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Computing the Effects of Operator Attention
Allocation in Human Control of Multiple Robots
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Abstract—In time-critical systems in which a human operator
supervises multiple semiautomated tasks, failure of the operator
to focus attention on high-priority tasks in a timely manner can
lower the effectiveness of the system and potentially result in catas-
trophic consequences. These systems must integrate computer-
based technologies that help the human operator place attention
on the right tasks at the right times to be successful. One way to
assist the operator in this process is to compute where the oper-
ator’s attention should be focused and then use this computation
to influence the operator’s behavior. In this paper, we analyze the
ability of a particular modeling method to make such computa-
tions for effective attention allocation in human–multiple-robot
systems. Our results demonstrate that it is not sufficient to simply
compute and dictate how operators should allocate their attention.
Rather, in stochastic domains, where small changes in either the
endogenous or exogenous environment can dramatically affect
model fidelity, model predictions should guide rather than dictate
operator attentional resources so that operators can effectively
exercise their judgment and experience.

Index Terms—Attention allocation, human-performance mod-
eling, human–robot interaction, multirobot teams, supervisory
control.

I. INTRODUCTION

A COMMON theme in many computing systems is for
users (or operators) to simultaneously manage multi-

ple semiautomated software agents, robots, or other system
components. In these systems, which include human–robot sys-
tems, transportation systems, power systems, and other every-
day computer systems, the way an operator allocates attention
among these various tasks can greatly impact a system’s effec-
tiveness. This is particularly true in time-critical missions in
which failure of the operator to attend to high-priority tasks in
a timely manner can have catastrophic consequences.
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However, effective attention management in these multi-
dimensional, uncertain, and high-workload situations is dif-
ficult given the operators’ cognitive limitations. To mitigate
the negative effects of these limitations, computer-based tech-
nologies can help operators manage their attentional resources.
In this paper, we present and analyze methods for improving
operator attention allocation in human–multiple-robot systems
(HMRSs) in which highly autonomous robots perform com-
mand and control tasks under the direction and supervision of a
single human operator.

Three related approaches have been suggested and studied
to improve operator attention allocation in HMRSs. In the
first approach, visualizations representing the status, plans, and
progress of the robots in the system are provided to the operator
via a graphical user interface (GUI). Such visualizations im-
plicitly tell the operator which tasks need to be performed and
when the operator should perform them. For example, timeline
displays for unmanned aerial-vehicle systems can be used to
present a schedule of anticipated events [1]. The operator can
use this display to infer and investigate which tasks to perform
and when to perform them [2].

Warning systems are a second well-studied methodology for
improving operator attention allocation in HMRSs. A typical
warning system detects potential critical events and then ex-
plicitly alerts the operator of those events via visual, auditory,
or haptic signals. In addition to potential use in HMRSs [3],
[4], such warning systems have been used and studied in many
systems involving human interaction with automation, includ-
ing nuclear power plants [5], aviation [6], [7], and automobiles
[8], [9].

In this paper, we consider a third approach for improving
operator attention allocation in which the system explicitly
suggests or dictates where the operator’s attention should be
focused at any given time. This is done by using a model of
the HMRS to compute a utility-maximizing operator attention
allocation scheme (OAAS), or operator scheduling policy [10]–
[13]. An OAAS specifies where human attention should be
allocated in all possible situations. This approach has two
potential benefits. First, as people are often poor schedulers
[14], particularly under time pressure [15], ensuring that an
operator attends to the tasks with the highest utility (or priority)
can significantly increase the system’s performance. Second,
aiding the operator in attention allocation can potentially reduce
the amount of effort it takes for the operator to choose a task to
perform, thus reducing the operator’s workload. This, in turn,
can lead to additional performance increases.

Gaining these potential benefits, however, is challenging.
To increase the system’s performance and potentially lower
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Fig. 1. Two-screen human–robot interface used in RESCU.

operator workload, the model of the HMRS must be able to
effectively compute the effects of OAASs on the system’s
effectiveness. Furthermore, once a desirable OAAS is com-
puted, effective human–robot-interface technologies must be
constructed to help the operator attend to the recommended
tasks. Failure to accurately model the effects of OAASs or
to convey the needs of the system through the human–robot
interface will likely lead to lower system performance and
increased operator workload [2], [16].

Thus, a system seeking to improve operator attention alloca-
tion using this approach must address two questions. First, how
can an effective OAAS be computed? Second, once computed,
how should the system use the knowledge of this OAAS to help
the operator attend to the most appropriate task? Answering this
second question includes determining whether the operator or
the automation is ultimately responsible for selecting the task
that the operator performs [17], [18].

In this paper, we address these questions using the HMRS
and user study described in Section II. In Section III, we review
a previously introduced computational modeling method for
HMRSs [19] and introduce how this model can be used to
compute the effects of OAASs. We also show how the model
can be used to estimate an “optimal” OAAS under certain
assumptions. In Section IV, we analyze the appropriateness of
these assumptions. In Section V, we describe methods for using
the optimal OAAS to assist the operator in allocating his or
her attention among various tasks. We present the results of a
second user study evaluating the resulting HMRS in Section VI
and discuss the lessons learned in Section VII.

II. USER STUDY I: BACKGROUND

We used the Research Environment for Supervisory Control
of Unmanned Vehicles (RESCU) software test bed to evaluate
the modeling and interaction technologies described in this
paper. In this section, we give a brief overview of RESCU;
additional details are given in previous work [20]. We also
present results on operator attention allocation in RESCU.

A. Software Test Bed

An operator of an HMRS commonly assists in performing a
set of abstract tasks. These tasks include mission planning and

replanning, robot path planning and replanning, robot monitor-
ing, sensor interpretation, and target designation. RESCU was
designed to capture these tasks in a time-critical mission.

In RESCU, an operator supervises multiple simulated robots
in performing a search-and-rescue mission. The operator is
tasked with identifying and gathering 22 tokens from a building,
which is represented as an (initially) unknown maze, within
an 8-min time period. The locations of the tokens are given
to the system. The mission goal is to collect as many of these
tokens as possible during this time period while ensuring that all
robots are out of the building when time expires. Specifically,
the operator is tasked with maximizing the following objective
function:

Score = TokensCollected − RobotsLost (1)

where TokensCollected is the number of tokens collected during
the 8-min period and RobotsLost is the number of robots in the
building when time expires.

A token is collected using a three-step process.

1) A robot moves to the location of a token in the building.
This step requires the operator to be involved at some
level in mission planning, target designation, path plan-
ning and replanning, and robot monitoring.

2) The robot “picks up” the token. In real-world systems, the
operator would likely need to perform visual tasks such as
identifying the token from imagery or interpreting other
sensor data. In RESCU, this burden on the operator is
simulated by requiring the operator to locate a designated
city on a computer-based Google-Earth-style map of the
U.S. As with scanning video imagery, this task requires
the operator to dedicate cognitive resources to a visual
search task.

3) The robot carries the token out of the building via one of
two exits. This step requires the operator to monitor the
robot and assist in path planning and replanning.

The operator uses a two-screen display to oversee and help
perform the RESCU mission. On the left screen [Fig. 1(a)],
the locations of the robots and tokens are displayed in the
building. A partial map of the building is also displayed. This
map is a combination of the map created by each robot as they
move about the world. The right screen [Fig. 1(b)] displays the
Google-Earth-style map used in the visual search task.
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Fig. 2. Average number of (a) tokens collected, (b) robots lost, and (c) system score in RESCU. Error bars show 95% confidence intervals.

In RESCU, the operator interacts with a single robot at a
time. Once the operator has selected a robot, by clicking on
a button corresponding to that robot, the operator can perform
three tasks for that robot. These tasks are as follows.

1) Goal assignment—The operator specifies the robot’s des-
tination, typically a token or building exit, by dragging
a goal marker to the desired location. The robot then
navigates through the building, using Dijkstra’s algorithm
with estimated path costs, in search of this destination.
The robot’s projected path is displayed on the screen.

2) Replanning—If desired, the operator modifies the se-
lected robot’s target destination or modifies the path that
the robot intends to follow to its destination.

3) Visual Search Task—Once the robot finds a token, the
operator helps the robot “pick up” the token.

To assist the operator in determining which robot to service,
a visual alerting system [yellow message in Fig. 1(a)] notifies
the operator when a robot 1) is not assigned a task, 2) needs
assistance “picking up” a token, or 3) in danger of being left in
the building in the last minute of the mission.

B. Operator Attention Allocation in RESCU

RESCU was initially used to analyze how changes in team
size, robot-autonomy characteristics, and the human–robot in-
terface affect the HMRS’s performance [19], [20]. In this
paper, we are interested in how OAASs, or the way operators
allocate their attention among multiple robots, affect HMRS’s
effectiveness. We begin by analyzing observed operator atten-
tion allocation in a previous RESCU user study.1

1) Experimental Setup: The user study was a within-subject
study with 16 participants. The independent variable was robot
team size, which had four levels: two, four, six, and eight robots.
The dependent variable was the number of tokens collected and
robots lost and, for the purposes of this effort, the OAASs used
by the participants.

Each participant was trained on all aspects of the RESCU
test bed. They then completed three comprehensive practice

1Previously published work describing this user study [19] focused on
developing a predictive model for human–robot team performance and did not
examine strategies in any way.

sessions after which the four test sessions were administered.
The order that the participants saw each team size was counter-
balanced to offset order effects.

2) Results: The average performance of these HMRSs is
shown in Fig. 2, which demonstrates that the average number of
tokens collected peaked at about six robots, while the number
of robots lost consistently increased with team size. Given
the objective function in (1), system effectiveness was highest
when the team consisted of between four and six robots. Adding
additional robots to the team after six robots appears to decrease
the HMRS’s effectiveness. On average, operators were unable
to effectively manage more than six robots, although some
individual operators could. This same trend was observed in a
similar, but separate, 12-subject study [20].

However, this decrease in system effectiveness with increas-
ing numbers of robots need not occur. With eight-robot teams,
operators could simply utilize fewer of the available robots
to increase system effectiveness to levels observed in six-
robot teams. While three operators implemented this strategy,
most did not. Thus, the decrease in system effectiveness in
teams with many robots can be traced, at least in part, to
the way that operators allocated their attention among the
robots.

To help understand the operators’ attention-allocation be-
havior in these larger teams, we consider operator strategy
profiles, which depict the number of goal assignment, replan-
ning, and visual search tasks (payload operations) the operators
performed in each minute. Fig. 3(a) and (b) shows the average
strategy profile across all operators for six- and eight-robot
teams. The strategy profiles are fairly similar for both six- and
eight-robot teams except for two revealing differences. First,
in eight-robot teams, the average operator sent more than six
robots into the building in the first minute. While this is not
surprising since there were eight robots to control rather than
just six, this result illustrates that at least some operators were
unable to identify that they would score higher, on average,
using only six robots rather than eight.

The second main difference between the strategy profiles
for the six- and eight-robot teams occurred in the last minute,
where Fig. 3(b) shows a sharp increase in replanning tasks in
the eight-robot condition. In this condition, operators tended to
send too many robots into the building. They were then forced
to try to correct this mistake in the last minute by sending robots
back out of the building before they gathered a token. This is
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Fig. 3. Average operator strategy profile for (a) six- and (b) eight-robot teams. (c) Reactive operator behavior in the eighth minute.

shown in Fig. 3(c), which plots the average percentage of robots
sent out of the building without a token in their last interaction
with the operator. The figure shows that operators tended to
remove more robots from the building without gathering a token
in the two- and eight-robot conditions than in the four- and six-
robot conditions. This shows that operators sent more robots
into the building than could collect tokens when they managed
two- or eight-robots. While operators typically corrected this
mistake with two robots, they were unable to do so in a timely
manner when they managed eight robots. This resulted in more
robots lost.

In short, some operators made time-critical errors in attention
allocation that reduced the HMRS’s effectiveness. This behav-
ior is reminiscent of human behavior observed by Sheridan
and Tulga [14], where operators could not determine optimal
scheduling rules. In the remainder of this paper, we describe
and evaluate how a detailed model of the HMRS can potentially
be used to improve operator attention allocation in RESCU. In
the next section, we present a modeling method for computing
which robot the operator should service at any given time. In
Section V, we discuss methods for helping operators to allocate
their attention to the recommended robots.

III. MODELING THE EFFECTS OF OAASs

Modeling the effects of operator attention allocation in su-
pervisory control systems has been addressed in past work [14],
[21]–[23]. Additionally, several methods for computing opera-
tor scheduling strategies in human–unmanned vehicle systems
have been proposed [10]–[12]. However, we are not aware of
a generalized and thoroughly tested method for computing the
effects of unobserved OAASs in HMRSs nor of work which
links such models with the human–robot interface.

Previous studies have demonstrated that a stochastic discrete-
event simulation can provide reasonably good predictions of
how changes in team size, robot autonomy, and human–robot-
interface characteristics alter system effectiveness [19], [20],
[24]. In this paper, we evaluate the ability of this same modeling
method to estimate the effects of OAASs on system effective-
ness in RESCU. We first give an overview of the modeling
method and describe how it can be used to compute the effects
of OAASs on system effectiveness. We then describe how the
resulting models can be used to compute an “optimal” OAAS
and discuss the application of this computation to RESCU.

A. Modeling Human–Multirobot Systems

Crandall et al. [19] model an HMRS with the four-
tuple M = (II,NI,ST ,OAAS) of stochastic structures.
We briefly describe each stochastic structure

1) Interaction impact. The stochastic process II(σ), where
σ is the system state at the beginning of the human–robot
interaction, describes how the robot’s status (or state)
changes over time as it interacts with the operator. II(σ)
implicitly specifies the length of a single human–robot
interaction.

2) Neglect impact. The stochastic process NI(σ) de-
scribes how the robot’s status changes in the absence
of human–robot interactions, given that the robot’s last
interaction with the operator ended in system state σ.

3) Switching time. The probability distribution ST (σ) de-
scribes how long it takes for the operator to determine
which robot to service given the system state σ.

4) OAAS. The structure OAAS(σ) is a probability
distribution over robots. This probability distribution
defines which robot the operator services given the
system state σ.

Once these four structures are determined for a particular
HMRS, a discrete-event simulation can be used to simulate the
HMRS and, in turn, estimate its effectiveness. When the four
structures are estimated by observational data of a particular
HMRS, previous studies have shown that the estimated sys-
tem effectiveness computed by the model, denoted by U(M),
matches the observed system effectiveness [19]. Thus, the
model is able to describe the behavior of the HMRS.

B. Computing the Effects of Operator Attention Allocation

The model can be used to predict how changes in the
OAAS will alter the effectiveness of HMRS. Let MO =
(IIO,NIO,ST O,OAASO) denote the model formed from
observations of an HMRS in RESCU. Our goal is to determine
how well the system would have performed had the operators
allocated their attention among the robots differently (i.e., when
operators use some alternate OAAS, denoted as OAAS′). If we
assume that IIO, NIO, and ST O would not be altered by a
change in the OAAS, the resulting model of the new HMRS
would be M′ = (IIO,NIO,ST O,OAAS′). Then, U(M′)
is a prediction of how well the system would perform when
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the operator selects robots according to OAAS′ rather than
OAASO.

The accuracy of the estimated change in system effectiveness
due to a shift in the OAAS relies on the important assumption
that changing from OAASO to OAAS′ does not affect IIO,
NIO, or ST O. While previous studies showed that changes
that affected NI and II did not significantly alter the other
structures [19], the assumption might not hold for changes in
the OAAS. We reevaluate the integrity of this assumption in
Sections IV and VI.

C. Computing OAAS∗

Our task is to identify how operators should allocate their
attention among robots in order to obtain high system effective-
ness. Let Ω be the set of possible OAASs. Then, formally, we
want to compute OAAS∗ ∈ Ω, such that U(M∗) ≥ U(M′)−
ε, for all OAAS′ ∈ Ω and some small ε ≥ 0. We begin by
identifying the set Ω.

Recall that an OAAS specifies how human attention is al-
located to the robots in the team in all situations, or system
states. In RESCU, we define system state with respect to 1) the
individual states of all robots in the team and 2) mission time,
defined in the continuous interval [0, 8] min. Since mission
time is continuous, there are an infinite number of possible
OAASs.

We identify a reasonable subset of these OAASs over which
we seek to find OAAS∗ by making two simplifying assump-
tions the effects of which we analyze in Section IV. First, the
time component of system state can be reduced by discretizing
the mission into a finite set of time periods. In RESCU, we
divide the mission time into eight discrete periods, one corre-
sponding to each minute of the 8-min scenario.

Second, in constructing Ω, we also limit the number of
possible probability distributions that OAAS(σ) can take on
to those probability distributions that place all weight on robots
in a particular state. These distributions can be expressed as
preference orderings over robot states, which specify the order
that the operator services the robots.

In addition to reducing the size of Ω, a preference order-
ing over robot states is easier for people to understand than
a probability distribution for each of an infinite number of
system states. However, the “optimal” preference ordering for
a particular minute could depend on the OAAS used in pre-
vious minutes. We evaluate the impact of this assumption in
Section IV.

In RESCU, these assumptions mean that each OAAS in Ω
consists of a sequence of eight preference orderings over the
five robot states defined in Table I. As an example, consider
Table II, which shows an OAAS as a series of eight preference
orderings. In the table, X > Y denotes that the operator attends
to robots in state X before attending to robots in state Y . The
OAAS in Table II specifies that the operator should give priority
to robots in state R in the first minute. If no robot is in state
R, the operator should attend to a robot in state A, etc. In the
second minute, the operator first attends to robots in state I .
Once there are no robots in state I , the operator services robots
in state A, and so on.

TABLE I
FIVE ROBOT STATES USED TO COMPUTE OAASS IN RESCU

TABLE II
OAAS∗ FOR EIGHT-ROBOT TEAMS

Fig. 4. Predicted strategy profile for following OAAS∗.

If we assume that robots in state G (Good Progress) always
have the lowest priority, there are 24 possible preference order-
ings over robot states in RESCU. Thus, the set Ω consists of
248 OAASs. We used a genetic algorithm on a population of
35 OAASs to estimate OAAS∗ from Ω. After each generation,
the two OAASs with the highest fitness were kept in the
population for the next generation. The remaining population
of the subsequent generation was randomly selected (according
to fitness level) from the previous population and then altered
through mutation (50%) and crossover (50%). Alternate param-
eter values had little effect on the results.

D. OAAS∗ in RESCU

Using the structures IIO, NIO, and ST O observed for
eight-robot teams in the first user study (Section II) and
the method described in the previous section, we computed
OAAS∗ for eight-robot teams in RESCU. This OAAS is shown
in Table II. The model-predicted strategy profile for following
OAAS∗ is shown in Fig. 4.
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Fig. 5. Predicted system effectiveness for following OAAS∗ compared with observed system effectiveness. Error bars show 95% confidence intervals.

In the first minute, OAAS∗ specifies that the operator should
attend to robots in the replanning state R. When no robots are
in this state, the operator should perform goal assignment (i.e.,
attend to robots in state A). Since all robots are initially in state
A, most interactions in the first minute begin with robots in
state A. However, if any robot enters state R while searching
for their designated goals, the operator should switch attention
to that robot. Thus, in the first minute, most of the interactions
are with robots in state A and R. In the second minute, robots
in state I are given the highest priority. However, since there
are typically not many robots in state I at this point, most of
the robot selections are to robots in state A. This results in the
remaining robots being sent into the building (interactions with
robots in state A), after which robots that are ready to “pick up”
tokens are serviced.

While discretizing mission time causes sudden changes in
operator behavior from minute to minute, the strategy profile
of OAAS∗ in Fig. 4 provides several interesting insights. First,
for eight-robot teams, OAAS∗ gives low priority to sending
robots into the building (i.e., servicing robots in state A) in
the final 3 min. This recommendation agrees with experimental
observations made in Section II-B, which show that operators
sent too many robots into the building in the sixth and seventh
minutes, causing them to spend extra time replanning in the
last minute. The model predicts that following OAAS∗ would
substantially reduce this problem.

Second, OAAS∗ specifies that the operator should give less
priority to replanning in minutes two through five as compared
with what they did in the first user study [Fig. 3(b)]. Rather, in
these minutes, OAAS∗ suggests that operators should perform
tasks that the robots cannot perform themselves, such as goal
assignment and payload operations. However, by the sixth
minute, OAAS∗ recommends that the operator should give
high priority to replanning and rerouting robots in order to
ensure that each robot in the building can “pick up” a token
and exit the building before time expires.

Third, OAAS∗ suggests that operators should give high
priority to replanning in the first minute. This is contrary to
the operator behavior in the first user study, as participants
typically dedicated the first minute to sending robots into the
building. From a performance standpoint, it is not clear why
it would be beneficial to give high priority to replanning in
the first minute. Regardless of whether the model is “right” or
“wrong” in this regard, discrepancies between what operators

believe should be done and what OAAS∗ suggests creates an
interesting dynamic. We revisit this issue in Section VI.

The model predicts that the eight-robot HMRS would have
substantially higher performance if operators had followed
OAAS∗ rather than OAASO (Fig. 5). For eight-robot teams,
the model predicts that using OAAS∗ would, on average, result
in the team gathering more than one extra token per session
while losing less than half as many robots. If accurate, the
model predicts that the system score [(1)] would increase by
nearly three points if operators had followed OAAS∗ in the
eight-robot condition.

IV. ANALYSIS OF MODELING ASSUMPTIONS

The model’s accuracy depends on the appropriateness of
the assumptions and simplifications it utilizes, including time-
discretization granularity, preference orderings, the invariance
of IIO and ST O given the changes in OAAS, and adher-
ence to the stated mission-objective function. In this section,
we analyze the effects of these assumptions on OAAS∗ and
U(OAAS∗), the HMRSs’ predicted performance when the
operator follows OAAS∗. To do so, we compute the adjusted
OAAS∗, the optimal OAAS when the assumption is vio-
lated. We then compare U(OAAS∗) to U(adjusted OAAS∗),
U(OAASO), and U(Random) (the estimated system perfor-
mance when operators service robots at random.

A. Granularity of Time Discretization

Recall that we divided the mission time into eight dis-
crete time periods to compute OAAS∗. Would more time
periods allow for a substantially more effective OAAS? To
answer this question, we computed the adjusted OAAS∗ and
U(adjusted OAAS∗) using between 2 and 16 time periods.
Fig. 6(a) shows that dividing the mission time into more than
eight periods does not produce a substantially more effective
OAAS. Thus, given that a finer discretization is more likely to
cause overfit due to the sparsity of the data, dividing mission
time into eight time periods appears to be ideal.

B. Preference Orderings

The optimization model proposed in the previous section
defines OAASs by a set of preference orderings, i.e., one for
each minute. However, a preference ordering conveys the same
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Fig. 6. Effects of (a) preference orderings, (b) discretization granularity, (c) switching times, (d) interaction times, and (e) the objective function on OAAS∗.

robot selection for a system state consisting of one robot in state
s1 and seven robots in state s2 as a system state with seven
robots in state s1 and one robot in state s2. Since preference
orderings do not fully distinguish between system states, the
best preference ordering for the eighth minute could potentially
depend on the OAAS used in the previous minutes.

To better understand the limitations of using preference
orderings, we consider the example situation in which operators
deviate from OAAS∗ during the seventh minute. We then use
the model to assess the “optimality” of OAAS∗ given this
deviation by computing the preference ordering that produces
the highest system score in the eighth minute (best preference
order) given the deviation. For comparative purposes, we also
consider two other eighth-minute OAASs: 1) the preference
ordering that would produce the worst system score in the
eighth minute (worst preference order) and 2) the operators’
modeled behavior from the first user study (OAASO).

We consider two seventh-minute deviations. First, we con-
sider the situation in which operators follow the opposite
preference ordering from OAAS∗ (A > P > R > I) in the
seventh minute. This is the largest possible seventh-minute de-
viation from OAAS∗ and would produce a very distinct system
state entering the eighth minute than if no deviation occurred.
Second, we consider the situation in which the operators use
OAASO in the seventh minute. This represents a smaller de-
viation from OAAS∗ and approximates how operators allocate
their attention when they follow their own devices.

Fig. 6(b) shows the predicted system scores of the four
eighth-minute OAASs given both seventh-minute deviations.
In both cases, the model found a preference ordering that

outperforms OAAS∗, which confirms that the best preference
ordering is dependent on the OAAS used in previous minutes.
However, the figure shows that following OAAS∗ is still quite
effective given the smaller, and more likely, seventh-minute
deviation (OAASO). Additionally, for both deviations, the
model predicts that selecting robots according to OAAS∗ is
better than selecting robots according to OAASO.

C. Invariance to Changes in Switching and Interaction Time

To compute OAAS∗ and U(OAAS∗), we assumed that
changing OAAS does not cause a change in II, NI, and ST .
However, since a change in the OAAS might cause a change
in the other processes, particularly ST and II, it is useful to
analyze the potential consequences.

These consequences are predicted and shown in Fig. 6(c) and
(d). Fig. 6(c) shows that, while switching time is predicted to
have a substantial impact on the effectiveness of the system,
OAAS∗ is still the best OAAS when the switching time is
halved or doubled. Fig. 6(d) shows that changes in visual-
search-task times would also cause a substantial change in
system effectiveness. However, unlike switching time, large
changes in visual-search-task times make OAAS∗ suboptimal.
Thus, operators that are either much slower or much faster
than average in performing the visual search task should follow
alternate OAASs.

D. Objective Function

Throughout this paper, we have assumed that operators max-
imize the objective function given in (1), where the value of a
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Fig. 7. GUIs for each robot-selection mechanism in RESCU. Recommendations are highlighted in orange in the Guided and Auto Modes. (a) Manual.
(b) Guided. (c) Auto.

robot and a token are equivalent. However, operators may value
robots more or less than tokens. Under such conditions, is it
desirable to still follow OAAS∗; or would an alternate OAAS
produce better results?

Let cT and cR be the comparative value of tokens to robots.
Then, let the system score be given by

Score = cT ∗ TokensCollected − cR ∗ RobotsLost. (2)

For simplicity, we normalize cT and cR so that cT + cR = 1.
Fig. 6(e) shows the performance of the various OAASs for

various ratios cT : cR. The figure shows that, while the system’s
predicted score changes based on the ratio cT : cR, the model
does not find an OAAS that outperforms OAAS∗ (computed
for cT = cR). This suggests that, in RESCU, an operator is
not forced to choose between maximizing tokens collected at
the expense of robots lost (or vice-versa). Rather, an effective
OAAS involves sending just enough robots into the building
that each robot can collect and remove a token from the building
before time expires.

In summary, while violations of the assumptions may cause
OAAS∗ to be suboptimal in some cases, these predictions
indicate that it remains a relatively good OAAS. However,
violations of the assumptions are likely to compromise the
accuracy of the model’s predictions of system score. We revisit
these predicted phenomena in Section VI by way of user
study.

V. MANAGING OPERATOR ATTENTION ALLOCATION

While following OAAS∗ can potentially enhance system
effectiveness in RESCU, it is not clear how knowledge of this
scheme should be used to alter operator attention allocation in
situ. In the first user study, the operator clicked on the button
corresponding to the desired robot. This selection mechanism,
which we refer to as Manual Mode, is illustrated by the portion
of the GUI shown in Fig. 7(a) for a four-robot team. In the Man-
ual Mode, a list of buttons is provided corresponding to each
robot (labeled “UV” for unmanned vehicle in the GUI), with
the currently selected robot highlighted [robot 2 in Fig. 7(a)].
Messages next to the buttons indicate the next tasks that the
operator should likely perform for each robot.

Given the knowledge of OAAS∗, alternate robot-selection
mechanisms can be created to improve operator attention al-
location. In this section, we describe two of these selection
mechanisms for RESCU: Auto Mode and Guided Mode. We
evaluate the effectiveness of these two selection mechanisms
in the next section.

A. Auto Mode—Automating Robot Selection

One way to ensure that an operator conforms with OAAS∗

is to automate the robot-selection process. We designed the
Auto Mode to implement this robot-selection mechanism. In the
Auto Mode, rather than directly selecting a robot, the operator
clicks a button labeled “Next” to select a new robot to service
[Fig. 7(c)]. The computer then automatically selects a robot
for the operator to service based on OAAS∗. This is done by
selecting a robot with the highest priority (based on the robots’
states) according to the current preference ordering specified by
OAAS∗. In the case that multiple robots are in the same high-
priority state, a robot is chosen randomly. If the operator does
not want to give any new commands to a selected robot, he or
she can temporarily “turn-off” a selection by unchecking the
check box next to that robot’s label.

This selection mechanism has two potential advantages.
First, it could lower the operator’s workload since the oper-
ator would no longer need to spend time determining which
robot to service. Second, given that U(M∗) > U(M), the
system should be better able to schedule the operator’s time,
on average, than the operator (Fig. 5). Hence, system ef-
fectiveness is expected to improve if the automation is re-
sponsible for determining where operator attention should be
focused.

While these potential advantages are enticing, this approach
also has a number of potential disadvantages. First, removing
the human from the robot-selection process can lower the oper-
ator’s situation awareness [25]. This could potentially increase
the amount of time it takes the operator to service a robot
[26], [27], thus increasing the operator’s workload rather than
decreasing it [28]. Second, for any number of reasons, the
model’s utility estimates may be incorrect. In such situations,
OAAS∗ could lead to lower levels of effectiveness than if
operators were left to their own devices.
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B. Guided Mode—Recommending Robot Selection

Another potential method for leveraging knowledge of
OAAS∗ to improve OAASs is via a management-by-consent
approach. This level of automation has been used successfully
in various tasks performed in other studies of systems with
multiple unmanned aerial vehicles [29], [30]. In management-
by-consent, the system recommends courses of action, but the
operator can decide whether to follow or not the recommenda-
tions. The Guided Mode implements this selection mechanism.

In the Guided Mode, the system uses OAAS∗ to recommend
which robots (determined by the robots’ states) the operator
should service by highlighting the suggested robots [in orange;
Fig. 7(b)]. As with the Manual Mode, the operator chooses
which robot to service by clicking on the button corresponding
to that robot. Thus, the operator can decide whether to follow or
not OAAS∗. If the operator believes that the recommendations
are in error, he or she can simply ignore them. Additionally,
the operator can “turn off” recommendations by unchecking the
check box next to the button of the corresponding robot. Once
the button is unchecked, the robot is no longer highlighted, and
subsequent recommendations are displayed.

Suggesting, but not enforcing, robot selections lowers the
risks associated with having an inaccurate model since the
operator can potentially distinguish between successful and
unsuccessful recommendations. However, even suggesting but
not enforcing undesirable OAASs can potentially decrease per-
formance due to automation bias [31] and mistrust [32].

VI. USER STUDY 2

We conducted a second user study in RESCU using eight-
robot teams to evaluate 1) how well the model predicted the
effects of OAAS∗ on system effectiveness and 2) how well
the various robot-selection mechanisms promoted successful
OAASs. In this section, we outline the experimental protocol
of this user study and then present and discuss the results.

A. Experimental Setup

The user study was a single factor within-subject study.
The independent variable was the interface mode, which had
three levels: Manual, Guided, and Auto. Each user managed an
eight-robot team in each interface mode in the same RESCU
scenarios used in the first user study. The order that the users
saw each mode was counterbalanced to offset ordering effects.

The dependent variables for the study were the system score
[(1)], including number of tokens collected and robots lost, and
the participants’ OAASs. We also collected subjective informa-
tion, including the participants’ perceived workload and their
qualitative assessment of the robot selections recommended by
the system.

The following procedure was followed for each subject. First,
the subject was trained on each aspect of the original RESCU
system and then performed a full practice scenario. Second,
the subject was introduced to one of the three interface modes
and performed a full practice scenario on that interface mode.
Third, the subject performed a complete test mission using the

new interface. Fourth, the subject answered several subjective
questions about their experience. The subject then repeated
steps two through four using the other two modes.

Twelve undergraduate students, graduate students, and post-
doctoral associates participated in the experiment. Six of the
subjects were female and six were male. The subjects were
between the ages of 19 and 32, with a mean age of 23.2 years.
None of the subjects had prior experience with RESCU.

B. Results

This user study was designed to answer three questions. First,
did the model accurately predict the effects of using OAAS∗?
Second, how did the different robot-selection mechanisms alter
OAASs and which robot-selection mechanism was the most
successful? Third, what were the participants’ perceptions of
the different selection mechanisms?

1) Predictive Accuracy: Since the Auto Mode uses OAAS∗

to select robots for the operator to service, we compared the
system effectiveness predicted by the model (U(M∗)) with the
system effectiveness observed in the Auto Mode to evaluate
the model’s ability to predict how changes in OAASs affect
system effectiveness. The initial predicted performance did not
match the system effectiveness observed in the Auto Mode.
This was due in large part to a system upgrade to the computer
used in the first user study, which resulted in the mouse scroll
wheel being more sensitive than in the first user study. As a
result, the average time an operator spent on visual search tasks
decreased from 20 to 15 s (75%). As predicted by Fig. 6(d),
this lead to a substantial increase in system effectiveness.
While relatively trivial, this experimental “mistake” illustrates
how difficult it is to develop robust predictive models. Minor
changes in the environment or the system itself can alter system
effectiveness to the point that a predictive model becomes quite
unreliable.

Fortunately, we can incorporate the new search times into
IIO to evaluate the model’s ability to predict the effects of
OAAS in the absence of this unintended system change. The
remainder of the results in this paper include this revised IIO.
We also note that OAAS∗ was still the best OAAS the model
found for this revised system [Fig. 6(d)].

Comparisons of the observed number of tokens collected
and robots lost in the Auto Mode with model predictions are
shown in Fig. 8(a) and (b), where the model’s predictions are
labeled Predicted. The figures show that the model significantly
overpredicted the number of tokens collected. Additionally,
while the predicted number of robots lost was within the 95%
confidence interval, the predicted value is still less than half the
observed number of robots lost.

The inaccuracy of the predictions can be traced, in part,
to an incorrect model of II. Users took, on average, 1.6 s
longer in the Auto Mode to service a robot than they did
in the first user study (in which IIO was modeled). The
longer interaction times in the Auto Mode appear to have been
caused by the altered robot-selection mechanism. Since users
did not decide which robot they serviced, this sometimes caused
them to spend more time gaining awareness of the selected
robot’s situation, which, as predicted by Billings [26] and
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Fig. 8. Predicted system effectiveness compared with observed system effectiveness in the Auto Mode as measured by (a) tokens collected and (b) robots lost.
(c) Observed system score in the user study.

Parasuraman et al. [27], led to longer interaction times than in
the Manual Mode. Thus, the assumption of an unchanged IIO

as stipulated in Section III-B was violated, thus compromising
the model’s predictive ability.

If we change the model’s estimate of II to reflect the
observed interaction times in the Auto Mode, we get the
predictions labeled Predicted (Adjusted) in Fig. 8(a) and (b).
These predictions for both tokens collected and robots lost
fall well within the 95% confidence intervals, which indi-
cates that if the model’s estimates of II, NI, and switching
times ST are accurate, the model can adequately predict the
effects of OAASs on system effectiveness. However, when
these estimates are incorrect, the model’s predictions of system
effectiveness are likely to be inaccurate, although the model
still predicts that OAAS∗ would be a good OAAS if we
attribute the increased interaction times to switching costs
[Fig. 6(c)].

Thus, the model’s reliance on observed data to estimate II
implies that it cannot reliably predict the effects of changes in
the OAAS. To be sufficiently robust, the model must somehow
account for how human–robot interactions alter other aspects
of the system. However, since the model does give reasonably
good predictions given correct estimates of II, it has potential
as a high-fidelity predictive tool if the effects of OAASs on II
can be anticipated. While anticipating the effects of OAASs on
II is a topic of future work, it is a nontrivial problem since
the degrees of freedom in OAASs for command and control
systems is extremely large.

2) Effects of Selection Mechanisms on OAASs: The second
question addressed by this user study concerned how the robot-
selection mechanism affected the system. While the model
predicts that OAAS∗ was theoretically optimal given the set Ω
and the modeled structures IIO, NIO, and ST O, following it
did not lead to a higher score. In fact, users had higher scores in
the Manual and Guided Modes, in which they often deviated
from OAAS∗, than in the Auto Mode [Fig. 8(c)], although
an analysis of variance shows no statistically significant differ-
ence in performance among the three modes (F (2, 33) = 0.50,
p = 0.609).

That the Auto Mode did not outperform the other two modes
can be linked, in part, to interaction time. Interaction times in
the Auto Mode were, on average, about 1.6 s longer than in
the Manual Mode and about 1.0 s longer than in the Guided
Mode. As discussed previously, the model predicts that these

differences in interaction times have a substantial impact on the
system’s effectiveness [Fig. 8(a) and (b)].

Given the differences between OAAS∗ and OAASO (the
OAAS observed in the Manual Mode), it is interesting to study
the OAASs used by operators in the Guided Mode, where
users were free to follow or ignore the recommendations made
by OAAS∗. While users did appear to follow some of the
recommendations, they did not always do so. To see this,
consider Fig. 9(a), which shows the percentage of time that the
users’ behavior corresponded with the model’s recommended
selections. In the Manual Mode, users’ selections matched
the model’s recommendations about 50% of the time, which
is just higher than random behavior (30% correspondence).
Meanwhile, as expected, user selections in the Auto Mode
corresponded with the recommendations more than 95% of the
time. (Recall that users could turn off recommendations in the
Auto Mode, which is why correspondence is not 100% in this
condition.) In the Guided Mode, user selections corresponded
to model recommendations about 60% of the time. Thus, the
user’s selections in the Guided Mode were more similar to those
observed in the Manual Mode than in the Auto Mode.

The effects of recommendations in the Guided Mode are
further shown in Fig. 9(b), which plots the correspondence of
robot selections to recommendations in each minute. From the
fourth minute to the end of the mission, the correspondence
of users’ selections to model recommendations in the Guided
Mode mirrored that of the Manual Mode, except that the
correspondence in the Guided Mode was shifted upward about
10%–20%. Thus, while users appeared to be biased by the
recommendations, they tended to follow their own judgement.

3) User Perceptions: While observed system effectiveness
and operator attention allocation are crucial metrics of any
system, one cannot discount the role of user perception. While
a system might produce good results, it will not likely become
successful unless it gains user acceptance. A postexperiment
questionnaire provided insights into the participants’ attitudes
toward the various robot-selection mechanisms.

Seventy-five percent of the users indicated that they did
not feel that the recommendations were ideal or important.
For example, one participant said that he completely ignored
the recommendations in the Guided Mode because they were
“confusing.” Several other users commented that, while they
did not always follow the recommendations in the Guided
Mode, the recommendations sometimes drew their attention to
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Fig. 9. (a) Average correspondence of robot selections with OAAS∗. The dotted line marks random correspondence. (b) Correspondence per minute.

a robot that required servicing that they otherwise might have
missed. Another participant determined that he did not need to
follow the recommendations because the penalty for not doing
so was not severe.

An analysis of how often users chose to “turn off” the
recommendations in the Auto Mode shed additional light on
users’ acceptance of the automation. Recall that the Auto Mode
allowed users to “turn off” recommendations for a given robot.
Once this was done, a subsequent set of recommendations was
provided. In the Auto Mode, three of the 12 users (or 25%)
chose to turn off various recommendations throughout the
course of a mission. This implies that they did not believe
the recommendations were worthy of consideration. Some of
the nine subjects that never “turned off” recommendations
indicated in postexperiment discussions that they would have
“turned off” recommendations in the Auto Mode if they had
remembered how to do so.

Participants were also asked to rank the three modes accord-
ing to their preferences. Eight of the 12 participants (67%) in
the study preferred the Guided Mode the most. They liked that
the Guided Mode allowed them to service whichever robot they
desired. Additionally, several users said that the recommenda-
tions alerted them of robots that needed to be serviced that they
otherwise might have missed. In comparison, eight of the 12
users (67%) liked the Auto Mode the least. Many of the users
expressed frustration that they were not allowed to select a robot
that was not recommended.

However, several operators appreciated that the Auto Mode
reduced their workload. Their intuition is validated statistically.
After each mission in the study, each participant was asked
to rank his mental workload during the mission on the scale
one to five. An ordered logit model, specifically, proportional
odds [33], shows a statistical difference in this measure of
subjective workload (χ2(2) = 6.98, p = 0.0305). The odds of
having higher subjective workload was lower for the Auto
Mode compared with the Guided Mode (χ2(1) = 9.84, p =
0.002) and the Manual Mode (χ2(1) = 5.46, p = 0.020). Thus,
while the Auto Mode did frustrate many of the users, it lowered
their perceived workload.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have discussed and analyzed operator
attention allocation in HMRSs in which a human supervises

multiple semiautomated and time-critical tasks. In particular,
we have focused on the role that predictive optimization models
can play in improving operator attention allocation in HMRSs.
Our experience highlights two important findings

1) Predictive models for computing and dictating optimal al-
location of operator attentional resources in time-critical
command and control settings are likely to fail.

2) Robust predictive models for identifying interventions for
human attention guidance are necessary for the success of
HMRSs.

The seemingly contradictory nature of these findings high-
lights the tricky balance that designers of HMRSs must achieve
to help operators effectively manage attentional resources.

A. Optimization Models for Attention Allocation Will Fail

Despite our best efforts over a number of years, our predic-
tive model was not sufficiently robust to predict the effects of
altering the operator-attention-allocation strategy in HMRSs.
While it is possible that more reliable models can be developed,
the real world is sufficiently complex that other models will
eventually fail, particularly in domains with significant exoge-
nous uncertainty. In such situations, it is essential that the sys-
tem be designed so that operators can adequately compensate
for such failures.

Under the assumption of a correct estimate of the other
aspects of the system, including II, NI, and ST , our results
indicate that such models give reasonably good predictions of
the effects of OAASs on system effectiveness. While this is a
good start, it appears that the assumption can be very difficult
to meet. In many instances, the act of altering OAASs will
induce changes in human–robot interactions, as demonstrated
by user behavior in the Auto Mode of our study. Thus, while the
modeling method potentially offers a framework for developing
predictive models capable of predicting the effects of changes in
OAASs, it is not sufficiently robust to reliably dictate successful
OAASs. To be sufficiently robust, the model must anticipate
how changes in one aspect of the system will affect other
aspects of the system. This is an important, yet challenging,
area of future work.

In addition to propagation of effects, predictive models for
attention allocation must also account for other unforeseen
changes in the system. For example, in our study, a system
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upgrade produced a small change in the system that we, as
system designers, did not anticipate but that had substantial
impact on the effectiveness of the system. Given the rela-
tively rapid changes that can occur in the software-intensive
environment of multivariate HMRSs, as well as the highly
dynamic environments and missions, this is a critical lesson
learned.

The effects of dictating that operators follow OAAS∗ re-
sulted in a number of undesirable outcomes. First, dictating
operator attention allocation did not produce an increase in sys-
tem effectiveness. Second, operators became frustrated when
they were forced to service robots they did not want to service.
This finding means that dictating operator attention could have
substantial negative effects if applied to safety-critical HMRSs
operated over long periods of time. It also has implications for
systems that provide an a priori set of strategies which require
humans to subscribe to a predefined set of actions that may
inadvertently overconstrain the operator and the system.

Thus, our results show that it is not enough to propose a com-
putational model to successfully harness operator attentional
resources in time-critical command and control HMRSs [10]–
[13]. Rather, computational models must be evaluated in con-
junction with human interactions with the system. It may be that
such models are most useful for investigating human–computer
architectures and developing operator decision support aids that
guide as opposed to dictate human behavior.

B. Models for Guiding Operator Attention Are Necessary

Despite the brittleness of computational models in comput-
ing successful OAASs, we maintain that they are necessary to
build successful HMRSs and other human–computer systems
in real-world domains. While human judgment is critical in
HMRSs, observed OAASs and the associated outcomes in
RESCU clearly illustrate that operators are unable to effectively
allocate their attention in time-critical command and control
settings. Operators attempting to control or manage multiple
robots or any heterogeneous set of tasks in time-pressured
environments need assistance in allocating their attentional
resources.

A recommendation system incorporating both human judg-
ment and model recommendations appears to have potential
for improving operator attention allocation in time-pressured
HMRSs. While the user study showed no statistically signifi-
cant difference in system effectiveness between the Auto and
Guided Modes, users preferred the Guided Mode. This result
mirrors the findings of Ruff et al. [29] in which management-
by-consent was the preferred method in supervisory control of
multiple unmanned vehicles. In the Auto Mode, users were
often frustrated that they could not service the robot of their
choice. On the other hand, while users believed that the sugges-
tions made by the model were suboptimal in the Guided Mode,
many of the users felt that they could still make good use of
them. This is significant since highly robust predictive HMRS
models are still likely to have moments of failure. In such
situations, it is essential that operators can determine whether
to follow the recommendations.

In short, rather than focus on determining “optimal” operator
attention allocation, a more productive modeling effort involves
using a model to identify OAASs that are “good enough” [34],
ensuring that model assumptions are not overly constraining,
and that the system allows operators flexibility in determining
whether to follow or not automated recommendations.
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