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Abstract. Robot swarms modeled after hub-based colonies, such as ants
and bees, potentially offer fault-tolerant capabilities at very favorable
cost margins. However, relatively little is known about how to harness
the potential of these swarms through command-and-control systems. In
this paper, we study how to merge operator input with the underlying
swarm behavior to maintain the fault-tolerant attributes of robot swarms
while providing the operator with enough control to ensure that mission
objectives are accomplished. We advocate that an effective mechanism for
achieving this is shared control, wherein decision-making is shared between
the human operator and the underlying swarm dynamics. We lay out
characteristics of human-swarm systems that provide an effective balance
between fault-tolerance and control, and we discuss preliminary designs of
human-swarm systems for hub-based colonies based on these principles.
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1 Introduction

Robotic swarms potentially offer fault-tolerant and coordinated defense, surveil-
lance, and delivery capabilities at very favorable cost margins. As such, they
can be an important complement to existing precision-based systems [19]. These
robot collectives are often modeled after biological swarms, such as hub-based
colonies (e.g. ants and bees) and spatial swarms (e.g. birds, fish, and locusts),
where individual members of the population act using simple sensor systems and
behavioral strategies. Local interactions between these simple systems produce
complex and intelligent behaviors that are robust to many kinds of attacks and
environmental factors. Robot swarms modeled after these biological swarms have
already been successfully developed for a number of applications [10,16,18,26],
and thus have great potential.

Human-swarm interactions (HSI) [12], wherein one or more human operators
manage the robot swarm through a command-and-control interface, are neces-
sary to ensure that the robot swarm’s behavior aligns with mission objectives.
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To date, the majority of work in HSI has focused on robot collectives modeled
after spatial swarms (e.g., [1,7,11,21,25]). Less is understood concerning how
to harness the potential of hub-based colonies through HSI. Thus, this paper
addresses the topic of human interaction with robot swarms modeled after these
hub-based colonies.

For human interactions with robot swarms of this kind, it is tempting to
view the human operator as a centralized, authoritative controller of the swarm.
However, this philosophy negates the strength of swarm technologies (decen-
tralized, fault-tolerant systems), and instead turns the operator into a potential
single point of failure. Centralized operator control is particularly problematic
when the operator has limited or incorrect information about the environment
in which the swarm is operating, or in complex scenarios in which the operator
cannot possibly attend to all aspects of the mission at once. Thus, an alterna-
tive control paradigm is required to preserve the fault tolerance of the swarm
while giving the operator sufficient influence to align the swarm’s behavior with
mission objectives.

We advocate that an effective method for balancing human control and fault
tolerance is shared control, wherein the human operator and the underlying sit-
uated dynamics of the swarm share the burden of decision-making. The impact
of this design choice is that there is a potential trade-off between the control
given to the human operator and the resulting fault tolerance of the system.
The nature of this trade-off defines in part the success of the human-swarm
system.

In this paper, we study various mechanisms for sharing control between a
human operator and a robot swarm modeled after honey bees. In Sect. 2, we
describe the underlying dynamics of the robot swarm. We then discuss, in Sect. 3,
how human interactions with this system result in the sharing of control between
the human and the robot swarm, which impacts the trade-off between operator
control and the fault tolerance of the system. Finally, in Sect. 4, we describe a
preliminary design of our human-swarm system in which the human operator
interacts with the robot swarm described in Sect. 2.

2 A Robot Swarm

Hub-based colonies, such as ants and bees, perform a variety of complex func-
tions. One such function is the selection of a new nest site. This problem corre-
sponds to selecting the best of n choices, a task relevant to surveillance, search
and rescue tasks, as well as practical considerations such as setting up a swarm’s
home base.

In this section, we describe our simulation of this hub-based colony. In subse-
quent sections, we discuss the design of human-swarm interfaces for this system.

2.1 A Model of Honey Bees

Our simulated robot swarm is based on a paper by Nevai and Passino [15],
which defines a state machine and a set of differential equations that describe
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how scout bees in a hive of honey bees (apis mellifera) select a new nest site.
Their finite-state machine is shown in Fig. 1a. In this model, bees transition
through five different states: exploring (E), observing (O), resting (R), assessing
(A), and dancing (D). Our implementation follows this model, though instead of
having our robots transition at given rates, we implemented an event structure
that is meant to resemble actual bee behavior. This necessitated a switch to the
state-transition function shown in Fig. 1b.

)b()a(

Fig. 1. (a) State-transition diagram for honey bees selecting a new nest, as modeled
by Nevai and Passino [15]. (b) Our modified state-transition function designed for a
spatial, event-driven simulation of the swarm.

Initially, all of our robots are located in a central hub and are placed in the
exploring state. Explorers move randomly through the environment until they
encounter a potential site, at which point they transition to an assessing state,
and fly back to the hub. Upon arriving, the robots enter the dancing state, in
which they move around the hub advertising their site to the other robots. The
majority of communication among robots takes place at the hub. Each robot
dances for a time proportional to the quality of the site, and then, in our model,
returns to the assessing state and leaves to reevaluate the site. The number of
times this happens is also proportional to quality of the nest site.

Once a robot has finished dancing, it enters the resting state, in which it
simply waits at the hub for a period of time before entering into the observing
state. Observers wander the hub looking for dancers, and upon encountering one,
enter into the assessing state to begin the dance/assess process. If no dancing
robots are noticed and sufficient time passes, the robot will instead enter the
exploring state and begin to look for sites, or, with a small probability, enter the
resting state.

When the robots make a collective decision to accept a site, they are said to
have quorumed, which describes their movement to the new site. In addition to
the base model, we decided to implement quoruming by adding two new states



Human-Swarm Interaction as Shared Control 269

and a sub-state. Robots decide to quorum based on how many robots they
encounter that are assessing a particular site. If the number exceeds a threshold,
then the robots begin a process called piping. We model this by creating a sub-
state called site-assess where the assessor robots move around the potential site
for a time before returning to dance. During this state they monitor the number
of robots at the site, and if it exceeds a given threshold, they enter the piping
state. Pipers alert and stimulate other robots to prepare for liftoff to settle
another site [20]. Robots in this state fly back to the hub and advertise their site
similar to dancers, but do not re-assess the site.

The final transition to the commit state occurs when a set time has passed
and the robot senses that all robots that are nearby are also piping. Once entering
this state, they move to the potential site and set their hub location to the
potential site location.

(a) (b) (c)

Fig. 2. Successive screen shots of a bird’s-eye view of the simulated swarm as it seeks to
locate a new nest site. Robots are depicted as bees, and potential nest sites are drawn
as red, yellow, and green circles. (a) The robots are spread out searching for potential
sites. (b) Some of the robots begin to repeated assess two of the sites. (c) The majority
of the robots begin converge toward the most desirable site (Color figure online).

2.2 Simulation Results

Figure 2 shows a series of screen shots depicting the behavior of the simulated
robot swarm. Initially, the robots appear to be randomly scattered through-
out the world as they search for potential sites (Fig. 2a). Subsequently, some of
the robots discover sites, assess these sites, and then begin to recruit others to
also assess these sites (Fig. 2b), until most of the robots have selected the most
desirable site (Fig. 2c).

Through repeated testing, we identified parameter settings for which the
swarm tended to find the best target site without any human oversight or inter-
action with the swarm. We found that one important parameter for increasing
the percentage of robots who committed to the best site was to decrease the
robot’s variation along their direction of exploration (moving outward from the
hub). The robots’ movement occurs at a constant velocity (barring obstacles or
rough terrain) in a direction that is continually updating randomly according to
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a Gaussian distribution. The robots tended to explore farther from the hub and
encounter better quality sites when the variance of this distribution was small.

We evaluated the performance of a 100-robot swarm in ten different environ-
ments, each with different attributes. Each environment included several target
sites of varying quality, as well as obstacles, traps, and rough terrain. Table 1
shows the percentage of the swarm’s robots that found each site, averaged over
30 trials for each environment. In most cases, a majority of the robots either
committed to the best site or were lost (meaning they were caught in traps).
However, in two of the environments (Environments 6 and 10), the robots tended
to often commit to a less desirable site. These environments proved more difficult
because there was an adequate site near the hub, whereas the highest quality
sites were located farther away, near traps and obstacles (e.g., Fig. 3).

It is likely that various parameters of the robot swarm could be tuned to
make the swarm more robust. Furthermore, a larger swarm would likely better
adapt to more environmental circumstances [6]. Despite these drawbacks, the
simple control technology of the swarm produces rather effective results.

2.3 Why Human-Swarm Interaction?

The simulation results shown in Table 1 confirm the ability of hub-based colonies
to solve complex problems. Through local, microscopic interactions with the
environment and between team members [8], the swarm produces complex,
macroscopic behaviors that are extremely robust to failures. Because of this
success, a natural question arises: Why is it necessary for a human operator to
interact with a robot swarm patterned after hub-based colonies?

A human operator fulfills three roles in human-swarm systems patterned
after hub-based colonies:

Table 1. Evaluations of the robot swarm’s ability to select the best site in ten different
environments. Results are averaged over 30 different trials each.

Environment % Committed % Committed % Lost

to best site to other site

1 58.0 20.5 21.5

2 73.7 0.0 26.3

3 60.3 0.0 39.7

4 86.9 0.0 13.1

5 81.5 1.9 16.7

6 8.8 70.2 21.1

7 79.2 0.0 20.8

8 71.0 0.0 29.0

9 99.5 0.0 0.5

10 3.3 68.0 28.7
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Fig. 3. Environment 10 in our evaluation studies (Table 1). Green circles are potential
sites, with the site of the circle indicating a more desirable site. The swarm tended
to select the second-best site in this environment due to the traps and obstacles in
between the hub and the best site. (Color figure online)

1. The human operator aligns the behavior of the swarm with strategic mis-
sion objectives. The swarm collectively encodes information about the envi-
ronment and reacts to this information. However, effectively adapting these
reactions to fulfil mission objectives is often a complex and dynamic process.
For instance, the mission objectives themselves may need to be adjusted or
redefined to better align with a larger strategy. In this case, the operator
should serve to continuously realign swarm behavior with overall goals by
correcting for higher-level information the swarm is incapable of modeling or
encoding.

2. The human operator supplies information to the swarm that is not immedi-
ately available through the robot swarm’s sensor and communication systems.
Other information sources may make the operator aware of information the
swarm does not have. In such circumstances, the performance of the swarm
can be enhanced if the operator is able to effectively communicate this infor-
mation to the swarm. Table 1 indicates a specific instance where swarms would
benefit from human intervention. Given appropriate abilities to influence the
swarm, the substantial number of robots that get caught in traps in our
simulations during the during the nest-selection process could potentially be
reduced.

3. The human operator augments the swarm when it is not properly evolved for
the current environment. While swarm dynamics are incredibly robust to fail-
ures under normal circumstances, swarms may still fail. For example, when
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control parameters, optimized for particular environments, are not properly
tuned for the current environment, the swarm’s underlying dynamics could
potentially lead to undesirable outcomes (see, for example, the results from
environments 1, 6, and 10 in Table 1). Alternatively, if the swarm size becomes
depleted, the swarm may require assistance, as it may not be able to approx-
imate the true state of the environment [6]. Under such circumstances, the
human operator can potentially adjust or augment the swarm.

The remainder of the paper focuses on how human-swarm systems can be
designed so that a human operator can effectively play these roles without dis-
rupting the swarm dynamics.

3 Decision-Making in Human-Swarm Systems as Shared
Control

Although robotic hub-based colonies have considerable innate potential, human
guidance helps to ensure their compliance with mission goals. Nonetheless, a
human element has the potential to override a swarm’s desirable features if the
operator does not possess correct knowledge of the operational environment. In
an attempt to maximize the advantages of both human and swarm decision-
making, we argue for shared control. In this paradigm, the swarm should accept
human input as additional information to be acted upon according to the swarm
dynamics. In this way, the robust and fault-tolerant nature of the swarm can be
maintained while considering human input.

In this section, we discuss this shared-control paradigm for human-swarm
systems. We then consider how this control paradigm impacts the trade-off that
emerges between operator control and the swarm’s fault tolerance. Finally, we
discuss how the information and control elements of the human-swarm interface
can be designed to achieve an effective balance between operator control and
fault tolerance.

3.1 Robustness Through Shared Control

The concept of shared control has been used in many kinds of human-robot sys-
tems, particularly in teleoperation systems (e.g., [3,9,22]). In these systems, the
human typically expresses high-level intent through the control interface. The
robot is charged with finding a low-level behavior that both satisfies accept-
able performance criteria and conforms to the high-level intent expressed by the
human operator. For example, in teleoperating a robot through a corridor, an
operator may tell the robot to move in a particular direction, and leave the
actual path planning (i.e., navigation around obstacles) to the robot (Fig. 4a).
In this way, the operator controls the high-level behavior, while the robot con-
trols the low-level behavior necessary to achieve human intent and performance
constraints (e.g., avoiding obstacles).

Shared control in human-swarm systems works similarly. As an example,
consider a scenario in which the operator has been notified of a future spatial



Human-Swarm Interaction as Shared Control 273

Robot

Human-
supplied 
trajectory

Actual 
trajectory

Future Threat Area

Hub

Potential 
new hub 

sites

Human-
placed 
Beacon

Ideal 
hub site

(a) (b)

Fig. 4. (a) An example of shared control teleoperation, in which the human provides
a general direction it intends the robot to move. The robot then generates low-level
behavior that moves in this general direction but avoids obstacles. (b) An example
requiring shared control in a human-swarm system, wherein the operator seeks to move
the hub out of a threat area. The human specifies the intended direction to move the
hub with a beacon (blue pentagon), and the swarm is then responsible for finding an
new nest site (green circles – larger circles indicate better sites). (Color figure online)

threat at the location of the swarm’s hub. In this case, the hub must be moved
away from the potential threat area, even though the robots cannot yet sense the
threat (Fig. 4b). In this case, the operator can initiate a “move nest” behavior,
but must then influence the search in a particular direction (potentially via an
attracting beacon) to influence the robots to search outside of the threat area.
This general expression of intent is then satisfied as the swarms finds an ideal site
using its underlying dynamics coupled with the influence of the beacon (which
acts on the swarm’s dynamics).

The use of a beacon to attract robots to particular locations in the example
illustrated in Fig. 4b highlights an important trade-off. If the beacon exercises
too much influence over the swarm, the swarm will fail to find the ideal new hub
location in the bottom right corner of the figure. Rather, the robots will focus
their search exclusively near the beacon, thus making it likely that the swarm
will converge to the undesirable site near the beacon. On the other hand, if the
beacon has too little influence over swarm dynamics, the robots could potentially
converge to the highly desired target site in the upper left corner, a site that
is still in danger of the anticipated future threat. This illustrates the important
trade-off between operator control and the fault tolerance that is caused by the
use of shared control in human-swarm systems.

3.2 The Trade-Off Between Fault Tolerance and Operator Control

Another potential benefit of working with hub-based colonies is resistance to
single points of failure. However, when introducing a human controller into the
swarm, that human becomes a new potential single point of failure. This further
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motivates the concept of shared control, but also poses the question of how to
balance the control between the human and the swarm. The human should have
enough leverage to affect the colony, but not so much as to negate its beneficial,
fault-tolerant dynamics. In short, how much control is enough, and how much is
too much?

There are many ways that the operator could affect the swarm. It is reason-
able to assume that one could design a control scheme for the swarm such that
human control is sufficient for the needs of the mission, but limited enough to
preserve the beneficial behaviors of the swarm. We desire to create a measure
for potential control schemes that specifies how different levels of control impact
the swarm’s fault tolerance. Because controllability is already well defined and
our measure suggests a spectrum of control, we instead refer to this measure as
the level of influence a control scheme gives to the operator.

Thus, we believe that for any robot swarm modeled after hub-based colonies,
the higher the influence the human has over the colony, the lower the fault tol-
erance of the swarm will be. The actual relationship that exists between the two
concepts is likely dependent on many aspects of the swarm, including the type and
form of control given to the human operator. We would like to design a framework
that would allow us to rigorously study these terms and their relationships, but
for now we can only project some possibilities. An ideal case for this relationship
would be something like the blue (solid) line in Fig. 5, where there is a level of
operator influence that does not substantially sacrifice the swarm’s fault tolerance.
However, if swarm dynamics and operator control are not carefully designed, other
trade-offs between operator influence and the swarm’s fault tolerance are likely.
For example, the green (dashed) line in Fig. 5 suggests an equal loss of fault toler-
ance to gain in operator influence, while the red (dotted) line suggest a substantial
loss in fault tolerance even for low levels of operator influence.

We hypothesize that human-swarm systems are likely to have desirable trade-
offs between influence and fault tolerance when they are guaranteed to maintain
certain properties. For example, Millonas [14] stated five principles of collective
intelligence that a swarm should maintain. Specifically, the swarm should be
able to (1) perform simple space and time computations, (2) respond to qual-
ity factors in the environment, (3) avoid allocating all of its resources along
excessively narrow channels, (4) avoid reacting to every fluctuation in the envi-
ronment, while (5) having the ability to change behavior when doing so is worth
the computation price. We anticipate that human-swarm systems that maintain
these swarm principles will lead to desirable trade-offs.

Understanding the dynamics between operator influence and fault tolerance
may help in the design and evaluation of interaction frameworks for robotic
swarms by providing measurements of swarm capabilities in the presence of
human control. Such understanding could potentially allow for the design of
control frameworks that are more resistant to human error, cyber-attacks, and,
as already noted, single points of failure. In the next subsection, we begin to
discuss various design decisions for human-swarm interfaces that likely impact
these dynamics.
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Fig. 5. Hypothetical trade-offs between fault tolerance and operator influence. The
blue solid line represents a desirable trade-off in which fault tolerance is maintained
for moderate amounts of operator influence, whereas the green (dashed) line and red
(dotted) lines represent less desirable trade-offs. (Color figure online)

3.3 Characterizations of Human-Swarm Interactions

The human-swarm interface defines the interactions between the operator and
the swarm. We now characterize broad notions of interactions that interfaces
could potentially support. We divide these characterizations of the human-swarm
interface into three categories: the levels of engagement of the operator, the
categories of control mechanisms provided to the operator, and the elements of
observation given to the operator. We discuss each in turn.

Levels of Engagement. A human operator can potentially engage with the
swarm at two different levels: swarm-level engagement and mission-level engage-
ment. In swarm-level engagement, the operator observes and adjusts the state of
the swarm. The operator is interested in how the swarm evolves, what it is doing,
and how it is doing it. On the other hand, mission-level engagements focus on
strategic mission objectives. In mission engagement, the operator is concerned
with articulating the strategic objectives of the mission to the swarm and deter-
mining whether or not these objectives have been or are being accomplished.

There is not a general answer for the question of which level of engagement
is ideal. In many scenarios, both levels of engagement should be possible. Sev-
eral factors contribute to this design decision. For example, how much of the
swarm’s behavior and state can reasonably be communicated to the operator?
If communication bandwidth does not permit rich understanding of the current
state of the swarm, mission-level engagement might be more effective. Likewise,
how much operator influence should be supported? Lower influence will typically
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Table 2. Four categories of control mechanisms, each of which represents a different
way of providing input to the robot swarm.

Category of
control

Primary level
of engagement

Brief description

Parametric
control

Swarm The operator changes parameters governing
individual robot behaviors

Control by
association

Swarm The operator directly controls members (or
virtual members) of the swarm, who then
influence the rest of the swarm via interactions

Environmental
control

Swarm The operator “modifies” the swarm’s
environment, potentially via virtual
environmental features that the robots can sense

Strategic
control

Mission The author gives mission-level feedback or
high-level instructions to the swarm

relate to mission-level engagement, whereas high influence will typically support
swarm-level interactions.

The levels of engagement supplied by an interface appertain to both the
control mechanisms and observation elements of the interface.

Categories of Control Mechanisms. Table 2 summarizes four different cat-
egories of control mechanisms that can be used in human interaction with robot
swarms modeled after hub-based colonies. We refer to the first category of con-
trol mechanisms as parametric controls. This category refers to controls that
modify parameters that govern the individual behaviors of robots, including the
rate at which robots perform particular functions, how quickly the transition
between states, how broadly they explore, etc. For example, for the robot swarm
described in Sect. 2, the operator could potentially change the amount of time
each robot spends exploring, dancing, or resting. Such changes can produce dra-
matic changes in the overall swarm behaviour.

Parametric controls are desirable because operators can make a single set of
parameter changes that require neither line of sight nor significant subsequent
supervision of the swarm. For example, suppose that a human operator over-
sees a swarm in an environment where visibility is limited. If robots repeatedly
campaign for poor quality nest sites, the operator can respond by decreasing the
time permitted for dancing. Even though the operator cannot see where quality
nest sites are, he can compel the robots to continue searching until they have
found an acceptable site. One disadvantage of this method is that managing a
swarm is non-intuitive. An operator must understand how the different rates
of change affect swarm state, and think clearly enough to produce a desired
outcome. Hence, these methods may not always be appropriate for novice users.

The second category of control mechanisms listed in Table 2 is control by
association, wherein the operator directly controls members (or virtual mem-
bers) of the swarm, who then influence the rest of the swarm via interactions.
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Many studies suggest that a human can only manage a limited number of robots
efficiently [4,17,24]. Since swarms contain hundreds of autonomous robots, it is
not possible to control all robots at once, nor would this likely lead to fault-
tolerant swarms. However, by controlling a limited number of robots or virtual
robots (e.g., [23]), the operator can impact the other robots in the swarm through
association. The number of robots (or virtual robots) controlled by the operator
impacts operator influence when using this form of control.

Environmental controls are a third category of control mechanisms that could
be made available to human operators. Under these mechanisms, the operator
does not directly influence the behavior of the swarm, but rather modifies the
environment in which the swarm operates to produce desired behavior. As an
example, the operator may be able to discern the strategic value of certain loca-
tions more quickly than the swarm, and can encourage or discourage exploration
around those locations by placing virtual objects (which can be sensed by the
robots) in the environment. The advantage of this approach is that it is more
immediately intuitive; its drawbacks are that it assumes the operator has higher-
quality information about the environment than the swarm. It also may require
significant operator attention to be fully effective.

Strategic controls differ from the other three categories of control in that they
directly pertain to controlling the mission rather than controlling the robots in
the swarm. These control mechanisms include playbook style interactions [13] in
which the operator selects high-level swarm behaviors (e.g., initiating a find-new-
nest behavior) or reinforcing particular mission outcomes. Such interactions are
desirable because they allow the operator to ignore swarm dynamics (which they
may have difficulty observing anyway) and instead focus on the bigger picture.
On the other hand, such controls do not allow the operator to influence low-level
behaviors.

Elements of Observation. The control mechanisms available to the opera-
tor are likely contingent on what the operator can observe and perceive from the
user interface. Chen et al. [2] identified three levels of transparency that could be

Table 3. Three levels of transparency that could potentially be achieved by human-
swarm interfaces. Adapted from Chen et al. [2].

Level of
transparency

Brief description

1 Conveys what is going on with the swarm and mission, and what
the robots are trying to achieve

2 Conveys why are the robots doing what they are doing, including
the robots beliefs and reasoning processes

3 Conveys what the operator should expect to happen in the
future to the swarm. Communicates whether mission objectives
be achieved?
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communicatedby thehuman-swarm interface (Table 3) to support situationaware-
ness. The first level relates to information that communicates what is happening
(both at the swarm and mission levels), and what individual robots are trying to
achieve (swarm-level engagement). The second level relates to information about
how the robots make decisions. This swarm-level engagement is often necessary to
successfully implement parametric controls. Finally, the third level of transparency
relates to information that indicates future swarm and mission states.

The question arises as to the degree to which each level of transparency
should be portrayed to swarm operators. Given limitations in communication
bandwidth, it is unlikely that all levels of transparency could be communicated
for individual robots. However, various aspects of transparency would likely be
useful at the swarm or mission level. Regardless, transparency requirements
should be carefully considered when selecting which control mechanisms are
implemented in the human-swarm interface.

4 A Human-Swarm Interface (Preliminary Design)

In the previous section, we advocated that human-swarm systems should use
appropriate shared-control methodologies to adequately balance operator influ-
ence and fault tolerance. We also enumerated a variety of different methodolo-
gies for controlling a swarm, each of which must be supported by appropriate
transparency requirements. In this section, we describe a preliminary design
for a human-swarm interface to support operator interactions with hub-based
colonies. In so doing, we describe both the information and control elements to
be supported in this interface.

4.1 Information Display

As stated in Sect. 3.3, the human-swarm interface should provide appropriate
transparency [2] both in terms of the state of the robot swarm and the state
of the mission. First, we propose supporting level-1 transparency through radial
displays of both the mission and swarm state (Fig. 6). Given the limited capa-
bilities of individual robots to communicate what they learn and to sense the
environment, only limited and somewhat uncertain information will be available
to the operator. Furthermore, given the vast number of robots in the swarm,
knowledge about individual robots would overwhelm the operator. Our infor-
mation display, which is based on radial visualizations [5], communicates the
swarm’s state and the overall state of the mission and environment, rather than
displaying the state of individual robots (Fig. 6).

The radial display allows the user to see which direction each robot left
the hub. This gives the user the (level-3) transparency of seeing the predicted
directions of where each robot is headed and where they may end up. The hub
also allows the user to predict the behavior of the robots by showing the projected
amount of robots leaving the hub in each direction after the user has excited or
inhibited the swarm in each direction (described in more detail in Sect. 4.2).
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(a) (b) (c)

(d) (e) (f)

Fig. 6. (a-c) Three screenshots of a bird’s-eye view of the robot swarm foraging for
a location for a new hub location. Robots are depicted as bees, and potential nest
sites are drawn as red, yellow, and green circles. (d-f) Mock-ups of the corresponding
visualizations of the swarm state (grey) and potential nest sites (blue), where bigger
circles are thought to be better sites, for the three scenarios depicted in (a-c). (Color
figure online)

We also intend for the interface to use data from the robots to predict other
behaviors. The hub can use the velocity of the explorers as well as their direction
to predict when the explorer should return to the hub. If the explorer does not
return to the hub in time, the hub takes note. If this happens repeatedly, the
hub should notify the user that many robots leaving in a certain direction are
disappearing, and there is likely something dangerous in that direction.

The information display also communicates relevant information about the
mission state. As the robots collect information about various sites, the estimated
quality of each site is displayed. Together with the radial display showing the
swarm state and an understanding of swarm dynamics, the operator can infer
the likely future state of the system.

4.2 Controls

In Sect. 3.3 (Table 2), we identified and briefly discussed four different categories
of control mechanisms: parametric control, control by association, environmental
control, and strategic control. Our preliminary interface design is intended to
implement one or more example mechanisms from three of the four control types.
Table 4 lists these example mechanisms, which we discuss in turn.
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Table 4. Control mechanisms in our preliminary human-swarm interface design.

Category of
control

Specific mechanisms

Parametric
control

Rate control – Control how robots transition between states

Exploration control – Control directions robots leave the colony

Control by
association

None. Due to communication constraints which provide limited
knowledge of the movements of individual robots in the swarm,
we chose to not implement this control mechanism

Environmental
control

Bug bait – Environmental cue that attracts robots

Bug bomb – Environmental cue that repels robots

Strategic
control

Playbook – Whole swarm behaviors focused on task achievement

Quality attribution – Ability to modify how sites are valued

Parametric Controls. We are considering two different forms of parametric
control: rate control and exploration control. Rate control refers to real-time
modifications to parameters that control how robots transition through their
states. In some cases, the operator may observe that the swarm appears to be
converging too quickly or too slowly to a solution. In this case, the operator
can inhibit or excite state transitions by interacting with an information display
showing the distribution of robots thought to be in each state.

The exploration control is done by interacting with the radial display showing
the swarm’s state. Recall that this display is formed by recording the direction
that each robot leaves the swarm. We allow the user to excite or inhibit explo-
ration in any direction by clicking and dragging on this radial display. Then,
robots leaving the swarm to explore select their direction according to the dis-
tribution selected by the user. So as to not provide too much influence to the
operator (in the spirit of shared control), this suggestion is maintained for only
a limited amount of time.

Environmental Controls. We implemented two different environmental con-
trols in our system, which we call bug bait and bug bomb. The bug bait acts as an
attractor; it attracts robots to it. On the other hand, the bug bomb is a repel-
lent, as it drives robots away from it (Fig. 7). To use these tools, an operator
specifies a location and whether or not exploring robots should be attracted to
or repelled from the point. Several features have been built into the tool to limit
operator influence. Firstly, the attraction and repulsion mechanisms are prob-
abilistic. Robots have a chance of ignoring an attracting or repelling influence
and continuing to explore normally. Second, these attractors and repellents also
eventually expire so that they no longer influence the robot’s movements. To
force the robots to stay in or move away from an area, attractors and repellents
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must be continually replaced by the operator. Lastly, the operator must wait for
a “cooldown” period after using the tool before using it again.

Fig. 7. The operator can drop a bug bomb (red circle) in the virtual environment to
drive robots away from a particular location. When this repellent is placed, robots
probabilistically scatter away from the specified location. (Color figure online)

These mechanisms were created to balance the benefits and potential haz-
ards of human influence on the swarm. A human operator using these tools can
shepherd robots towards an area they would otherwise be unlikely to explore,
or push them away from a poor quality site they might settle on. Conversely,
a distracted or even absent operator cannot cause the robots to become per-
petually “stuck” because of the finite lifespan of the attractors and repellents.
Malicious or erring users should similarly find influencing the robots to converge
on a suboptimal site to be difficult, since robots have a chance of ignoring an
attractor or repellent, they may end up discovering a high quality site despite
misguidance from the operator.

Strategic Controls. Strategic controls are similar to parametric controls, but
function on a “mission” level, rather than a “swarm” or “robot” level. Strate-
gic controls in our simulation are still under development. Currently, sites are
assigned arbitrary quality values during simulations, but a more realistic sce-
nario might have sites that feature several different qualities based on distance,
safety, size, or strategic import. One potential strategic control, called quality
attribution, would allow for a different level of importance to be assigned to
each feature, depending on the strategic objective. Changes to the importance
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of various features would in turn cause robots to evaluate a site’s overall quality
differently.

A second strategic control we intend to implement are playbooks [13] for hub-
based colonies. In Sect. 2, we described a swarm system for selecting the best of
n alternatives. This behavior constitutes a play. A variety of other plays could
be created, including foraging, hub merging and splitting, etc. Once defined, the
operator need only select the play, and the swarm would then automatically
transition to a new set of behaviors.

These operations, functioning at a much higher level of abstraction, are more
immediately intuitive than parametric controls and require far less microman-
agement than environmental controls. However, they introduce much more risk
for fault into the system, as the swarm, without any sort of model for strategy,
cannot correct for poor operator decisions.

5 Conclusions

Human-swarm systems modeled after hub-based colonies, such as ants and bees,
can potentially have very attractive properties. However, one of the challenges
of implementing these systems is determining how the human should engage
with the swarm to ensure that strategic mission objectives are met without, at
the same time, compromising these properties. In this paper, we have advocated
that the ideal way to do this is through shared control, wherein the human
operator and the underlying situated dynamics of the swarm share the burden
of decision-making. We have also discussed different ways in which shared control
can be realized in such human-swarm systems, a discussion which culminated in
a description of a our preliminary design of a human-swarm system.

In future work, we plan to evaluate and refine this system via user studies and
further design, with the goal of continuing to develop generalizable principles for
the design of fault-tolerant, human-swarm systems.
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