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ABSTRACT
Extended interactions between agents have commonly been studied
in the context of repeated games (RGs), in which the same players
repeatedly interact in the same scenario. However, such interac-
tions are uncommon in practice. Typically, the players’ goals, action
sets, and payo�s change from encounter to encounter, often in ways
the players cannot easily model or control. These more realistic
interactions, which we model as a form of stochastic game called
interaction games (IGs), have attributes which prohibit the straight-
forward application of many often-used algorithms developed for
RGs. In this paper, we generalize several algorithms previously
designed for RGs, and explore their behavior and performance in
IGs. Our results suggest that at least some of the methodologies
designed for RGs can, with some modi�cations, be extended to IGs.
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1 INTRODUCTION
Extended interactions between intelligent agents have commonly
been studied in the context of repeated games (RGs) and other forms
of stochastic games (SGs) in which players repeatedly interact with
each other in the same scenarios (e.g., [1, 4, 5, 7, 12]). However, many
practical applications require agents to interact with each other
repeatedly, but not in the same scenarios. Typically, the players’
goals, action sets, and payo�s change from encounter to encounter,
often in ways the players cannot easily model or control. As such,
assumptions typically made in the development of AI algorithms for
repeated games often do not apply to many real-world applications.

In this paper, we develop algorithms for interaction games (IGs), a
form of SG designed to model extended interactions between agents.
IGs are punctuated by two characteristics. First, as in repeated
games (RGs), players repeatedly interact with each other in IGs.
However, unlike RGs, the possible choices the players can make and
the resulting consequences may vary from encounter to encounter.
Second, in IGs, it is assumed that players are unable to fully model
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the future. While, uncertainty about future environmental states
is commonly modeled by probabilistic state-transition functions,
such transition functions can be tedious (and even impossible) to
correctly specify or learn in extended interactions between agents
in dynamic environments. Furthermore, reasoning over large state
spaces can be computationally expensive. Thus, it is desirable to be
able to establish pro�table long-term relationships without a full
model of possible future encounters.

Before discussing algorithms for IGs, we formally de�ne IGs.

2 INTERACTION GAMES
An interaction game (IG) is a SG in which players interact in a
sequence of games or roundsG = (�1,�2, · · · ,�T ). Here, �t denotes
the game played by the players in round t , and T is the (possibly
unknown) number of rounds in the IG. Each game �t can be of any
�nite game form, including a normal-form or extensive-form game,
or a �nite SG. Regardless of the game form, the outcome of �t is a
payo� vector rt = (r t1 , r

t
2 ) de�ning the payo� to each player. IGs

generalize both repeated games (RGs) and episodic (repeated) SGs.
In these commonly studied IGs, �i = �j for all i, j 2 [1,T ].

Given that the world often changes in unpredictable ways, at
time t , �� is often unknown to the players for all � > t . Additionally,
we assume that the rounds of the IG are formed such that the choices
made by the players in round �t have little or no known impact
on the structure of subsequent rounds (�t+1 through �T ). Thus, a
successful player must focus on developing pro�table relationships
with their partner rather than exploiting the game environment.

3 GENERALIZED FICTITIOUS PLAY
Fictitious Play (FP) [2, 6] plays a best response to the empirical
distribution of its partner’s actions played in previous rounds. This
counting mechanism for modeling its partner is possible when the
same scenario is played repeatedly. However, when its partner’s
action set and payo�s change from round to round, FP cannot be
used. We de�ne a generalized version of FP (called Generalized
Fictitious Play or GeF) that can be used in IGs. GeF uses a set of
high-level strategies to map its partner’s actions across the IG’s
of any game. Using this mapping, GeF uses the same counting
mechanism as FP to estimate its partner’s strategy in any game.

Results: In RGs, GeF is provably equivalent to FP. In IGs, GeF
tends to have the same performance characteristics as FP has in RGs.
For example, in self play, the empirical distribution of FP’s actions
converge to a Nash equilibrium. Similarly, in IGs, GeF learns to
play a best response to its partner’s strategy in self play (Figure 1),
resulting in a similar convergence characteristic.
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Figure 1: The percentage of IGs (of various forms) that GeF
(in self play) played a best response to its partner’s action.
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Figure 2: (Left) The payo� space of a 0-2-4-7 Prisoner’s
Dilemma. (Right) The payo� space of a 5-round IG; circles
denote joint payo�s (the red point is the NBS). Dotted lines
show maximin values.

4 GENERALIZED TRIGGER STRATEGIES
GeF seeks to maximize its expected payo� in each individual round
of the IG. This myopic behavior often results in lower payo�s than
the player might otherwise achieve if it cooperated with its partner
over the course of the IG. Trigger strategies are one method to
achieve such levels of cooperation. A trigger strategy consists of
two elements: an o�er (which speci�es a particular solution) and a
punishment. The player implementing the trigger strategy plays its
portion of the strategy speci�ed in the o�er as long as its partner
plays its portion. If its partner deviates from the prescribed strategy,
the player punishes its partner in subsequent rounds by playing its
attack strategy until the partner has not pro�ted from the deviation,
making conforming with the o�er the partner’s best response.

Many o�ers are possible in RGs. For example, Figure 2(left) de-
picts the joint payo� space of a Prisoner’s Dilemma. The game’s
convex hull (light and dark shaded regions) is the set of possi-
ble joint (per-round) payo� pro�les that can be achieved in the
in�nite RG. However, only points in the feasible region, wherein
both players obtain at least their maximin values, are acceptable
to rational players. While each point in the feasible region can po-
tentially constitute the o�er of a successful trigger strategy, Nash
showed that only the Nash bargaining solution (NBS) [10] satis�es
a particular set of fairness axioms. Littman and Stone give an algo-
rithm to compute and enforce this o�er in arbitrary RGs [9]. Other
potentially desirable o�ers can also be made. For example, bully
strategies [8, 11] can be made that favor one player over the other.

We extend o�ers for fair and bully trigger strategies to IGs.
A Fair O�er: IGs have similar joint-payo� regions as RGs. For

example, the payo� space of a 5-round IG is shown in Figure 2(right).
Our goal is to design a mechanism that �nds the NBS of the IG.
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Figure 3: Average payo�s obtained per round by GeF (in self
play), and Fair and Bully (when paired with a cooperative
associate) in IGs with rounds drawn from payo� families
categorized by Bruns [3]. Results are averaged over 50 IGs.

However, because the players do not know the structure of future
rounds in IGs, it is not obvious which solution they should play in
round �t to achieve the NBS. One method is to play greedily (with
respect to fairness) by selecting the joint action that maximizes the
product of the player’s advantages so far. However, this myopic ap-
proach may produce payo�s that are dominated by other strategies.
Alternatively, the players could always select the solution with the
highest social welfare. This overcomes the problem of selecting
dominated solutions, but may not be fair.

A third mechanism to try to o�er the NBS of the IG is to strike a
balance between social welfare and fairness. LetU t (a) = �W t (a) +
(1� � )�t (a) be the utility of joint action a in round t , whereW t (a)
and �t (a) are, respectively, the social welfare and fairness utility
of joint action a in game �t , and � 2 [0, 1] controls the patience
and trust the players put in each other. A high � skews the o�er
towards higher social welfare, while a low � skews the o�er towards
immediate fairness. The fair o�er, then, is de�ned by

aFair (t ) = arg max
a2A(�t )

U t (a). (1)

Bully O�ers: LetX t
�i = �VNBS

�i (t )+ (1��)Vmm
�i (t ) be the target

payo� for player �i up to time t in the o�er, where VNBS
�i (t ) is

player �i’s payo� in the IG’s NBS up to time t and Vmm
�i (t ) is its

maximin value. � 2 (0, 1] de�nes the generosity of the o�er. � = 1
indicates the players will always seek to play the NBS, whereas
� = 0 indicates that player i o�ers �i only its maximin value (on
average). Let Rt�i by the accumulated payo� obtained by player �i
up to time t . Then, the bully o�er is given by

aBully (t ) =
8><>:
aFair (t ) if Rt�i  X t

�i
aExploit (t ) otherwise

(2)

where aExploit (t ) = argmaxa2A(�t )[0.9 · r
�t
i (a) + 0.1 · r�t�i (a)].

Results: In RGs, both the Fair and Bully o�ers, if followed, pro-
duce Pareto optimal payo�s. For example, Figure 2(left) shows the
payo� pro�les of Fair and Bully (for multiple �) in a Prisoner’s
Dilemma. In IGs, these o�ers produce similar kinds of payo� pro-
�les for the players. Figure 3 shows the average payo�s produced
in a variety of 2-player IGs by GeF and the Fair and Bully o�ers.
Fair produces payo�s on par with those received in the NBS of the
IG, which often dominates both the average NBS of the individual
rounds as well as the payo�s obtained by GeF. When its partner
conforms with the o�er, Bully often gives a player higher payo�s.
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