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ABSTRACT
Despite the importance of mutual adaption in human rela-
tionships, online learning is not yet used during most suc-
cessful human-robot interactions. The lack of online learn-
ing in HRI to date can be attributed to at least two un-
solved challenges: random exploration (a core component of
most online-learning algorithms) and the slow convergence
rates of previous online-learning algorithms. However, sev-
eral recently developed online-learning algorithms have been
reported to learn at much faster rates than before, which
makes them candidates for use in human-robot interactions.
In this paper, we explore the ability of these algorithms to
learn to interact with people. Via user study, we show that
these algorithms alone do not consistently learn to collab-
orate with human partners. Similarly, we observe that hu-
mans fail to consistently collaborate with each other in the
absence of explicit communication. However, we demon-
strate that one algorithm does learn to effectively collaborate
with people when paired with a novel cheap-talk communi-
cation system. In addition to this technical achievement,
this work highlights the need to address AI and HRI syner-
gistically rather than independently.
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1. INTRODUCTION
As in human-human relationships, many human-robot in-

teractions are punctuated by repeated interaction amid con-
flicting interests. Due to information asymmetry, modeling
effects, and differences between the goals of interacts and
robot designers, the robot may pursue an agenda that is not
fully shared by its human partner. For example, consider a
robot provided by an individual to their elderly parent. The
robot may provide many services the elderly parent desires,
such as helping him to dress, retrieving the newspaper, etc.
However, the robot may also be instructed to ensure that
the elderly parent does certain things he might not want to
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do, such as taking beneficial medications the elderly parent
dislikes. In such scenarios, the robot must skillfully interact
with the elderly parent to achieve and maintain a collabo-
rative, mutually desirable, relationship.

As in human-human relationships, collaborative outcomes
are most likely to be realized when the robot and human can
adapt to each other. The ability to adapt to an (also) adapt-
ing human partner, requires a robot to employ online learn-
ing. However, online-learning algorithms are not yet utilized
in most human-robot interactions, particularly in scenarios
with conflicting interests. We attribute this deficiency to two
previously unsolved challenges. First, most online-learning
algorithms designed for interactions with other individuals
do not learn at time scales that support interaction with
people. They either require thousands of interactions to
learn effective behaviors [4, 8], or are incapable of learning
collaborative solutions. Both deficiencies severely limit the
possibility of effective interactions.

A second challenge to using online learning in human-
robot interactions is that most online-learning algorithms
rely on random exploration to learn effectively. Random
exploration makes the robot unpredictable and (seemingly)
irrational, which can cause human partners to form atti-
tudes toward the robot that effectually eliminate the poten-
tial for strong collaborations. For example, random explo-
ration could cause the human partner to mistrust the robot’s
motives, intelligence, and future behavior, thus causing the
human to stop interacting with the robot altogether.

We hypothesize that both of these issues can now be over-
come by interweaving principles of HRI with recent develop-
ments in online learning. Though past online-learning algo-
rithms designed for interaction with others learn too slowly,
several recently developed algorithms are reported to learn
at time scales that support interactions with people [5, 14,
15]. These learning algorithms still use random exploration,
but we anticipate that many of the negative effects of this
randomness can be overcome by strengthening the degree of
engagement between the human and the learning algorithm.
Since cheap talk (i.e., non-binding, costless communication)
has been shown to improve collaboration among people [17,
3], we consider interweaving cheap talk into an online learn-
ing algorithm to strengthen the human-robot interaction.

Interweaving effective cheap talk into an online learning
algorithm is nontrivial, as most machine learning algorithms
have representations that are not easily interpreted by peo-
ple. Thus, it is difficult to infer high-level strategic plans
from these algorithms’ internal representations, let alone de-
termine how to communicate these strategies to people (via



speech acts) in arbitrary scenarios. Fortunately, the inter-
nal representations of one recently developed online-learning
algorithm is more accessible than many of these past algo-
rithms. In this paper, we describe how to generate cheap
talk communication within this algorithm.

We make three primary contributions. First, we demon-
strate via user study the inability of two recently developed
learning algorithms (CFR [15] and mega-S++ [6]1) to ef-
fectively learn to collaborate with people, despite the fact
that these algorithms have relatively fast learning rates. In
the absence of explicit communication, our results also show
that people do not consistently learn to collaborate with
each other. However, people do learn to collaborate with
each other when they are allowed to talk to each other.
Thus, in our second contribution, we describe how to gener-
ate cheap talk using mega-S++. Third, we show that the
resulting learning system learns to consistently collaborate
with people in two different scenarios. Our results indicate
that this learning system learns to collaborate with people
nearly as well as people collaborate with each other. These
results demonstrate the importance of addressing AI and
HRI simultaneously rather than independently.

2. BACKGROUND
This work addresses two technical challenges: online learn-

ing in repeated interactions and integrating cheap talk into
learning algorithms. We discuss background information
and past work related to these two topics after formally
defining the domain.

2.1 Repeated Stochastic Games
Many repeated human-robot interactions can be mod-

eled as repeated stochastic games (RSGs; also known as re-
peated Markov games). These games are played in episodes
(or rounds). Each round consists of a sequence of stage
games (or states) S. In each state s ∈ S, both players (de-
noted i and −i) choose an action from a finite set. Let
A(s) = Ai(s)×A−i(s) be the set of joint actions available in
s, where Ai(s) and A−i(s) are the action sets of players i and
−i, respectively. When joint action a = (ai, a−i) is played
in state s, the players receive the finite rewards ri(s,a) and
r−i(s,a), respectively. The world also transitions to some
new state s′ with probability defined by PM (s,a, s′). Each
round of the RSG begins in the start state ŝ ∈ S and termi-
nates when some goal state sg ∈ G ⊆ S is reached.

In this paper, we consider RSGs with conflicting interests.
Both players can profit by collaborating with each other,
but either of the players can also possibly exploit the other
and thereby obtain even higher payoffs. We assume that
the transition model PM and the reward functions ri(s,a)
and r−i(s,a) are known to both players a priori, and that
the players can observe each others’ actions. This permits
the players to focus on learning to interact with each other
rather than on learning domain attributes.

2.2 Online-Learning Algorithms for RSGs
Learning in RSGs when associating with people or robots

is challenging for several reasons. First, when the other
player adapts it strategy over time, the environment is non-
stationary, which violates assumptions made by most ma-
chine learning algorithms. Second, the behavior of the other

1This version of the paper updates the algorithm’s name.
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Figure 1: The performance of existing online-
learning algorithms in self play in a repeated prison-
ers’ dilemma. A payoff of 0.60 results from mutual
cooperation, 0.20 from mutual defection. With the
exception of (recently developed) S++, these algo-
rithms either fail to learn to cooperate, or require
hundreds to thousands of interactions to do so.

player is often unknown. Inferring it’s future behavior can
be extremely difficult due to the presence of multiple (often
infinite) equilibria. Thus, most existing learning algorithms
for RSGs either learn too slowly to support interaction with
humans or cannot learn collaborative solutions at all.

As an example, consider a repeated prisoners’ dilemma
[2], which comes from a special class of RSGs with only a
single state (i.e., |S| = 1). Figure 1 shows the performance
of a representative set of learning algorithms in self play.
Algorithms such as Fictitious play [11] and model-based re-
inforcement learning quickly learn to defect in this game,
which yields low payoffs. On the other hand, M-Qubed [8]
and Sarsa [20] usually learn to cooperate with each other,
but they require thousands of interactions to do so. Satis-
ficing learning [16, 21] yields better results in self play, but
these algorithms are somewhat exploitable [7].

Recently, two new algorithms have been developed for
RSGs that appear to learn at faster time scales than previ-
ous algorithms. These algorithms are counter-factual regret
(CFR) [15] and mega-S++ [6]. CFR has been used with
substantial success in relatively large competitive games,
such as poker. Prior to interaction, CFR attempts to com-
pute an equilibrium strategy by simulating an interaction
using self play. As it interacts with its associate, it contin-
ues to update this model. While CFR is rather myopic in
games of conflicting interest [15], it provides an interesting
baseline for what online-learning algorithms can currently
achieve when interacting with a human partner.

mega-S++ is an expert algorithm that extends S++ [5] to
general RSGs. Prior to interaction, mega-S++ computes a
set of expert strategies, several of which are Nash equilibria
of the repeated game. During interactions, it uses aspiration
learning to determine which expert to follow. It has been
shown to quickly learn non-myopic solutions in a number
of RSGs of conflicting interest when associating with other
learning algorithms [6].

We note that online learning has been used successfully
in scenario-specific human-robot interactions in which the
robot and human have common interests [13, 19]. Our work
differs from these works in that we seek to identify more
general-purpose algorithms that learn to interact with hu-
man partners in arbitrary scenarios, including those with
conflicting interests.



High-Level Outcomes !
1) Both try to move through A 
    - Gates A and B close 
    - Both must go through C 
    - Round payoffs: (7, 7) !
2) Player 1 through Gate A 
    - Gates A, B, and C close 
    - Player 2 must go through D 
    - Round payoffs: (22, 0) !
3) Player 2 through Gate A 
    - Gates A, B, and C close 
    - Player 1 must go through D 
    - Round payoffs: (0, 22) !
4) Both through Gate B 
    - Both allowed passage 
    - Round payoffs: (16, 16)
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Figure 2: Two RSGs used in our user studies.

2.3 Cheap Talk
Cheap talk refers to non-binding, unmediated, and cost-

less communication [9, 1]. Cheap talk has been cited as a
means for equilibrium refinement [10], and has been shown
to improve collaborations among people [17, 3].

In this paper, we consider whether a learning robot can
employ cheap talk to help overcome the negative effects of
random explorations carried out by a learning algorithm.
We hypothesize that cheap talk by a robot will cause it to
be held in higher regard by people, even when the robot’s
behavior is governed by the same learning algorithm. Thus,
we anticipate that cheap talk will help the robot to better
interact with people.

We are unaware of past work interweaving cheap talk with
online learning. This is potentially due to the difficulty of
knowing what to communicate, as most learning algorithms
have representations that are difficult to articulate. How-
ever, we note parallels to the work of Thomaz and Breazeal
[22]. In their work, a simulated robot signaled to a human
teacher uncertainty by pausing in states in which multiple
actions had similar Q-values. This helped the human to
understand what the robot still needed to learn. However,
in domains of conflicting interest, discussions about local
Q-estimates are likely to be at too low of a level to fully
resonate with potential human collaborators. Additionally,
we anticipate that the competitive natures of these games
will make such communications insufficient.

3. LEARNING WITH HUMANS
But is cheap talk even necessary? Given the fast learn-

ing rates of CFR and mega-S++, we first consider whether
these algorithms can learn to effectively interact with peo-
ple in the absence of explicit communication. To do this,
we conducted a user study to compare the performance of
people and these algorithms when paired with other people
in two different RSGs. We now describe these two scenarios,
after which we discuss the experimental setup and results.

3.1 Scenarios (RSGs)
The two games were consider are a stochastic game pris-

oner’s dilemma and a block-sharing game.

3.1.1 A Stochastic Game Prisoner’s Dilemma
The stochastic game prisoner’s dilemma (SGPD) [12] is

a maze game in which the high-level payoffs of the game
equate to a standard prisoner’s dilemma [2]. At the start of

each round of the game, the players are placed in opposite
corners of the maze as shown in Figure 2(a). The players
move (simultaneously) to adjacent cells (up, down, left, or
right) with the goal of reaching the other player’s start po-
sition in as few moves as possible. Each move costs a player
one point, but a player receives 30 points when it reaches
its goal. Once both players have arrived at their respective
goals, a new round begins from the original start state.

To reach their goals, the players must pass through one of
four gates (Gates A-D). While the least-cost path to the goal
is through Gate A, only one player can pass through Gate A
in a round. When a player passes through Gate A, Gates A,
B, and C close for the other player, and it must pass through
Gate D. If both players attempt to pass through Gate A at
the same time, neither is allowed passage and Gates A and
B close. On the other hand, both players can pass through
Gates B, C, and D separately or at the same time, though
Gate A closes when either player passes through Gate B.

We expect players to eventually converge to one of four
solutions, which we list in descending collaborative order:

1. Both B – Both players use Gate B, resulting in each
receiving 16 points.

2. Alt A-B – The players take turns going through Gate
A, which results in an average payoff of 11 points to
each player.

3. Both A – Both players attempt to go through Gate
A, thus requiring each player to pass through Gate C.
This gives both players 7 points.

4. Bully – One of the players always goes through Gate
A, leaving the other to go through Gate D. This gives
the players 22 and 0 points, respectively.

3.1.2 A Block-Sharing Game
The Block Game is a turn-taking game in which the two

players share the set of nine blocks shown in Figure 2(b).
In each round, the players take turns selecting a block until
they each have three blocks, with one player (typically the
older sibling) going first in each round. If a player’s three
blocks form a valid set (i.e., she has all blocks of the same
color, all blocks of the same shape, or none of her blocks
have the same color or shape), then her payoff in the round
is the sum of the numbers on her blocks. If she fails to collect
a valid set, she loses the sum of her blocks divided by 4.

Though rather simple, this game is strategically complex.
Each player would like to collect all of the squares (40 points)
or all of the red blocks (23 points). However, to reach either
of these outcomes, the other player would have to accept
either getting all of the triangles (10 points) or all of the
blue blocks (17 points), respectively. Since the other player
can ensure itself 18 points by taking blocks that all differ in
shape and color, it is unlikely to repeatedly accept either of
those two outcomes. Thus, a player has to decide whether
to try to bully the other player (possibly by punishing the
other player, which might require the acceptance of negative
points, in early rounds in order to get better outcomes in
later rounds) or to collaborate with them in some way. This
decision depends on the characteristics of the other player.

We expect the players to eventually converge to one of five
solutions, which we list in descending collaborative order:

1. Alt �-4 – The players alternate between selecting all
of the squares and all of the triangles. Thus, both
players average 25 points per round ((40 + 10)/2).



2. Alt rd-blu – The players take turns selecting the red
and blue blocks (respectively) in alternating rounds,
Both players average 20 points ((23 + 17)/2).

3. All diff – The players both select blocks with no match-
ing attributes. This always gives both players 18 points.

4. Pure rd-blu – One of the players always takes all the
red blocks (23 points) while the other player always
takes the blue blocks (17 points).

5. Pure �-4 – One player always takes the squares (40
points) while the other gets the triangles (10 points).

3.2 Experimental Design
In this initial user study, we evaluate how effectively peo-

ple and two learning algorithms interact with other people
in two different scenarios. We used a 3x2 mixed factorial
design, in which the between-subjects variable is the player
type (Humans, CFR, or mega-S++) and the within subjects
variable is the scenario.

A convenience sample of forty-eight participants with an
average age of 26.3 years were recruited from the Masdar
Institute community. Twelve subjects were randomly paired
with CFR, twelve with mega-S++, and twenty-four subjects
were paired with each other. The participants took part in
the study in groups of four. The study proceeded as follows:

1. Each participant was assigned an associate (Human,
CFR, or mega-S++) without their knowledge.

2. The rules of the SGPD were explained to the partici-
pants until it was clear they understood all aspects of
the game.

3. The participants played a 54-round SGPD paired with
their assigned player type. The game was played on
a desktop computer (using the arrow keys to select
movements). The participants were not told the dura-
tion of the game or who they were paired with. They
also were not allowed to talk or signal to each other.

4. Each participant filled out a post-experiment survey,
which asked questions related to their experience play-
ing the SGPD. Questions included the participant’s as-
sessments of their associate. For example, they were
asked how smart they thought their associate was,
whether they thought their associate was a robot or
person, and how likable their associate was.

5. The participants were trained on how to play the Block
Game until they understood all aspects of the game.

6. The participants played a 51-round Block Game with
the same player type as before. If paired with Hu-
mans, the participant was randomly paired with a dif-
ferent person than in the first game. Each participant
was randomly assigned to be either the first or second
player to select a block – a role which was kept con-
stant throughout the game. The participants used the
mouse to select the blocks on a GUI interface.

7. The participant completed the same post-experiment
survey as in Step 4.

Participants were paid a $5.00 show-up fee. To incentivize
the participants to try to maximize their own payoffs, par-
ticipants were also paid money proportional to the points
they scored in the games (they could earn up to an addi-
tional $15.00). The GUI displaying the game interface also
showed the amount of money the participant had earned.

3.3 Performance Metrics
We use three metrics to evaluate the learning algorithms in

this study: average payoffs, solution quality, and humanness.
We are particularly interested in comparing the algorithms’
performance to that of humans with respect to each metric.

3.3.1 Average Payoffs
The average payoffs received by the algorithms are per-

haps the most salient measure of successful learning. While
we are interested in the payoffs obtained over the full course
of the game, we are particularly interested in the payoffs
achieved in later rounds, as these payoffs are indicative of
how well the algorithm has learned to interact with people.

3.3.2 Solution Quality
Solution quality refers to the collaborative nature of the

solutions learned by the algorithms. We count the number
of participants in each condition and game that achieved
each of the solutions listed in Section 3.1. This metric gives
us a good idea of the ability of the learning algorithms to
learn to cooperate (when beneficial) with human partners.

3.3.3 Humanness
We consider how human-like the algorithms seemed to

study participants. We make this assessment using the post-
experiment questionnaire, in which participants were asked
to guess whether their associate was a person or a robot,
and to rate their confidence (on the scale one to five, with
one being a complete guess and five being certainty) in their
guess. Formally, let Hj,k be the humanness attributed by
participant j toward associate k, and let hj = 1, when the
participant guesses human, and hj = −1 otherwise. Also,
let Cj ∈ {1, 2, 3, 4, 5} be participant j’s confidence in his/her
guess. Then, Hj,k is given by

Hj,k = hj ∗ (Cj − 1). (1)

3.4 Results
The average payoffs obtained by the three player types

when paired with people are shown in Figures 3(a) and 3(c).
There is no clear and substantial difference between the
payoffs obtained by each player type. Additionally, neither
CFR, mega-S++, nor Humans learned to consistently col-
laborate at a high level with people in either game. In the
SGPD, the average round payoff received in the last few
rounds by each player type was approximately 10, which is
well short of the 16 points that are achieved from mutual
cooperation. In the Block Game, none of the player types
had an average payoff close to the 25 points they could have
achieved had they learn to play Alt �-4. Thus, while both
Humans and mega-S++ appear to slowly improve their pay-
offs with time, neither reaches a high level within 50 rounds.

Table 1 provides further insight into the ability of the
learning algorithms to collaborate with people. This table
shows the number of participants that achieved each out-
come (by the end of 50 rounds) when paired with each player
type. In the SGPD, both mega-S++ and Humans learned to
cooperate (Both B) with some participants (mega-S++ co-
operated with five, Humans with three). The rest of the par-
ticipants typically learned mutual defection (Both A) when
paired with mega-S++ and Humans, though mega-S++
did continue to attempt to pass through Gate B every few
rounds in hopes of reaching a more-profitable collaboration.
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Figure 3: Average payoffs, grouped in 5-round chunks, when paired with people and in self play. CFR’s and
mega-S++’s payoffs in self play were obtained from the average of 25 simulation runs.

(a) SGPD (no communication)

Player
Primary Outcome

Both Alt Both
Bully Other

B A-B A

Humans 3 0.5 7.5 1 0

mega-S++ 5 0 5 0 2

CFR 0 0 11 1 0

(b) Block Game (no communication)

Player
Primary Outcome

Alt Alt All Pure Pure
Other

�-4 rd-blu diff rd-blu �-4
Humans 2 2 5 2 0 1

mega-S++ 1.5 0.5 4.5 2 0 3.5

CFR 0 0 5 5 0 2

Table 1: The number of subjects that reached each
outcome at the end of 50 rounds in each condition.

In the Block Game, Humans and mega-S++ rarely reached
the most collaborative solutions. CFR did not learn to play
highly collaborative solutions in either game.

Humanness varied significantly by player type (F (2, 90) =
5.96, p = 0.004). Pairwise comparisons show that Humans
were rated more human-like than CFR (p = 0.005). The
difference between Humans and mega-S++ was marginally
statistically significant (p = 0.078), with Humans having a
higher rating. Thus, though some participants were con-
vinced that robots were people and vice-verse, they were
largely able to distinguish the behavior of people from robots.

While CFR, mega-S++, and Humans all failed to con-
sistently learn collaborative solutions when interacting with
people in this study, they did learn to collaborate in some
instances. The potential of mega-S++ to collaborate with
people in these two scenarios is further illustrated by Fig-
ures 3(b) and 3(d), which show the average payoffs of the
players in self play. mega-S++ quickly achieves very high
levels of cooperation in the SGPD, and also does so in the
Block Game after about 30 rounds. Thus, we anticipate that
mega-S++ could learn to consistently collaborate with peo-
ple if it could better communicate its desires and intentions.

4. ADDING CHEAP TALK
As cheap talk has been shown to help people to collaborate

with each other [17, 3], we now address whether interweaving

cheap talk into mega-S++ produces a learning system that
learns to effectively and consistently collaborate with people.
In this section, we address two questions. First, what forms
of cheap talk might be useful (if any)? Second, how can
cheap talk be integrated into mega-S++?

4.1 Forms of Cheap Talk
We consider two kinds of cheap talk: feedback cheap talk

and planning cheap talk. We refer to cheap talk that ad-
dresses assessments of past events as feedback cheap talk.
As an example, a person or robot might comment on their
satisfaction with past events, or comment on how past events
made them feel. Additionally, feedback cheap talk includes
assessing the past behaviors of the associate, perhaps ex-
pressing how the other person’s actions make them feel, or
expressing what they wished the other person had done in-
stead. We anticipate that feedback cheap talk could be pro-
duced from most learning algorithms with careful thought.

Planning cheap talk is forward looking. It involves sug-
gesting future behavior to one’s associate and/or revealing
one’s current or future strategy. Of course, such cheap talk
is non-binding – neither of the players must actually do what
is spoken. However, conforming behavior with one’s cheap
talk can help to establish a reliable reputation, and can thus
help to mitigate negative effects caused by random explo-
rations. We anticipate that most learning algorithms are
too cryptic to easily produce effective planning cheap talk,
as humans typically communicate plans at higher levels than
typical machine-learning algorithms reason.

4.2 Generating Cheap Talk
Unlike many learning algorithms, mega-S++ is struc-

tured so that its high-level strategies are expressible to peo-
ple. This allows it to produce both feedback and planning
cheap talk that is generic such that the same cheap talk can
be used in any RSG.

mega-S++ is an expert algorithm that operates on a set
of experts Φ = {φ1, · · · , φn}. Each expert φ ∈ Φ encodes a
particular strategy defined over the entire state space S of
the RSG. In each round, mega-S++ selects an expert φ ∈ Φ
to follow. It uses aspiration learning [16] to determine which
expert to follow in each round. That is, player i encodes an
aspiration αt

i, which is updated after each round as follows:

αt
i = λαt−1

i + (1− λ)Rt
i. (2)



(a) Finite state machine (with output) for “fair” leader experts.

State
State Transitions Speech Acts (Output)

Events Events
sel g i s d p sel g i s d p

s0 s1 s0 s0 s0 s0 s0 1 – – – – –
s1 – s9 s1 s2 s2 s1 – r(5-9)+4+r(10-12) – r(13-16) – –
s2 – s10 s2 s3 s3 s2 – r(5-9)+4+r(10-12) – r(13-16) – –
s3 – s11 s3 s4 s4 s3 – r(5-9)+4+r(10-12) – r(13-16) – –
s4 – s11 s4 s5 s5 s4 – r(5-9)+4+r(10-12) – r(13-16) – –
s5 – s11 s5 s6 s6 s5 – r(5-9)+4+r(10-12) – r(13-16) – –
s6 – s11 s6 s7 s7 s6 – r(5-9)+4+r(10-12) – – – –
s7 – s11 s7 s8 s8 s7 – r(5-9)+4+r(10-12) – 3 – –
s8 – s11 s8 s8 s8 s8 – r(5-9)+4+r(10-12) – – – –
s9 – s9 s3 s10 s10 s9 – – 2 – – r(17-19)
s10 – s10 s4 s11 s11 s10 – – 2 – – r(17-19)
s11 – s11 s5 s11 s11 s11 – – 2 – – r(17-19)

(b) Definitions of event symbols.
Symbol Explanation

sel Algorithm selects an expert.
g Associate has profited from

deviating from the “cooperative”
solution (defined by the expert).

i Associate is now innocent. It has
been punished for its deviation.

s The robot is satisfied with its
round payoff.

d The robot is dissatisfied with
its round payoff.

p Associate received a lower
payoff on a move than it would
have had it always cooperated.

(c) Speech acts for “fair” leader experts.
1. Here’s the deal. Let’s cooperate 9. You are an idiot!

with each other. If you do not 10. I’m going to teach you a
cooperate, I’ll punish you lesson you will not forget.
thereafter. 11. I’m going to make sure you

2. I forgive you. Cooperation will do not profit from this
bring us both a higher payoff malicious act.

3. Sweet. We are getting rich. 12. You will pay for this!
Let’s continue this. 13. That what I wanted.

4. I trusted you to <game specific 14. That’s what I’m talking about.
action label 15. Excellent!

5. You jerk! 16. Great!
6. You buffoon! 17. Take that!
7. You fool! 18. Serves you right, jerk.
8. Curse you! 19. In your face!

(d) Speech acts for “fair” follower experts.
1. Let’s cooperate with each other. 8. This is not good for our
2. Sweet. We are getting rich. relationship.

Let’s continue this. 9. For the sake of our relationship,
3. I thought you should <game cease this untoward behavior.

specific action label 10. Friends do not do that to each
4. You betrayed me! other.
5. That was selfish of you 11. That’s what I wanted.
6. That was not fair! 12. That’s what I’m talking about!
7. Are you only thinking of 13. Excellent!

yourself? 14. Great!

Table 2: Feedback and planning cheap talk is generated for each expert using a finite state machine. r(x-y)
denotes a randomly selected speech act between the numbers of x and y in the speech-act table. ‘+’ indicates
concatenated strings. Planning speech acts are given in bold, feedback speech acts are in plain text.

Here, Rt
i is player i’s total payoff in round t, and λ ∈ [0, 1]

is a learning rate. αt
i is player i’s threshold for evaluating

satisfaction. Experts that produce payoffs that exceed αt
i

are desirable (and mega-S++ will continue to play them),
whereas experts that produce lower payoffs are not.

4.2.1 Feedback Cheap Talk
mega-S++ can be used to produce both high- and low-

level feedback cheap talk for arbitrary RSGs. In addition
to helping the robot to determine which experts to select,
αt
i provides a means for the robot to express its satisfaction

with a round’s outcome. Such talk could implicitly com-
municate whether the robot is likely to continue its same
strategy, which could help the human partner to establish
appropriate expectations.

Like Thomaz and Breazeal [22], mega-S++ also commu-
nicates its satisfaction for individual, low-level, actions us-
ing estimates of state quality or potential (such as Q-values,
which are encoded by some of mega-S++’s experts). When
the human partner executes an action that lowers the robot’s
potential payoffs in a round, the robot expresses its disap-
pointment, and even explicitly states what it wishes the hu-
man had done instead. This could help the human to better
distinguish which of its actions are “upsetting” the robot.

4.2.2 Planning Cheap Talk
mega-S++ produces planning cheap talk for two different

kinds of events. First, because each expert φ ∈ Φ encodes
a (perhaps radically) different high-level strategy, the ran-
dom selections of experts (i.e., exploration) can appear to
be disjoint, irrational reasoning. Thus, when mega-S++
changes which expert it follows, it produces a speech act
that notifies the human partner of this change. Example
speech acts include “I’ve changed my mind,” and “I’ve had
a change of heart.” Additionally, when this switch in strate-
gies leaves some promised act undone (such as a promised

punishment), the robot tries to soften the discontinuity by
saying something like “I’ll let you off this time.”

Each expert φ ∈ Φ can also produce planning cheap talk.
These plans can be communicated at a high level, as most ex-
perts used by mega-S++ encode a high-level strategic ideal
that is easily understood by the people. For example, one
of mega-S++’s experts (called Bouncer) seeks to minimize
the difference between the robot’s and the human’s payoffs.
When Bouncer is selected, mega-S++ announces“I will play
fair if you will play fair,” and that it insists on equal pay-
offs and will not be cheated. Others of mega-S++’s experts
encode trigger strategies, which carry out stages of coop-
eration and punishment depending on the behavior of the
associate. These trigger strategies can easily be announced
when they are selected. Furthermore, these trigger strate-
gies can be modeled with simple finite state machines [18],
which mega-S++ uses to produce speech acts that inform
its associate as it switches between stages of cooperation and
punishment.

As an example, Table 2 shows the state machine, event
symbols, and speech acts, of a leader expert seeking to en-
force a fair and pure target solution (e.g., the Both B strat-
egy in the SGPD). When initiated, the expert announces
that it would like to “cooperate” with its associate, and that
it will “punish” deviations from the cooperative solution. If
the associate fails to cooperate (indicated by event g), the
robot curses, states what the person did wrong, and then
says that it will punish him. Once the punishment has been
carried out, the robot states“I forgive you,” reminds its asso-
ciate that cooperation will bring them both a higher payoff,
and then returns to cooperating. Speech acts for a similar
follower expert [5], generated using the same state machine,
is shown in Table 2d.

We generated similar state machines for leader strategies
that target different target solutions (e.g., the Alt �-4 so-
lution in the Block Game). The only difference is that this
solution requires the players to take turns getting a higher



Figure 4: A Nao delivered speech acts to subjects.

payoff. Thus, our algorithm produces a speech act stat-
ing the turn-taking nature of the desired solution, and an-
nounces who’s turn it is to get the higher payoff.

Since the concepts of “cooperation,” “punishment,” and
“forgiveness”apply to arbitrary situations, this same speech-
generation system can be used in any RSGs. Thus, we use
the same speech system for both games we consider.

5. THE IMPACT OF CHEAP TALK
To determine to what extent cheap talk helps a robot to

learn to effectively collaborate with a human partner, we
conducted a second user study. In this section, we describe
the user study and discuss the results.

5.1 Experimental Setup
To understand how cheap talk impacts how well mega-

S++ learns to collaborate with people, we tested two dif-
ferent cheap talk systems. The first system produced only
feedback cheap talk. The second system was identical to the
first, except that it also produced planning cheap talk. In
both cases, the cheap talk was delivered by a Nao robot, who
was placed before the participants as they played (Figure 4).

Forty-eight people, with an average age of 25.1 years, were
recruited from the Masdar Institute community to partici-
pate in this study. Twelve subjects were paired with mega-
S++ using each of the two cheap-talk systems, which we
denote mega-S++(f) and mega-S++(fp), respectively. So
as to provide a baseline condition, we also paired twenty-
four participants with each other. These participants were
allowed to talk to each other as they played the games.

Except for the communication (and, in turn, the knowl-
edge of who one was paired with), this study was carried out
in the same manner as the initial study (Section 3.2).

5.2 Results
Cheap talk greatly enhanced the performance of Humans

(when they were paired together) in both games (Figures 5).
All human-human pairings in the SGPD converged to Both
B (Table 3a). Convergence in the Block Game was a little
more diverse (Table 3b), though more highly collaborative
outcomes were observed than without communication.

Cheap talk also greatly enhanced the ability of mega-S++
to learn to interact with study participants. An ANOVA
shows that cheap talk substantially increased the payoffs of
mega-S++ when paired with people in the last ten rounds
of the games (F (2, 66) = 6.04; p = 0.004). Pairwise com-
parisons reveal that mega-S++(fp) performed significantly
higher then mega-S++ (with no cheap talk; p = 0.003), but
mega-S++(f) did not (p = 0.234).

(a) SGPD

Player
Primary Outcome

Both Alt Both
Bully Other

B A-B A

Humans 3 0.5 7.5 1 0

Humans (fp) 12 0 0 0 0

mega-S++ 5 0 5 0 2

mega-S++ (f) 5.5 0 5.5 1.0 0

mega-S++ (fp) 9.5 0 2 0.5 0

(b) Block Game

Player
Primary Outcome

Alt Alt All Pure Pure Oth-
�-4 rd-bl diff rd-bl �-4 er

Humans 2 2 5 2 0 1

Humans (fp) 7 2 1 0 2 0

mega-S++ 1.5 0.5 4.5 2 0 3.5

mega-S++ (f) 3.5 0 3 2 1.5 2

mega-S++ (fp) 9 0 0 1 2 0

Table 3: The number of subjects that reached each
outcome by 50 rounds. f - feedback cheap talk only,
fp – both feedback and planning cheap talk.

In the SGPD, combined feedback and planning cheap talk
led to higher average payoffs after round 35 (Figure 5a). In
the Block Game (Figure 5b), feedback and planning cheap
talk produced substantially higher payoffs throughout the
game, even exceeding the payoffs achieved by Humans in
the last 25 rounds on average. Feedback cheap talk alone,
however, produced no discernible increase in payoffs in the
SGPD, and less substantial increases in the Block Game.

Convergence characteristics provide further insight into
how cheap talk impacted mega-S++’s ability to learn to
interact with people. While feedback cheap talk alone pro-
duced little increase in the number of highly collaborative
outcomes, feedback and planning cheap talk together led to
substantial increases in profitable collaborations (Table 3).
In the SGPD, about 80% of all participants learned to co-
operate (Both B) when paired with mega-S++(fp), and 9
out of 12 participants converged to the most collaborative
solution in the Block Game. These results are similar to
those observed in human-human pairings.

The participants in our study also held much higher opin-
ions of mega-S++ when it produced both feedback and
planning cheap talk. In the post-experiment questionnaires,
participants were asked to indicate how likable and how in-
telligent their associate was on the scale 1 to 5. Cheap talk
had a statistically significant impact on both of these ratings
(F (2, 66) = 6.99; p = 0.002 and F (2, 66) = 8.19; p < 0.001,
respectably). Pairwise comparisons show that participants
thought the robot was more intelligent when it employed
feedback and planning cheap talk than when it employed
just feedback cheap talk (p = 0.005) or no cheap talk at
all (p = 0.001). However, when the robot only produced
feedback cheap talk, it was not seen as more intelligent than
when the algorithm produced no cheap talk (p = 0.912).

6. CONCLUSIONS AND DISCUSSION
In this paper, we studied (via user study) how robots can

learn to collaborate with human partners when the goals
of the robot and the human partner are not fully aligned.
Our results indicate that feedback and planning cheap talk
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Figure 5: Average payoffs when paired with humans when communication was permitted. (f) indicates
feedback cheap talk, (fp) indicates both feedback and planning cheap talk.

can substantially improve a robot’s ability to learn to in-
teract with a human partner. An online-learning algorithm
that can quickly learn collaborative solutions is insufficient.
Humans appear to require communication in the form of
forward planning to establish collaborations with an adapt-
ing robot. This highlights the need to address AI and HRI
synergistically rather than independently.

This work highlights a number of unsolved challenges. For
example, in our study, the robot produced cheap talk, but
it did not consider what the human said. We anticipate
that the ability to engage in two-way communication would
substantially improve a robot’s ability to learn to collaborate
with a human partner. Future work involves determining
how cheap talk from the human can be utilized by a learning
algorithm to improve its ability to collaborate with people.
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