up to the current time t and projections of
observations in the future. Let Ĉ([o0, · · · , ot, · · · ]), where the
last ellipsis denotes future observations, denote this prediction
of final task performance made at time t. Because the cost
function C is additive, Ĉ([o0, · · · , ot, · · · ]) is estimated from
two components: estimated performance so far on the mission
up to time t, denoted by Ĉ([o0, · · · , ot]), and the performance
predicted in the future, denoted by Ĉ([ot, · · · ]). Thus,

Ĉ([o0, · · · , ot, · · · ]) = Ĉ([o0, · · · , ot]) + Ĉ([ot, · · · ]). (4)

The second half of Eq. (4), specifying estimated future
performance, is obtained from two parts: purported perfor-
mance C([ot, · · · ]) and a scaling coefficient η. Purported
performance can be thought of as a type of expected per-
formance if things go as planned from the current state. It is
computed by the planner under the assumption that all the gen-
erators’ assumptions hold. The scaling coefficient η depends
on the current veracity assessment, f(ot), and is therefore
expressed by the function η(f(ot)). Intuitively, this scaling
coefficient indicates how the cost is likely to change, usually
at an increase, as assumptions are violated. Additionally, as
demonstrated in the case studies we present later in the paper,
purported performance estimates computed by the planner
need not be perfect since scaling can simultaneously provide
corrections to those estimates. Therefore, AAT estimates the
final performance as

Ĉ([o0, · · · , ot, · · · ]) = Ĉ([o0, · · · , ot]) +
C([ot, · · · ]) · η(f(ot)). (5)

The next section presents an implementation of Eq. (5).

IV. AN IMPLEMENTATION OF THE AAT FRAMEWORK

This section presents an implementation of AAT, includ-
ing design choices for the cost function C and the scaling
coefficient η. First, we define C as the time-to-complete
a task. Then, we approximate η based on the robot’s past
experiences, which consist of feature vectors contained in
alignment profiles of different past runs (experiences) as
well as the known scaling coefficients associated with those
runs. To do this, we implement a k-nearest neighbor (kNN)
algorithm that computes the past feature vectors that are
closest to the current feature vector. These nearest-neighbor
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samples specify a probability distribution of the current scaling
coefficient. Finally, the probability distribution of the current
scaling coefficient is used to compute a probability distribution
predicting the robot’s performance, which can then be used to
make an assessment of the robot’s proficiency by comparing
the predicted performance to the given performance standard.
In Section V, we study the effectiveness of this implementation
of AAT by applying it to three different systems.

A. Implementing the Cost Function C

For many tasks, including those considered in the three case
studies we present subsequently, the cost metric is the time-
to-complete the task. The cost up to the current time, t, is
therefore the elapsed time,

C(ot) = |ot| = t,

where |ot| denotes the number of steps in the trace. Given this
definition, Equation (5) becomes

Ĉ([o0, . . . , ot, . . .]) = t+ C([ot, . . .]) · η(f(ot)). (6)

B. Computing the Scaling Coefficient η

We compute the scaling coefficient η using a k-nearest
neighbor (kNN) algorithm (we justify the usage of kNN
in Sec. VIII). This algorithm compares the current veracity
assessment vector with feature vectors from the alignment
profiles recorded in the training set. The training set is formed
from past experiences in which the robot attempted the task
in potentially different environments and under different con-
ditions, some of which violate the assumptions made in the
creation of the robot’s generators.

Formally, the training set is formed from a set of trials in
which each trial j yields an alignment profile Fj(ot) that
contains a set of feature vectors {f j(ot)}. Associated with
each of these feature vectors is a scaling coefficient, which
denotes the robot’s actual performance in the trial relative to
the purported performance at that time in the trial. Let T j

denote the time it took the robot to perform the task in trial j
and let C

j
([ot, . . .]) denote the purported performance of the

robot at time t in trial j. Then, the scaling coefficient of this
sample is given by

ηjt =
T j − t

C([ot, . . .])
. (7)

Training experiments, therefore, yield a set of time-indexed
feature vectors, f j , along with an estimate of the scaling
coefficient ηj . The combined vectors and scaling coefficients
yield a training set X for the learning algorithm.

The kNN algorithm is used to estimate the scaling coef-
ficient. The algorithm computes the set N ⊆ X as the k
samples in X with the feature vectors that are nearest to the
current feature vector f(ot). A weighted L1 distance (e.g., the
Manhattan distance) is used as the distance metric to compute
this set. Given two feature vectors, f i and f j , the weighted L1
distance is given by

‖D, f i, f j‖1 =

M+K∑
n=1

Dn · |f in − f jn|, (8)

where D = [D1, D2, . . . , DM+K ] is a vector used to weight
the relative strength of the dimensions of the feature vector.
Each nearest neighbor n ∈ N then provides an estimate of the
scaling coefficient, ηn.

To form a probability distribution over the scaling coeffi-
cients η, each n ∈ N is assigned a raw weight, denoted by
wnraw, that is inversely proportional to the distance between the
currently measured feature vector f(ot) and the feature vector
of the neighbor, fn. From these raw weights, a normalized
weight is computed as

wnnorm = wnraw/

k∑
i=1

wiraw. (9)

These normalized weights, combined with the scaling esti-
mates ηn, form a probability distribution to define the scaling
coefficient η. In turn, the scaling estimates ηn are used in
Eq. (6) to produce an estimate (made by sample n) of final
performance:

Ĉn([o0, . . . , ot, . . .]) = t+ C([ot, . . .]) · ηn. (10)

Eqs. (9) and (10) then provide a probability distribution over
the robot’s final estimated performance on the task.

The experiments in the next section consider three distance
functions: Dalignment, Dprogress, and Dall given by

Dall = Dalignment + Dprogress. (11)

Dalignment includes non-zero weights for alignment checkers
while zero weights for progress checkers. On the other hand,
Dprogress includes non-zero weights for progress checkers
while zero weights for alignment checkers. The specific three
distance functions and raw weights wnraw used in the three case
studies are described in the next section.

C. Assessing Proficiency Requires a Performance Standard

The process of proficiency self-assessment described in
Fig. 1 requires not only the performance estimate, but also
a performance standard. This subsection considers the lat-
ter. Since the case studies use time-to-completion of an
achievement-oriented task [34] as the performance metric, the
performance standard is a pre-defined time bound Tbound,
which is used to determine whether robot performance is
acceptable. Define the goal function, denoted by G, that maps
cost C to a boolean value,

G(C) =

{
true if C ≤ Tbound
false otherwise ,

where G = true means the robot’s performance is accept-
able. Note G can be either measured for completed trials or
estimated for ongoing trials. In other words, G is a random
variable with binary outcomes, {true,false}.

Each nearest neighbor n ∈ N provides a performance
estimate Ĉn along with a normalized weight wnnorm using
Eqs. (9) and (10). Applying G to each Ĉn tells whether each
nearest neighbor predicts success or failure. Thus, summing up
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the normalized weights of the nearest neighbors that predict
success yields the predicted success probability

P (G = true) =
k∑

n=1

wnnorm, if G(Ĉn) = true. (12)

The predicted failure probability is 1− P (G = true).
The proficiency assessor is a binary classifier that takes

as input the success probability in Eq. (12), compares it to
a subjective threshold θ, and indicates that the system will
succeed if P (G = true) ≥ θ. Varying θ changes the true
positive and false positive rates of the resulting classifier,
yielding the receiver-operator characteristic (ROC) curves,
which are useful for assessing discriminability.

V. CASE STUDIES

We applied AAT to three case studies: a navigation task, a
maze-based discrete time Markov chain, and a Sawyer robot
manipulating blocks on a table. The case studies were chosen
because they have different task domains and environments.
Consequently, the case studies provide evidence that a straight-
forward and simple implementation of AAT can produce
reasonably effective estimates of proficiency self-assessment
across many task domains.

Each case study implements study-specific elements of
AAT. However, in accordance with the process of AAT de-
scribed in the previous sections, each study consists of the
following steps. First, the assumptions made in the design
and implementation of the robot’s generator(s) are identified.
Second, veracity checkers for the identified assumptions are
implemented. Third, experiments are performed with varia-
tions in environment and system configurations to populate a
dataset, which is divided into a training and test set. Fourth,
case-specific parameters for the kNN algorithm are chosen and
used to predict the task success probability of the robot system
from the training set. The resulting predictor is then evaluated
on the test set. The remainder of this section describes these
elements for each case study.

A. Navigation Task

1) Task Domain: The robot is a simulated robot that can
spin in place in either direction or move forward. The robot is
equipped with two sensors: a camera that looks down on the
world from above and a sensor that detects whether or not the
robot is on a charging pad. The robot’s task is to navigate to
its charger within a certain amount of time.

In this case study, we consider the four world environments
shown in Fig. 3. These simulation environments include the
robot (shown as a blue circle) and its charger (shown as a red
square). All other entities shown in the figures, including black
line segments and pink and green robots (shown as circles),
are obstacles through which the blue robot cannot pass. The
four worlds shown in Fig. 3 are designed to represent different
difficulty levels, determined by the initial distance between
robot and charger as well as the number and placement of
obstacles. Mazes 1-2 were selected to generate training data,
while Mazes 3-4 were used to generate test data.

Maze 1 Maze 2 Maze 3 Maze 4

Fig. 3: Four worlds (or mazes) used in the navigation case
study. The blue (circle) robot is tasked with getting to its
charger (the red square). Black line segments and other robots
(green and pink circles) are obstacles in the environment.

Given that the robot must travel different distances to reach
its charger in each world, we set a different performance
standard for each world. The performance standards in Mazes
1-4 are set such that the robot should reach the charger within
60, 150, 300, and 220 seconds, respectively.

2) Generators and Assumptions: The simulated robot is
equipped with three different decision-making algorithms (or
generators) to perform the navigation task: (1) a mapper, (2) a
path planner, and (3) a controller. The mapper takes as input
the camera image and creates a map of the environment by
detecting and localizing itself and its charger in the world.
It also creates an obstacle map of the world. A new map is
created every time a new camera image is received. Mapper
assumptions are: (1) the camera produces up-to-date images,
(2) the camera is in the expected location, is oriented down-
ward, and has the assumed view-angle, (3) the camera sees
color according to specification, (4) the camera has low noise
and distortion, (5) the robot is blue and the charger red, and
no other objects in the environment are those colors, (6) the
robot and charger are visible in the camera image, and (7) all
obstacles are also visible and are not white in color. The
assumed output of the mapper is a consistent and accurate
map of the world.

The planner takes as input the map, created by the mapper
every time a new camera image is received, to plan a path
from the robot to the charger using RRT* [54]. In addition to
assuming the map created by the mapper is correct, the planner
assumes: (1) the robot is of the assumed size and shape, (2) the
world is stationary (other than robot movement), (3) there is
a path to the charger that can be found within 1500 iterations
of RRT*, and (4) the open space in the world has uniform
cost (i.e., the robot drives as easily through one open space as
another). The assumed planner output is a planned path with
a consistent path length.

The controller takes as input the planned path and outputs
commands to the robot’s actuators, which move the robot
along the chosen path to the charger. In addition to assuming
the path selected by the planner is feasible, the controller
assumes: (1) the robot’s actuators are engaged (and react to
the controller’s commands), (2) the robot spins at the expected
speed, (3) the robot moves straight when going forward, and
(4) the robot moves at the expected speed. The expected output
of the controller are wheel movements that move the robot
in the expected manner through the world. Together with the
expected output of the other two generators, the generators
are assumed to cause the robot to approach the charger at an



8

Sensor  Al i gnm ent  Checker s

Gener ator s

Input  Al i gnm ent  Checker s

Outputs

Envi r onm ent  Al i gnm ent  Checker s

One Charger
One Robot Expected Robot Size

Stationar y Wor ld

Robot Visible

Charger  Bigger Obstacles Visible

Robot Moves Straight

Camera Updated

There is a Path

Expected Color s

Expected Camera Resolution

Uniform Cost

Actuator s Engaged

Expected Spin Speed

Expected Robot Speed

Charger  Visible

Low  Camera Distor tion
Low  Camera Noise

Consistent
Map

Desir able 
Path

Expected 
Robot 

Movements

Approaching 
Goal

Output  Al i gnm ent  Checker s

Inputs

Actuator  Al i gnm ent  Checker s Pr ogr ess Checker s

Accumulated outputs over  time

DistanceSpeed

Fig. 4: The list of alignment and progress checkers imple-
mented in the navigation case study.

expected rate.
3) Alignment and Progress Checkers: Based on the iden-

tification of these assumptions, Fig. 4 shows the alignment
checkers that were implemented in this study to monitor the
veracity of these assumptions. Note that the experiments did
not include an alignment checker that verified that the camera
was located and oriented as expected. Progress checkers were
also created to monitor two parameters that correlate to the
robot’s performance: (1) the average speed with which the
robot has navigated so far and (2) the proportion of the
distance the robot has covered towards its goal (the charger)
from its initial position.

4) Study-Specific Details: Implementing AAT requires
specifications of study-specific values and mechanisms related
to Eqs. (8)–(10), including purported performance C([ot, . . .]),
raw weights (wnraw), and distance functions.

Purported Performance. For this navigation task, purported
performance is based on the amount of time we expect the
robot to take to traverse the path computed by the planner
under normal circumstances. The path computed (using RRT*)
by the planner consists of a sequence of segments in the
world. For each segment, the robot must first orient (spin
action) in the direction of segment, and then traverse the
segment (straight action). Given how fast we observed the
robot spin and move under normal circumstances, we compute
the purported performance of the robot as

C([ot, . . .]) = 4|P|+ 1.2 · dist(P)
vmax

, (13)

where P is a set of segments that define the planned path from
the robot’s current position to its charger, |P| is the number
of segments in the path, dist(P) is the length of the path P,
and vmax is the robot’s assumed maximum speed. The first
portion of Eq. (13) (i.e, 4|P|) indicates that it takes the robot
approximately four seconds on an average to orient to the
direction of the next segment after it has navigated a segment.
The second half of this equation specifies the average time
required to traverse the segments of the path when assumptions
are met. Because the robot needs to occasionally re-orient
(by turning in place) as it traverses a segment, it does not
always travel at full speed. Thus, the coefficient of 1.2 is
added (determined experimentally under normal conditions)

TABLE I: Combinations of assumption violations in the study

Combination of Variations Range of Parameters
Camera noise-Robot bias Noise: 0 to 0.3; Bias: -2 to 2
Camera noise-Robot speed Noise: 0 to 0.3; Speed: 1 to 11m/s
Camera distortion-Robot bias Distortion: -2 to 2; Bias: -2 to 2
Camera distortion-Robot speed Distortion: -2 to 2; Speed: 1 to 11m/s

to account for the time spent re-orienting as it traverses a
segment.

Raw Weight. In this case study, the raw weight for each
nearest neighbor, wnraw, is given by

wnraw = max(0, α− ‖D, f(ot), fn‖1) + β, (14)

where α = 5 and β = 0.5 are subjectively chosen. Eq. (14) is
subjectively chosen to guarantee that the raw weight is positive
and correlates to distance negatively. Pilot evaluations, not
reported in this paper, indicate that its parameters, α and β, can
be changed without substantially affecting AAT efficacy (e.g.,
different values of α and β are used for the block manipulation
case study). Moreover, Eq. (14) can be replaced with Eq. (15),
which is a more common way to compute raw weight.

Distance Functions. For Dall, the coefficient for each align-
ment checkers is set to 1, while the coefficients for the progress
checkers (average speed and proportion of traveled distance)
are set to 2 and 3, respectively. These coefficients are not
thoroughly optimized, but are subjectively set to adequately
balance the impact of alignment and progress assessments
in this study; the other case studies use the same weights.
Dalignment and Dprogress can be derived using Eq. (11).

5) Training and Evaluation: To evaluate the ability of the
robot to perform proficiency self-assessment, the simulator is
configured to allow a human to act as a foil to the robot. The
authors, acting as the foil, varied these scenarios by modifying
the robot’s camera sensor and actuators in two ways each: the
noise and distortion of the camera image, and the speed and
bias of the robot’s wheels (negative bias causes the robot to
drift right when moving straight, while positive bias causes the
robot to drift left). Table I describes how these variations were
randomized and combined together throughout the scenarios.
When the magnitude of variations is large, these variations
produce assumption violations (i.e., the generators were not
specifically designed to handle these scenarios), and hence the
robot is more likely to fail in the task.

The combinations of variations were applied evenly in
simulations across the four mazes (Fig. 3), yielding 41 sim-
ulations in each world. Simulations conducted in Mazes 1-2
were used for training data, while simulations conducted in
Mazes 3-4 were used to test the ability of AAT to discriminate
between successful scenarios and unsuccessful scenarios. In
these scenarios, variations were kept consistent for the entire
time the robot performed the task.

Many real world scenarios are prone to sudden changes
in the environment and system capabilities. For example, the
robot may suddenly begin to fail in the middle of a mission
if its sensors or actuators get damaged or its battery begins to
fail. Thus, to further test the efficacy of AAT, we conducted
three additional simulation runs where a sudden change was
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introduced about 60 secs after the task started. The same
AAT predictor (trained in the previously mentioned training
scenarios) was used to predict the task outcome for these
additional simulation runs. Table II lists the configurations for
these three sudden-change scenarios for this case study.

TABLE II: Configuration details for the simulations with a
sudden change in the middle

Configuration before Configuration after
Normal (all assumptions met) Camera noise altered to 0.25
Camera noise was 0.25 Normal (all assumptions met)
Normal (all assumptions met) Robot bias altered to -4.5

B. Maze-based Discrete Time Markov Chain

1) Task Domain: A simulated robot in a maze-based dis-
crete time Markov chain world (Fig. 5) attempts to reach
a goal state (1) within a specific number of time steps and
(2) with fewer than a specific number of collisions with walls.
The discrete time Markov chain components are: (1) State
space: In the maze world, white cells are valid states, black
cells are walls, and the blue cell is the goal state. The
world is surrounded by implicit walls. (2) Action space: The
robot’s action space is moving in the cardinal directions,
{up,down,left,right}. (3) Current state: The state where
the robot currently is. (4) Transition: The robot transitions
from the current state to the next state indicated by its action
(e.g., moving up if the action is up) with probability ρ,
and transits to one of the other three adjacent states with
probability (1− ρ)/3. The robot remains in the same state if
the transition would cause the robot to hit a wall. (5) Reward:
The robot gets a state-related reward when a transition happens
without a collision. If the robot hits a wall, it receives a
negative reward as a punishment for the collision. (6) Goal
state: a specified state in the world; e.g., the blue cell in Fig. 5.

The robot is equipped with the following sensors that assist
the robot to complete its task: (1) A simulated GPS that returns
the robot’s current state. (2) An obstacle sensor that indicates
which adjacent states are open and which are obstacles. (3) A
collision sensor that indicates whether the robot hit a wall
when it tried to move. (4) A direction sensor that reports
the direction the robot moved. (5) A simulated motor sensor
that reports the actual action (not the intended action) taken
by the robot. (6) A goal sensor that indicates whether the
robot is in the goal state or not. (7) A reward sensor that
reports the actual reward or punishment that the world gives
to the robot when it acts. The sensors only return correct
values with probability 0.99, and the following information is
returned when they give incorrect values: (1) The GPS returns
a location randomly chosen from the robot adjacent states;
(2) The obstacle sensor returns the false status of the robot
adjacent states; the correctness for each state is independent.
(3) The collision sensor returns the false outcome. (4) The
direction sensor returns a false direction randomly chosen from
all potential false directions. (5) The motor sensor returns an
action that is not in the action space. (6) The goal sensor

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5: State space used for simulations in the maze-based
discrete time Markov chain case study. White cells: valid
states. Black cells: walls. Blue cells: goal states. Red cells:
starting states.

returns the false outcome. (7) The reward sensor returns the
correct reward plus or minus 1.

2) Generator and Assumptions: The robot does not directly
know any of the components of the actual world described in
the previous subsection. Instead it assumes a specific config-
uration of the world, which may or may not match the actual
world. The robot generates its policy using the value iteration
algorithm (see, for example, [55]) under the assumption that
the real world’s state space, action space, transition probability,
and rewards match the specified configuration. The value
iteration algorithm is applied to the specified configuration
rather than the configuration in which the robot actually
operates. When the robot is in a state not represented in its
policy (due to its assumed state space being different than the
real state space), it takes an action randomly chosen from its
assumed action space. If the intended action is excluded in the
real action space, the robot takes an action randomly chosen
from the real action space.

3) Alignment and Progress Checkers: Since value iter-
ation is executed given the robot’s assumptions about the
world, alignment and progress checkers are needed; see
Fig. 6. The following Input alignment checkers were im-
plemented. (1) CurrentState checker: whether the state
deduced from GPS information matches with that deduced
from the motion information. (2) StateSpace1 checker:
whether the validity of the current state matches with the
assumption. (3) StateSpace2 checker: whether the valid-
ity of the surrounding states matches with the assumption.
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Fig. 6: Alignment and progress checkers in the maze-based
discrete time Markov chain case study.

(4) ActionSpace1 checker: whether the intended action is
valid. (5) ActionSpace2 checker: whether the action space
is consistent among the state space. (5) Reward checker:
whether the reward function matches with the assumption.
(6) GoalState checker: whether the goal state matches
with the assumption. (7) TransitionFunction checker:
whether the transition function matches the assumed transition
patterns. (8) Collision checker: whether detected collisions
are correct.

Moreover, two Output alignment checkers are implemented
to check the output of the generator: (1) Success checker:
whether the success probability estimated by the robot exceeds
0.5. (2) Approach checker: whether the task completion time
estimated by the robot keeps decreasing.

Three different progress checkers are also created.
(1) RobotMeanSpeed checker: the robot’s mean
speed, given by the Manhattan distance traveled
from the start position divided by the moves taken.
(2) CollisionProportion checker: actual number of
collisions the robot has experienced divided by the number
of collisions allowed. (3) DistanceProportion checker:
the Manhattan distance the robot has traveled from the start
position, divided by the Manhattan distance from the start
position to the goal position.

4) Study-Specific Details: Purported Performance. The
purported performance is estimated based on the algorithm
described in [56].

Raw Weight. The raw weight in this case study is computed
as follows. If all the distances are non-zero, wnraw is given by

wnraw = 1/‖D, f(ot), fn‖1. (15)

If some of the distances are zero, then wnraw is assigned one
for zero-distance neighbors and zero for non-zero-distance
neighbors.

Distance Functions. For Dall, the coefficients for all align-
ment checkers are set to 1, while the coefficients for the
progress checkers (average speed, proportion of traveled dis-
tance, proportion of taken collisions) are set to 1, 5 and 1,
respectively. Dalignment and Dprogress are from Eq. (11).

5) Training and Evaluation: We collect data from simu-
lations in three different simulated (actual) worlds with only
slight differences between each other. The first actual world is

TABLE III: Representative variations conducted in the maze-
based discrete time Markov chain study when the actual world
was World 1. Similar kinds of variations in configurations
were made for other actual worlds. For the action set: u=up,
d=down, r=right, l=left. The reward function is represented by
a tuple (valid state reward, collision reward, goal reward).

World Index State Space Action Set Trans. Prob. Reward
1 Fig. 5(a) {u, r} 0.7 (0, -1, 2)
2 Fig. 5(a) {u, l, r} 0.7 (0, -1, 2)
3 Fig. 5(a) {u, r} 0.5 (0, -1, 2)
4 Fig. 5(a) {u, r} 0.7 (0, -3, 2)
5 Fig. 5(c) {u, r} 0.7 (0, -1, 2)
6 Fig. 5(d) {u, d, l, r} 0.7 (0, -1, 2)
7 Fig. 5(a) {u, d, l, r} 0.5 (0, -1, 2)
8 Fig. 5(b) {u, r} 0.7 (0, -3, 2)

configured as World 1 in Table III. The second actual world
differs from World 1 in having a higher transition probability
(0.95) while the third actual world differs from World 1 in
having more walls near the robot start position (see Fig. 5(g)).

For each actual world, we consider two sets of assumed
worlds (i.e., the world the robot initially assumes it is in).
The first set includes a world identical to the actual world and
another 10 worlds with only one component varied from the
actual world. While the second set contains 10 worlds with 2
components varied from the actual world. Table III lists a few
representatives assumed worlds for the first actual world. Note
how (1) World 1 is identical to the actual world, (2) Worlds 2-5
each have one component varied from World 1, and (3) Worlds
6-8 each have two components varied from World 1. Similar
assumed worlds are used for the other two actual worlds.

Since the assumed worlds in the second set differ from the
actual world more than the assumed worlds in the first set, we
train the kNN model on data from the first set and test the
model on data from the second set, so that we can check the
capability of the model to generalize from easier scenarios and
predict well in harder scenarios. We conduct 50 simulations
for each assumed world.

As in the other case studies, in addition to evaluating
the ability of AAT to predict success and failure in worlds
with static conditions, we also analyze its effectiveness when
conditions in the world suddenly change. Thus, we consider a
scenario in which a sudden change is introduced about 15 time
steps into the simulation. In this scenario, the actual world is
initially configured as World 1 (Table III) for the first 15 time
steps. While after 15 time steps, the state space is suddenly
altered to Fig. 5(g) (i.e., more walls are added near the robot’s
start state). Meanwhile, the robot assumes that it is in World
1 during the entire simulation.

C. Block Manipulation by a Sawyer Robot

1) Task Domain: A Sawyer Robot [57] is tasked with
organizing blocks, each of which has a different color and
shape, on a table. It has a 7 DOF arm for manipulation and a
pneumatic gripper attached to the arm for grasping. The robot
uses a Kinect2 camera [58] mounted on the ceiling to perceive
the environment from a bird’s eye view.
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Fig. 7: A Sawyer robot was tasked with organizing blocks on
a table in the block-manipulation case study.

Fig. 7 shows the task setup consisting of the robot and a
table. The table has nine blocks of three different colors and
shapes. The robot’s task is to arrange these blocks in the center
of the table in a desired arrangement within a certain amount
of time. The top left inset figure shows the environment as
perceived and expected by the robot. Any other entities on
the table other than the blocks of the three shapes and colors
are perceived as foreign objects. The bottom right inset figure
shows the desired arrangement of blocks at the end of the task.

Task difficulty is controlled in part by varying the initial
configuration of blocks on the table. Based on the initial
positions of the blocks, it can require a different number of
total swaps to complete the task, where one swap is defined as
one complete pick and place operation. Thus, at a given time
for each visible block, the calculated number of swaps can be
either (a) 0 : If the block is already at goal position, (b) 1 :
If the block is not at the goal position but the goal position is
free or (c) 2 : If the block is not at the goal position and the
goal position is occupied by another block. We subjectively
set the acceptable performance standard for this task at 300
seconds (i.e., the robot succeeds if it sets up the table in less
than 300 seconds), regardless of the number of swaps required
to properly arrange the blocks on the table.

2) Generators and Assumptions: The Sawyer robot uses
three different generators to perform the table setup task:
(1) a mapper, (2) a path planner, and (3) a controller. The
mapper takes as input the camera image and the point cloud
(produced by the distance sensor on the Kinect) and creates a
map of the environment by detecting the table and the blocks
and localizing the blocks in the environment with respect
to the robot base. Mapper assumptions are: (1) the camera
produces up-to-date images; (2) the camera sees the colors
according to specification; (3) image brightness of the camera
image is according to specification; (4) the table is visible
and is a flat rectangle; (5) there are nine blocks visible on
the table of a combination of 3 colors (red, blue, purple)
and 3 shapes (square, triangle and circle) and there are no
missing or duplicate blocks and no foreign objects present on
the table; (6) the blocks are being consistently detected and
have sufficient spacing between them. The assumed output of
the mapper is a consistent and accurate map of the table. The
colors and shapes of blocks were detected using color and

edge detection techniques using OpenCV [59].
The planner takes as input the map, created by the mapper,

and consists of two sub-components: the high level and the
low level planner. The high level planner combines a history
of the block attempts with the map and goal specification to
plan which block to move next. Given the selected block and
the map, the low level planner plans a path for the arm to
move the gripper from the current position to the current block
location (pick), and then (once grasped) to move the block to
the desired position on the table (place). The low level planner
uses MoveIt [60] for motion planning. In addition to assuming
that the map provided by the mapper is correct, the planner
assumes that the (1) world is stationary (other than the robot
movement and the block moved by the robot) and that (2) the
planner output is reasonable given the task (i.e., there exists a
trajectory that can be executed within a reasonable time-bound
given the planner selected from the MoveIt library).

The controller takes as input the planned path and outputs
commands to the robot’s arm and gripper, moving the robot
arm along the chosen path to pick and place selected blocks.
In addition to assuming the path selected by the planner is
desirable, the controller assumes: (1) the robot’s arm moves
at the expected speed within the set bounds, (2) the gripper is
working properly; (2) the robot joint movements are expected,
(4) up-to-date robot state is available, with robot not being
in an error state; and (5) no collision is detected during
trajectory execution. The expected output of the controller is
joint movements to move the robot’s arm.

3) Alignment and Progress Checkers: Fig. 8 summarizes
both the veracity and progress checkers we implemented for
this case study. Alignment checkers were implemented for
each assumption with two exceptions. Due to the difficulty
in detecting in real time if the robot’s camera is not cali-
brated properly, we did not implement a camera calibration
checker for this study. Additionally, we did not implement
an alignment checker to evaluate expected planner output.
Future work should explore how such alignment checkers
could be implemented to check both of these assumptions.
In addition to the alignment checkers, we implemented three
progress checkers, which monitored the (1) mean speed of
the robot (computed as the running average of time taken per
swap), (2) the time elapsed since the last swap was complete,
and (3) the number of completed swaps divided by the total
number of required swaps identified at the start of the task.

4) Study-Specific Details: Purported Performance. The
purported performance for the robot is given by

C([ot, . . .]) = SwapsRemaining · T0, (16)

where SwapsRemaining is the remaining number of swap
operations at time t and T0 is the average time for the robot
to complete one swap under nominal circumstances. T0 was
pre-calculated empirically to be approximately nine seconds.

Raw Weight. The raw weight for this case study is computed
using Equation (14), but with values α = 3, β = 0.2.

Distance Functions. The weighting vector for all checkers
Dall is the 1-vector of size M+K, [1, . . . , 1] ∈ RM+K , where
M and K are the numbers of alignment and progress checkers,
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ulation case study.

respectively. Therefore, the weighting vectors for alignment
and progress checkers, Dalignment and Dprogress, are the 1-
vectors with size M and K, respectively.

5) Training and Evaluation: For training data, we con-
ducted 30 trial runs with the Sawyer robot setting up the table,
each with a different initial table configuration. In ten of these
trial runs, all conditions were normal (e.g., lighting conditions,
block placement, etc. match robot assumptions, though noisy
veracity checkers still sometimes reported violations). In the
other 20 training runs, we varied aspects of the robot’s camera
(e.g., hue, saturation, exposure, brightness) to impact its vision.
Many of these alterations caused violations of the assumptions
made by the robot’s mapper generator, causing the robot to
either not detect blocks or misclassify them.

As in the previous case studies, we evaluate the resulting
predictor (trained on the stated training set) in two conditions:
static scenarios and sudden-change scenarios. For the static
test scenarios, we conducted an additional 30 trial runs (10 in
nominal conditions, 20 with variations in camera parameters),
each with a different initial table configuration.

Two sudden-change scenarios were used. In the first sce-
nario, the robot operated under nominal conditions for the
first 54 seconds. At that time, we suddenly altered the hue
and brightness on the robot’s camera. Both the nominal initial
conditions and the conditions after the change in this scenario
are representative of the conditions of some trial runs in the
robot’s training data. In the second scenario, we tricked the
robot for the first 60 seconds of the run by moving any block
the robot reached for before it could grasp it. After 60 seconds,
we stopped doing this (conditions returned to normal). The
condition in the first 60 seconds of this scenario (moving the
block from the robot) is not represented in the training data.

All runs in this study are terminated after either successful
task completion or after 300 seconds, whichever comes sooner.

VI. RESULTS

This section first demonstrates the correlation between as-
sumption veracity and robot performance, and then evaluates
AAT when sudden-changes occur during task execution.

A. Correlation between Veracity and Robot Performance

AAT relies on the hypothesis that the ability to evaluate
the veracity of generator assumptions can provide rich insight
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Fig. 9: Average assumption violations detected per unit time
compared with task completion time in Mazes 2 (left) and 3
(right) in the navigation study. Similar trends existed in
Mazes 1 and 4. Blue lines depict linear fits to the data for
visualization purposes, but a linear relationship is not implied.

into a robot’s performance. Since this hypothesis is intuitive,
we only use the data from the navigation case study to
test it, for simplicity. Fig. 9 shows the correlation between
robot performance (measured as time-to-completion, where
higher time indicates worse performance) and the number of
detected assumption violations per unit time for Maze 2 and
3 in the navigation study. In each world, task performance
was negatively correlated with the number of violations in
assumptions. As the number of detected violations in assump-
tions per unit time increases, completion time also tends to
increase. Pearson correlations confirm statistically significant
(p < 0.001) and strong correlations between the number of
assumption violations and completion time in each world, with
r = 0.778 in Maze 1, r = 0.874 in Maze 2, r = 0.802
in Maze 3, and r = 0.890 in Maze 4 (results for Maze 1
and 4 are not shown in the figure). Note that simulations
were automatically terminated after 400 seconds, meaning
that completion times marked as 400 seconds would have
been higher had the simulation been run to completion. These
results indicate that tracking the veracity of assumptions can
be useful for understanding robot performance.

B. Evaluating AAT Given a Consistent Configuration

The ability of AAT to discriminate between success and
failure during task execution across all three case studies
is summarized in Fig. 10. Figs. 10a-c show results for the
navigation case study, Figs. 10d-f show results for the maze-
based discrete Markov chain, and Figs. 10g-f show results
for block manipulation by a Sawyer robot. The figure shows
similar trends across all three case studies.

Figs. 10a, 10d, and 10g show that when both alignment and
progress checkers are used (i.e., we use the distance function
Dall), AAT effectively differentiates between scenarios where
the robot succeeds and scenarios where the robot does not
succeed. In instances in which the robot fails to complete
the task on time, the algorithm predicts substantially lower
probability of success, on average, than scenarios in which
the robot eventually succeeds in the task. These differences
in predicted probability of success begin in the early stages
of the mission, suggesting that the predictor not only makes
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Mazed-based discrete Markov chain
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Block Manipulation by a Sawyer Robot
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Fig. 10: AAT effectively discriminates between success and failure in scenarios with a consistent configuration. (a–c) navigation
task; (d–f) maze-based discrete time Markov chain; (g–i) block manipulation by a Sawyer robot. (a, d, g) The average predicted
probability of success over time (using the weighting vector Dall) for cases in which the robot completed and did not complete
the mission on time. Error ribbons show the standard error of the mean. (b, e, h) ROC curves showing the ability of the
performance estimator to determine whether the robot’s performance meets an acceptable threshold at various points in time
(using the weighting vector Dall). (c, f, i) The discriminability of the predictor (as measured by the area under the ROC
curve–0.5 indicates no discriminability) over time using the three different weighting vectors.

effective in situ assessments, but it also can make effective a
priori assessments of proficiency at the onset of the mission.

Figs. 10b, 10e, and 10h show receiver operating characteris-
tic (ROC) curves for the binary proficiency assessor classifier
at various times throughout the mission. In these figures,
the percentage of mission elapsed is calculated according to
the respective performance standard, where the time corre-
sponding to the performance standard is equivalent to 100%
mission time elapsed. Line colors and types indicate elapsed
mission percentage. The lower left corner of the ROC curve
corresponds to a success criterion of θ = 1 and the upper
right corner of the ROC curve corresponds to θ = 0 (see
Section IV-C). These figures show high discriminability in all
case studies by the time 50% of mission time has elapsed.

However, high discriminability comes much earlier, on
average, in the navigation and block manipulation case studies
than in the discrete maze study. In the former two studies,
the robots’ camera sensors allow them to observe the entire

environment at once, rather than only receiving limited local
information about its current state (as is the case in the discrete
maze). This larger amount of information allows the robot to
make more extensive and comprehensive evaluations about its
assumptions at each time step. For example, the robot can
perform assessments about whether its camera is returning
images that meet assumed specifications and whether or not
the entire environment meets assumptions (with respect to
stationarity, recognition of objects, etc.). For this reason, the
robots in the navigation and block-manipulation studies are
often able to detect many violations of generator assumptions
long before the robot’s generators begin to fail. By contrast, the
robot in the discrete maze-based simulations gets to sense only
one state of the environment at a time. It therefore must move
more before it is able to reason about whether assumptions
made by the generators are or are not met.

Finally, Figs. 10c, 10f, and 10i compare the effectiveness
of the three weighting vectors (Dalignment, Dprogress and Dall)
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Fig. 11: Number of violations detected and the predicted probability of success over time for sudden-change scenarios in the
navigation study using three different weighting vectors (see legends). (a) Scenario in which everything is normal for the first
60 seconds. After that, camera noise begins. (b) Scenario in which there is a large amount of noise in the camera image for
the first 60 seconds. After that, camera noise is corrected so that all assumptions are met. (c) Scenario in which, for the first
60 seconds, everything is normal. After that, the robot’s wheel is damaged (bias = -4.0) causing it to drift. The extent of the
bias produces conditions that are not represented in the training data, hence predictions do not correct quickly.

in the three studies by plotting the area under the ROC curve
over time. In these plots, a discriminability of 0.5 indicates that
the predictor cannot differentiate at all between success and
failure, and a discriminability of 1.0 indicates that the predictor
can fully differentiate between success and failure. While all
predictors eventually produce high discriminability in all three
case studies, predictors that use alignment checkers produce
higher discriminability early in the mission. The distinction
between the effectiveness of alignment checkers and progress
checkers in the first half of a mission is particularly stark in
the navigation and block-manipulation studies.

These results indicate that alignment checkers enable ac-
curate assessments of robot proficiency using AAT early in
a mission. On the other hand, predictors based on progress
checkers are typically unable to discriminate effectively be-
tween success and failure as soon.

C. Evaluating AAT in Sudden-Change Scenarios

The results in the previous subsection indicate that align-
ment checkers are typically more effective than progress
checkers early in the mission. To more fully understand the
strengths and weaknesses of alignment and progress checkers,
we consider scenarios in which conditions change during the
mission. We present results for these sudden-change scenarios
for each case study separately given the use of only alignment
checkers, only progress checkers, and both kinds of checkers.

1) Navigation task: The results of the three sudden-change
scenarios described in Section V-A5 are shown in Fig. 11.
These figures show both the number of assumption violations
detected at each time step (top) as well as the predicted prob-
ability of success by each predictor (predictors vary by which
veracity checkers are used). In the first scenario (Fig. 11a),
conditions are normal (i.e., they meet the generators’ assump-
tions) for the first 60 seconds, resulting in few assumption
violations being detected by the alignment checkers, and each
of the three predictors predicts a high probability of success.

At 60 seconds, camera noise is introduced at a level that is
within the bounds of samples from the training data (noise was
0.25; see Table I), leading to the robot failing to accomplish
the task within the allotted time. As soon as camera quality
is changed, the robot immediately starts detecting assumption
violations (top panel of Fig. 11a). As a result, the alignment-
only predictor immediately predicts a substantially reduced
probability of success. However, the progress-only predictor is
biased by the fact that the robot initially performed very well
and, consequently, takes a long time to adapt its predictions
after the change. The combined predictor adapts slower than
alignment-only but faster than progress-only.

Results of a second scenario, shown in Fig. 11b, tell a
similar story. In this scenario, the camera image quality is poor
during the first 60 seconds, but is corrected after 60 seconds.
As a result, the robot succeeds in the task. Once the camera
noise is corrected, the alignment checkers immediately detect
fewer assumption violations. Additionally, the alignment-only
and combined predictors almost immediately estimate a higher
probability of success (the increase for the combined predictor
is lower due to the impact from progress checkers), which
gradually increases as the scenario goes on. However, the
progress-only predictor takes a long time to predict success
after the sudden change given that the robot’s performance
was so poor during the first 60 seconds of the mission.

The results of these first two sudden-change scenarios
highlight a strength of alignment checkers and a weakness
of progress checkers. Consistent with what we observed in
the last subsection, alignment checkers allow AAT to quickly
detect whether conditions are likely to produce task success
when conditions are representative of its past experiences. By
contrast, progress checkers, which are based on the robot’s
progress on the task so far, are often unable to adapt quickly.

A third sudden-change scenario, however, identifies limita-
tions of our implementation of AAT based only on alignment
checkers. In this scenario, depicted in Fig. 11c, all generator
assumptions are met for the first 60 seconds (as in the first
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scenario). However, at 60 seconds, the robot’s motors are
damaged (i.e., robot bias is set to -4.5), which causes the
robot to move in circles when it attempts to go straight. While
variations in robot bias were part of the robot’s training set, this
variation is outside the range of the training data (the variation
is more severe; see Table I). As such, after the change, the
robot identifies the assumption violations, but predicts that it
will still be able to complete the task in time. Only after sub-
stantial time does its prediction of success begin to decrease
for all predictors. This result indicates that, for predictions
based on alignment checkers to be accurate, conditions must
be represented in the robot’s training data. Future work should
explore how to augment AAT so that it considers whether
conditions are within its training experiences.

2) Maze-based discrete-time Markov chain: In the single
sudden-change change scenario we consider in the maze-based
discrete-time Markov chain environment, the robot believes
that it is in the world shown in Fig. 5a. This assumption
is correct for the first 15 moves, and hence relatively few
violations are detected (Fig. 12). At move 15, the environment
is suddenly altered to the world shown in Fig. 5c (i.e., walls are
added to the environment). The change is correctly identified
by one of the alignment checkers at time step 16, specifically
the StateSpace2 checker (see Section V-B2). Interestingly,
the number of total assumption violations shown in the top
panel remains the same, which is because another alignment
checker (the Approach assumption checker) turns off.

The bottom panel of Fig. 12 shows the predictions made
with the three different weighting vectors. As expected, the
alignment-only predictor estimates a decreased probability of
success once the state-space change is identified. However,
that decrease lasts for only two time steps. After time step 18,
the prediction of the alignment predictor rebounds since, even
though there are extra walls adjacent to the robot, the robot
still manages to keep approaching the goal state, which inhibits
and finally overtakes the effect of the state space assumption
violation. After time step 29, the robot starts hitting a wall
frequently. However, since the set of alignment checkers did
not include a checker that evaluated the assumption that the
robot should not hit a wall, the alignment-only predictor is not
able to respond to the frequent collisions until time step 36.

On the other hand the progress-only predictor predicts
success until about time step 28, since it is not aware of
the change and the robot still keeps approaching the goal
state. After time step 29 when the robot starts hitting a
wall frequently, the Collision progress checker (which
counts collisions) starts accumulating, leading to the progress
predictor dramatically decreasing its prediction. The combined
predictor responds to both the sudden change and the frequent
collisions, making it the best predictor for this trial. The
result for this case study not only strengthens the claim
that alignment-only predictors are more sensitive to sudden
change than progress-only predictors, but also indicates the
importance of covering as many assumptions as possible.

3) Block Manipulation by a Sawyer Robot: The results of
the two sudden-change scenarios with Sawyer are consistent

Fig. 12: Assumption violations detected and predicted proba-
bility of success for a sudden-change scenario in the discrete
maze study. For the first 15 time steps, the environment is
configured as in Fig. 5a. At time-step 15, more walls are added
near the robots start state (Fig. 5g). The robot’s generators
assume the initial world configuration at all times.
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Fig. 13: Assumption violations detected and predicted prob-
ability of success for sudden-change scenarios in the block
manipulation study using three different weighting vectors
(see legends). (a) Scenario in which, for the first 54 seconds,
everything is normal. After that, camera settings are modified
resulting in noise in the camera image. (b) Scenario in which,
for the first 60 seconds, the block that the robot was seeking
was moved every time the robot tried to grasp it (a condition
that was not represented in the training data). After 60 seconds,
the trickery ended (conditions became normal).

with those of the other two case studies (Fig. 13). In the
scenario corresponding to Fig. 13a, conditions were normal for
the first 54 seconds, after which the hue and brightness on the
camera sensor were changed so that they no longer met genera-
tor assumptions. This led to the robot failing to finish arranging
the blocks on the table. Prior to the change, the alignment-
only predictor predicted that the robot would complete the task
with near certainty and the progress-only predictor was less
certain. After the change, all predictors quickly decreased their
predictions of success. The rapid response is possible because
the altered conditions were represented in the training data.

In the second scenario, depicted in Fig. 13b, a person moved
the block whenever the robot attempted to pick it up during
the first 60 seconds of task execution. After 60 seconds, this
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trickery ended and conditions became normal, which led to
the robot completing the task in time. Although the robot
would have been unable to successfully complete the task
had the trickery continued, the alignment-only predictor still
predicted a probability of success for the first 60 seconds
for two reasons. First, the initial conditions were outside the
robot’s training data. Second, a key assumption checker, one
designed to detect a non-stationary world, did not operate
according to specification. Thus, the alignment checkers were
not able to identify assumption violations and the resulting
alignment-only predictor inaccurately predicted success. The
progress-only predictor performed better because the trickery
impacted robot performance resulting in re-attempts and/or
failures to pick up the block(s). Thus, both the progress-only
and the combined predictors figured out that the robot would
fail at the task with high probability by about 30-40 seconds
into the mission. When the human stopped moving the blocks
away from the robot, the robot successfully completed the task
less than 100 seconds later but the progress-only predictor was
slow to detect the changed circumstances, while the combined
checker adapted its predictions more quickly.

This scenario highlights the potential benefits of progress
checkers. Progress checkers, though often slow to diagnose
success and failure conditions (because they need accumulated
data), have an important role in that they can successfully
predict success or failure when alignment predictors fail. This
is important because alignment-only predictors will fail if an
assumption is missed, if an alignment checker fails, or if the
training data insufficiently covers a failure condition. Thus, an
effective combination of alignment and progress checkers can
be useful in performing proficiency self-assessment with AAT.

VII. DESIGN TRADEOFFS

A. Proficient Behavior vs. Proficient Assessment of Behavior

The case studies demonstrate that AAT can effectively
perform proficiency self-assessment. However, it took more
effort to implement AAT in these systems than it took to
create the robot generators. For example, we implemented
the generators for the navigation case study using about 1100
lines of computer code, while our implementation of AAT
(including assessing input and output assumptions and defining
the prediction function F ) required over 2700 lines of code.
Though lines of code do not perfectly represent effort, the
number of lines of code in this case study coincides with our
observation that it took more effort to implement AAT than to
implement the generators themselves.

This subjective observation about effort highlights a poten-
tial tradeoff in designing autonomous robot systems: Should
system designers focus more on developing proficient au-
tonomous behavior or on creating proficient assessments of
behavior? This tradeoff is visualized in Fig. 14a, which illus-
trates several hypothetical systems including an ideal system
that is both proficient and capable of self-assessing proficiency.
System A represents a system in which designers spent all of
their time developing proficient robot behaviors and ignored
the problem of proficiency self-assessment. Such a system

would be acceptable in scenarios in which either the robot
never fails or when it is unnecessary to identify failures.
However, in situations in which failing to identify failures has
large implications, System B (in which system designers focus
more extensively on developing proficiency self-assessment
capabilities) might be a better choice. System C illustrates
a potential middle ground in which the robot has neither ideal
behavior generation nor ideal behavior assessment, but design
effort is allocated to produce reasonable proficiency in both
behavior generation and behavior assessment.

B. Implementation Effort vs. Efficacy of AAT

In AAT, one way to save the design effort to proficient
assessment of behavior is limiting the number of assumptions
that are tracked, which we argue has complex effects on
AAT efficacy. On the one hand, appropriate simplifications of
checkers would not hurt AAT efficacy too badly, since some
checkers correlate with others. On the other hand, checker
redundancy would help to compensate for false outputs of
unstable checkers, therefore making AAT more robust.

1) Checker Simplification: We observed that veracity as-
sessments among assumption checkers tended to correlate with
each other. For example, in the navigation case study, changes
in the veracity of assumptions made about the robot’s sensors
and actuators subjectively correlated with (and likely caused)
assumption violations about generator outputs. In this exam-
ple, violated assumptions about generator output are symptoms
of violated input assumptions. Additionally, we observed that
assessments of some input assumptions seemed to correlate
with each other. For example, in the navigation case study,
violating assumptions about the amount of sensor noise often
caused the robot to believe that its actuators were not behaving
according to assumptions. These anecdotal observations give
credence to the idea that not all assumptions need to be tracked
for the robot to self-assess its proficiency.

We explored that idea by evaluating how well AAT esti-
mated robot performance in the navigation case study given
various subsets of checkers identified in Fig. 4. Since these
subsets require different amounts of effort to implement, as
measured both by the useful (though imperfect) metrics of
lines of code and number of alignment checkers (Fig. 14b),
it is informative to evaluate how different subsets impact the
ability of the robot to assess its performance.

Fig. 14c uses the area under the ROC curve to compare the
ability of each subset of checkers to accurately discriminate
between success and failure over the initial stages of the
robot’s mission. The figure shows that all subsets of checkers
differentiate between success and failure substantially better
than random guesses even at the start of the task. After 10% of
the mission is completed, all subsets of checkers produce high
discriminability, though with some small variations. However,
the subsets of Output and Actuator alignment checkers (Fig. 4)
initially produced lower discriminability than the other subsets
of checkers, suggesting that assessment accuracy is affected
by which checker subset is chosen but that some subsets can
be very accurate. These results indicate that not all generator
assumptions need to be tracked in order for the robot to do a
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Fig. 14: An illustration of the tradeoff between implementation effort and discriminability of AAT. (a) Hypothetical tradeoff for
designing robots that have both proficient behaviors and are proficient at assessing their behavior. (b) Implementation effort to
create various subsets of assumption checkers as measured by number of checkers (top) and lines of computer code (bottom).
Since progress checkers required minimal effort to create in this case study, implementation effort for progress checkers is
not shown. (c) Discriminability of AAT as a function of mission time based on the area under the ROC curve for various
subsets of assumption checkers. (d) Tradeoff between implementation effort and discriminability after 5% of the mission was
complete. 1 - Implementation Effort is computed as one minus the percentage of checkers used. An ideal outcome would be
in the upper right-hand corner – which would indicate perfect discriminability achieved without any implementation effort.
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Fig. 15: AAT assessments in a single run of the block-
manipulation task under normal conditions.

reasonably good job of assessing its own proficiency, but that
the subset of checkers chosen is important.

The tradeoff between the implementation effort and discrim-
inability of AAT in the navigation case study is plotted in
Fig. 14d. Ideally, the system would produce full discriminabil-
ity at no effort to the system creator, which would produce a
point in the upper right-hand corner. In practice, the set of
Sensor alignment checkers (Fig. 4) seems to provide a good
tradeoff in producing high discriminability with relatively low
implementation effort in the scenarios tested.

2) Checker Redundancy: When some checkers are not
robust or require extra implementation effort to be robust,
redundancy in checkers can help improve the overall stability
of AAT. For example, in the block-manipulation case study,
a robust implementation of the ExpectedBrightness
and ExpectedTableState alignment checkers would re-
quire considerable effort. Even if these alignment check-
ers yield incorrect veracity assessment, some robust and
easier-to-implement checkers, such as the BlocksVisible
and NoMissingBlocks checkers, will likely yield accu-
rate results that could compensate for those errors. Fig. 15
illustrates that situation in a specific robot trial in the
block-manipulation case study. In the first 20 seconds of

the trial, nominal conditions prevailed. After 20 seconds,
there were slight and unintentional changes in lighting,
causing a few alignment checkers to indicate assump-
tion violations, particularly ExpectedBrightness and
ExpectedTableState. Since complementary alignment
checkers (NoMissingBlocks and BlocksVisible) did
not indicate assumption failures and since training data in-
cluded such cases, the predictors still indicated likely success.
Indeed, the robot completed the task in just under a minute.

VIII. DISCUSSION

In our implementations, we used the kNN algorithm to
make proficiency assessments from past experiences since
kNN is reasonably effective given limited data, such as the
scenarios we consider in this paper. Furthermore, the solutions
of the kNN algorithm are easily interpreted when explanations
of proficiency self-assessment are required. That said, other,
potentially more powerful, machine-learning algorithms could
be chosen to learn η in future work.

Results in Section VI demonstrates that AAT can produce
reasonably accurate assessment of proficiency across many
task domains. This provides some evidence that AAT appears
to generalize better than the methods presented in [12], [13].
AAT is purely data-driven and does not require a priori
probabilities of the primitive tasks needed in [11]. Finally,
FaMSeC [20]–[24] uses only progress checkers, while AAT
uses both alignment and progress checkers.

The three case studies demonstrate that alignment and
progress checkers have different strengths and weaknesses. It
is not always clear how violations in assumptions detected
by the alignment checkers will impact robot proficiency. The
case studies also suggest that alignment assessments tend to
respond more quickly to potential issues that arise, which can
lead to earlier detection of potential failures than assessments
made by progress checkers. On the other hand, the case
studies suggest that a successful system might require only a
small number of progress checkers since they effectually make
aggregate assessments of the behavior of multiple generators.
However, the progress checkers used in this paper do not
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provide detailed knowledge for the reasons for failure or
success, nor do they tend to detect potential issues as quickly
as alignment checkers. Importantly, results in Section VI-C3
suggest that progress checkers act as a catch all that can com-
pensate for missing assumptions, alignment checker failures,
and failure conditions uncovered in training data. Therefore,
proficiency self-assessment benefits from using both forms
of checkers. Future work should address best balance design
effort in creating these two forms of checkers.

Observe that the result in Section VII-B does not suggest
a specific “optimal” tradeoff choice for implementing AAT,
such as only implementing sensor-based alignment checkers.
Different systems and scenarios will likely produce different
results with respect to these tradeoffs. However, these results
demonstrate that identifying effective subsets of checkers to
implement can substantially reduce the effort required to
implement AAT while keeping the efficacy of AAT high.

Moreover, we emphasize that the tradeoff between time
spent generating quality behaviors and performing quality
assessment can be misleading. The metaphor of writing test
cases for computer code is applicable. Frequently, doing unit
testing in software engineering produces better code in less
time. We hypothesize that something similar will likely occur
with creating alignment checkers in parallel with creating
behavior generators. Explicitly identifying and tracking as-
sumptions made in the implementation of decision-making
algorithms can help to produce more effective robot behavior.

IX. LIMITATIONS

First, AAT requires the system designer to have a deep
understanding of the robot system to be designed and to put
in extra implementation effort. This could be limiting if the
designer is integrating a set of off-the-shelf algorithms in the
robot system. Moreover, it can be difficult or even infeasible to
identify all assumptions. We think that using straightforward
and easy-to-implement progress checkers that aggregate many
assumptions could ease this issue. Moreover, we hypothesize
that many checkers could be designed to be reusable across
tasks and robot systems. If checkers can be designed to
be easily tuned or modified, the implementation effort and
difficulty of implementing AAT would be reduced. Many off-
the-shelf robotic systems use common tools and libraries such
as ROS as a middleware, the MoveIt library for planning and
manipulation, and the ROS navigation stack for navigation
applications. If these common tools were labeled with the
list of assumptions that they make or paired with appropriate
alignment checkers then generalizability to new tasks and
robots could be facilitated. Additionally, systems with similar
generators or applications have similar assumptions, which
makes it easier to reuse checkers across applications.

Second, the two simulated robot systems both involve
simplifications that are not very realistic in a real-world case.
Such simulation-reality gaps could make veracity checking
more challenging for real-world applications of AAT. Indeed,
we notice that it is more difficult to implement checkers
for the block manipulation study than the two simulated
studies. As discussed before, we hypothesize that keeping a

certain level of checker redundancy could ease such issues.
We also hypothesize that some existing algorithms for robot
perception could be adopted to implement real-world checkers,
such as algorithms described in [61]–[63]. Nevertheless, we
acknowledge that general application of the AAT framework
may be challenging in large, real-world systems.

Third, the three case studies have relatively simple tasks
with achievement-oriented goals [34]. Applications of AAT to
complex tasks such as autonomous driving or long-duration
autonomy could be challenging. When a complex task can
be decomposed into simple sub-tasks, then it is conceivable
that the composition of AAT components designed for each
subtask could yield an AAT system for the complex task.

Fourth, the proposed AAT framework assumes single-robot
systems. We envision two potential ways of adapting AAT
to collaborative robot teams. One way is to implement AAT
for each robot in the team and then create mechanisms that
combine proficiency assessment of each robot to assess the
team’s proficiency. The other is identifying assumptions and
implementing checkers for the whole team.

Finally, the proposed AAT framework assumes additive
cost functions. For non-additive cost functions, the framework
could potentially be adapted by adjusting Equations (4)-(5).

X. SUMMARY AND FUTURE WORK

This paper formalizes a method for designing robots
that perform proficiency self-assessment. This method, called
assumption-alignment tracking (AAT), is developed from the
perspective that proficiency self-assessment is awareness of
how one’s generators (i.e., decision-making algorithms) inter-
act and align with the environment(s), robot hardware, and
task(s) under consideration. In AAT, the robot continually
monitors the veracity of input and output assumptions made
in the construction of its generators, and then uses these
assessments to estimate the robot’s ability to perform the
task. Three case studies (a simulated robot navigating in a
discrete maze environment, a simulated robot navigating in
a continuous environment, and a real robot arranging blocks
on a table) demonstrate that AAT can perform informative
proficiency self-assessment often even before a task has been
started. However, results also show that the quality of AAT’s
performance predictions do vary based on the coverage and
quality of assumption checkers that are created, as well as how
representative training data is to the current scenario. Results
also demonstrate opportunities and challenges for integrating
explicit evaluations of assumptions with evaluations of profi-
ciency that are based on robot progress on its task.

Future work is needed to better establish AAT’s usefulness
as a systematic approach to proficiency self-assessment. This
includes designing more general and reusable checkers, apply-
ing AAT to more complex robot systems (including collabo-
rative robot teams with more complex tasks and non-additive
cost functions), better understanding the design tradeoffs
between generator quality and alignment checker coverage,
and using assumption tracking to develop explanations [64]
about proficiency assessments. Further work is also needed to
establish benchmarks for proficiency self-assessment [65].
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