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Abstract

Many problems in multiagent learning involve repeated play.
As such, naive application of Nash equilibrium concepts
are often inappropriate. A recent algorithm in the literature
(Stimpson & Goodrich 2003) uses a Nash bargaining per-
spective instead of a Nash equilibrium perspective, and learns
to cooperate in self play in a social dilemma without exposing
itself to being exploited by selfish agents. It does so without
knowledge of the game or the actions of other agents. In this
paper, we show that this algorithm likely converges to near
pareto efficient solutions in self play in most nonzero-sumn-
agent,m-action matrix games provided that parameters are
set appropriately. Furthermore, we present a tremble based
extension of this algorithm and show that it is guaranteed to
play near pareto efficient solutions arbitrarily high percent-
ages of the time in self play for the same large class of matrix
games while allowing adaptation to changing environments.

Introduction
Many applications in which multiagent learning can be ap-
plied require agents to cooperate with and adapt to each
other on an ongoing basis. Thus, inherently, multiagent
learning involves repeated play. This suggests that in many
applications, the Nash equilibrium perspective should be
replaced by a Nash bargaining perspective (Nash 1950;
1951), since learning a one-shot best-response (locally op-
timal) solution is not always desirable when agents interact
repeatedly. It is, therefore, important that multiagent learn-
ing algorithms be developed that learn bargaining-like solu-
tions. This entails that the algorithms learn to play pareto
efficient or near pareto efficient solutions high percentages
of the time when it is feasible, and have a solid fallback po-
sition when it is not. Such an approach also dictates that
solutions be “fair.”1

Many real-world applications require agents to learn in
non-stationary environments where only partial information
about the world and/or other agents is available. This dic-
tates that, in addition to learning near pareto efficient solu-
tions, multiagent learning algorithms should require mini-
mal knowledge/information and be able to adapt to changes
in the environment and other learning agents. Moreover, the
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1We discuss the way that we use the termfair later in the paper.

solutions learned should have stability or equilibrium char-
acteristics.

In this paper, we discuss a multiagent learning algorithm
(which we call the S-Algorithm) presented by Stimpson and
Goodrich (2003) that uses satisficing. Stimpson showed how
the S-Algorithm in a multiagent social dilemma (MASD)2

successfully learns pareto efficient solutions with high prob-
ability in self play while avoiding being exploited by selfish
agents. This result is made more significant since the algo-
rithm requires no knowledge of the structure of the game or
the actions of other agents. We show that this algorithm is
applicable not only in the MASD but also in most nonzero-
sum repeated play matrix games.

Additionally, we introduce a trembled based extension of
the S-Algorithm. This extension of the algorithm, while
maintaining the S-Algorithms minimal knowledge require-
ments, allows agents to adapt to changing environments.
Also, it allows agents to play mixed-strategy solutions over
time.

Related Literature
To date, most multiagent learning algorithms have focused
on converging to Nash equilibrium and best response strate-
gies. Various algorithms have been shown to reach the Nash
equilibrium with various degrees of success. Examples in-
clude (Littman 1994; Fudenberg & Levine 1998; Bowling
& Veloso 2001; Conitzer & Sandholm 2003). While learn-
ing to play Nash equilibrium solutions is effective in some
games, it is not always successful in other games such as so-
cial dilemmas since the Nash equilibrium is not guaranteed
to be pareto efficient.

In response, Littman and Stone (2001) developed a
“leader” algorithm that teaches a class of best-response
agents to learn to play pareto efficient solutions in two-agent
repeated play games. Although their algorithm does not nec-
essarily work in self play, they concluded from their results
that best response approaches are not always sufficient in
multiagent contexts. They extended their work (Littman &
Stone 2003) by developing the concept of a repeated play
Nash equilibrium and a method to compute it. Their algo-
rithm, however, requires full knowledge of the structure of

2The MASD is equivalent to public goods games (Camerer
2003).



the game and observability of the actions of the other agent.

Terms and Definitions
Before proceeding, we provide some terms and definitions
that we use in this paper. The set of actions that agenti can
choose from is denoted byAi. Let a = (a1, a2, . . . , an)T ,
whereai ∈ Ai, be a joint action forn agents, and letA =
A1 × · · · × An be the set of joint actions of the agents. Let
at

i ∈ Ai denote the action played by agenti at timet, and
let at = (at

1, a
t
2, . . . , a

t
n)T be the vector denoting the joint

action played by then agents at timet. The payoff received
by agenti as a result of the joint actiona being played is
given byui(a).

A strategyfor agenti is a distributionπi over its action
setAi. Such a strategy may be apure strategy(where all
probability is placed on a single action) or amixed strategy
(otherwise). The joint strategy played by then agents isπ =
(π1, π2, . . . , πn)T and, thus,ui(π) is the expected payoff for
agenti when the joint strategyπ is played. Asolution is a
particular joint strategy.

Definition 1 - Pareto DominatedA solutionπ is strictly
pareto dominated if there exists a joint actiona ∈ A for
whichui(a) > ui(π) for all i and weakly pareto dominated
if there exists a joint actiona ∈ A for whichui(a) ≥ ui(π)
for all i.

Definition 2 - Pareto Efficient A solution π is weakly
pareto efficient (PE) if it is not strictly pareto dominated and
strictly PE if it is not weakly pareto dominated. Unless spec-
ified, the former (i.e. weakly PE) terminology is implied.

Pareto efficiency should be a main goal of an agent who is
involved in repeated play. However, it is sometimes difficult
and impractical to guarantee. We relax this goal slightly by
seeking near pareto efficiency.

Definition 3 - ε-Pareto Dominated A solution π is
strictly ε-pareto dominated if there exists a joint action
a ∈ A for which ui(a) > ui(π) + ε for all i and weakly
ε-pareto dominated if there exists a joint actiona ∈ A for
whichui(a) ≥ ui(π) + ε for all i.

Definition 4 - ε-Pareto Efficient A solutionπ is weakly
ε-pareto efficient (ε-PE) if it is not strictly ε-pareto dom-
inated and strictlyε-PE if it is not weaklyε-pareto domi-
nated. The former (i.e. weaklyε-PE) terminology is implied
unless specified otherwise.

We now give names to various regions of the reward space
of n agents. LetRn denote the real-valued reward space. Let
D be the subset ofRn that is weakly pareto dominated. Let
P = Rn − D. That is,P is the subset ofRn that is strictly
PE. Also, letDε be the subset ofRn that is strictlyε-pareto
dominated. Finally, letPε = D −Dε.

Thepareto boundarydivides setD from setP in the pay-
off spaceRn of the game. If a vectorv ∈ D, thenv is said
to be below the pareto boundary. Ifv ∈ P , v is said to be
above the pareto boundary. Likewise, theε-pareto boundary
divides setDε from setPε. If a vectorv ∈ Dε or v ∈ Pε,
thenv is said to be below or above theε-pareto boundary
respectively.

Figure 1 shows (graphically) some of the above-defined
terms for an arbitrary3× 3 matrix game withε = 0.5. The

Figure 1: Diagram of the regionsP , Pε, andDε in the payoff
spaceRn for an arbitrary3× 3 matrix game withε = 0.5.

x’s depict the payoffs of the game.
It is also important to understand the way we use terms as-

sociated with satisficing. Letαt
i be agenti’s aspiration level

at timet, and letαt = (αt
1, . . . , α

t
n) be the joint aspirations

of the agents at timet. A solutionπ is satisficingto agent
i if ui(π) ≥ αt

i. Likewise, an agent issatisfiedif the most
recently played joint action was satisficing to it. A solution
π is mutually satisficingat time t if ui(π) ≥ αt

i for all i.
Let St

i be the set of solutions that are satisficing to agenti at
time t. Then, we have themutually satisficing set(at timet)
St = St

1∩St
2∩ · · ·∩St

n. Thesatisficing regionis the region
in Rn defined bySt.

Nash bargaining is built on the concept of a fallback. In
this context, we define afallback strategyas a strategy an
agent adopts when it is not satisfied with its payoffs. An
agent’sfallback positionis the expected payoff associated
with the agent’s fallback strategy. The fallback position is
important in determining the “fairness” of a solution. Thus,
fallbacks are an important part of an agent’s strategy.

The S-Algorithm in Nonzero-Sum Matrix
Games

The S-Algorithm extends an algorithm developed by
Karandikaret al. (1998) that guarantees that agents will con-
verge to a cooperative solution in a small set of two-agent,
two-action games. Stimpson and Goodrich (2003) extended
the algorithm to ann-player,m-action (n, m ≥ 2) multia-
gent social dilemma (MASD) and showed that it likely con-
verges to a PE solution in this game. In this section we show
the S-Algorithm can be guaranteed to converge with arbitrar-
ily high probability toε-PE solutions in most nonzero-sum
games.

The S-Algorithm (shown in Table 1) uses an aspiration
relaxation search to find pareto efficient solutions. An agent
employing the S-Algorithm begins by setting its aspirations
high. Thereafter, it moves its aspirations closer to the reward
it receives at each iteration. If the agent is not satisfied with
the reward it receives on a given iteration, it plays randomly
on the subsequent iteration. If it is satisfied, it repeats the
action it played previously. An agent employing this algo-
rithm requires only the knowledge of the actions it can take.
It does not need to know the actions of other agents or the
payoff structure of the game.



1. Letλ ∈(0, 1] be a learning rate. Initialize,

sat = false α0
i = high

2. Repeat

(a) Select an actionat
i according to the following criteria:

at
i ←

{
at−1

i if (sat)

rand(Ai) otherwise

whererand(Ai) denotes a random selection from the setAi.

(b) Receive rewardrt and update:

i. sat←
{

true if (rt ≥ αt
i)

false otherwise

ii. Update aspiration level

α
t+1
i ← λα

t
i + (1− λ)rt (1)

Table 1: The S-Algorithm for agenti.

Figure 2: The payoff space of a 2-agent, 3-action game.

To better understand the S-Algorithm, consider Figure 2,
which shows the payoff space of a 2-agent, 3-action game
(shown withε = 0.5). The payoffs to player 1 are plotted
asx-coordinates, and the payoffs to player 2 are plotted as
y-coordinates. In the figure, x’s indicateε-PE solutions, +’s
indicate non-ε-PE solutions, and the circle (o) indicates the
the current aspirations of the agents. The gray rectangle is
the satisficing region. At the time shown in the figure, the
only solution in the satisficing region isε-PE. Once the so-
lution in the satisficing region is played, it will be played
every iteration thereafter. However, if it is not played by
the agents, aspirations are likely to relax until the satisficing
region contains a (pure strategy) solution that is notε-PE,
which would make convergence to a non-ε-PE solution pos-
sible.

The S-Algorithm incorporates a fallback strategy that en-
dorses exploration. When an agent is not satisfied, it re-
sorts to playing randomly (exploring). While exploring, an
S-Algorithm agent modifies its aspirations (this allows com-
promise) until its aspirations are satisfied. In self-play, this
generally results in convergence to solutions quite related to
those Littman proposes (Littman & Stone 2003), but only in
the pure-strategy domain. Against non-negotiating agents,
the S-Algorithm eventually learns with high probability to
cease negotiations and “defect” as well.

Table 1 specifies only that initial aspirations should be
“high.” We make the follow assumptions on initial aspira-
tions α0 = (α0

1, . . . , α
0
n). First, α0 ∈ P , which means

that initial aspirations must be above the pareto boundary.
Second,∀i α0

i ≥ 1
mn

∑
a∈A ui(a), which means that each

agent’s initial aspiration must be at least as high as the
average of all the payoffs it can receive. Third,α0

i ≥
minui(a), a ∈ Pε, which means that each agent’s initial
aspiration must be at least as high as the reward it would
receive if any pure strategyε-PE solution were played.

Convergence toε-PE solutions
In this subsection, we give two theorems that apply to most
nonzero-sum matrix games. The first guarantees that the
S-Algorithm (in self-play) will converge (given appropriate
initial aspirations) with at least probabilityq to anε-PE so-
lution. The second shows that the probabilityq can be made
arbitrarily close to one by adjusting the learning rate (λ).

First, we provide a lemma that establishes a bound (δ) on
the maximum change that can occur in an agent’s aspirations
during a single time step. Such a result is useful because
it allows us to put a bound on the minimum (worst case)
amount of timeTp that onlyε-PE solutions will be mutually
satisficing.

Lemma 1. There exists aδ that bounds the absolute change
in an agent’s aspirations from timet to timet + 1.

Proof. The absolute change in an agent’s aspirations is
given by |αt+1 − αt|. The relationship betweenαt+1 and
αt is given in (1) and is the greatest when the difference be-
tweenαt andrt is the greatest. This occurs whenαt = h$

andrt = l$, whereh$ andl$ are the highest and lowest pay-
offs an agent can receive from the game. Plugging these
values into (1), we getαt+1 = λh$ + (1 − λ)l$. Thus,
δ = |αt+1 − αt| = |(λh$ + (1 − λ)l$) − αt|. Substitut-
ing h$ for αt and simplifying, we have

δ = |(1− λ)(l$ − h$)| = (1− λ)(h$ − l$). (2)

Sinceλ can be set to any value between 0 and 1, Equa-
tion (2) indicates thatδ can be made as small as needed.
Thus,λ can be set to guarantee that onlyε-PE solutions will
be mutually satisficing for at least a minimum amount of
timeTp.

Lemma 2. The minimum (worst case) amount of timeTp

that onlyε-PE solutions will be mutually satisficing is given
by

Tp ≥
ε

δ
. (3)

Proof. Since all solutions withinε of the pareto boundary
areε-PE, the bound follows trivially from Lemma 1.

We note thath$ and l$ may not be known. When this
is the case, these values can be determined (at least with
high probability) during an exploratory period at the begin-
ning of play. The necessary length of the exploratory period
depends on the number of agentsn and the number of ac-
tionsm in the game. To assure that this exploratory period



Figure 3: Example of a problematic game for the S-
Algorithm. The aspiration trail (*’s), the pareto boundary
(solid lines) and theε-pareto boundary (doted lines) are also
shown.

does not interfere with the time steps ofTp, initial aspira-
tions should be set sufficiently above the pareto boundary.
We leave further exploration of this subject to future work.

In order to show that the S-Algorithm will converge to an
ε-PE solution with at least probabilityq, it must be shown
that a solution in the satisficing region may be played with
some nonzero probability during some subset of the time
steps ofTp. This, however, cannot be achieved for every
nonzero-sum matrix games as demonstrated by the game
shown in Figure 3. In the figure, solutions of the matrix
game are marked withx ’s ando’s. The aspiration trail is
shown by *’s. In this game, agent 1 can select between the
actionsx and o. If agent 1 selects actionx, then one of
the solutions markedx will be played. If agent 1 playso,
then one of the actions markedo will be played. If aspira-
tions begin above the pareto boundary as shown, once agent
1 plays actiono, it will always be satisfied with the payoffs it
receives (and, thus, will continue to play actiono), indepen-
dent of what agent 2 does. Since none of the “o” solutions
areε-PE (if ε < 1), anε-PE solution will never be played.
Thus, we cannot guarantee that the S-Algorithm will con-
verge to anε-PE solution in this game.

Below we give a lemma that bounds the minimum num-
ber of time stepsT that a) onlyε-PE solutions are mutually
satisficing and b) one of these mutually satisficing solutions
has a nonzero probability of being played.

Lemma 3. Letρ be the percentage of time steps ofTp that a
mutually satisficingε-PE solution has a nonzero probability
of being played whileαt = (αt

1, . . . , α
t
n) ∈ Pε (i.e., the

aspirations of the agents areε-PE but not PE). Then we have

T ≥ ρε

δ
. (4)

Proof. This bound follows trivially from Lemma 2.

Whenρ = 0, such as is posibble in games such as the
one shown in Figure 3, we possibly have a game in which
we can make no guarantee about the convergence of the S-
Algorithm (in self play) to anε-PE solution. This generally

occurs when an agent has an action that always yields a con-
stant, relatively high (non-ε-PE) payoff regardless of the ac-
tions taken by other agents playing the game. Additionally,
seemingly uninteresting (rare) games may include cycles
which also may causeρ to be zero. In general, the agents
still learn whenρ = 0 to play solutions that yield good pay-
offs (payoffs that are at least as high as their fallback posi-
tions). However, the solutions are notε-PE, so agents could
do better by learning a different solution. Changing the ini-
tial aspiration vector changes whether these games have aρ
greater than zero. All matrix games have initial joint aspi-
ration vectors that causeρ to be nonzero for some learning
rateλ.

Since we cannot guarantee an initial aspiration vector that
guaranteesρ > 0, we deal in this paper only with the large
class of non-zero sum games in whichρ > 0 for all legal
initial joint aspirations vectors, and leave analysis of the S-
Algorithm in the other small class of non-zero sum games to
future work. The set of games in whichρ > 0 for all legal
inital joint aspirations vectors includes, among others, im-
portant games such as the prisoners’ dilemma, battle of the
sexes, and chicken. In these games, the learning rateλ can
be set such that the S-Algorithm (in self play) is guaranteed
to converge to anε-PE solution with probabilityq. We state
and prove this below.

Theorem 1. In an n-agent,m-action3 repeated play game,
if α0 ∈ P , ρ > 0, and the bound on the learning rate (δ; see
Lemma 1) satisfies

δ ≤
ρε ln

(
1− 1

mn

)
ln(1− pn)

,

then the S-Algorithm (in self play) is guaranteed to converge
to anε-PE solution with at least probabilityq.

Proof. Three different things can happen. In case 1, we have
αt ∈ P for all t. This can only occur if the average payoffs
v = (v1, v2, . . . , vn)T , wherevi is the average payoff (i.e.,
fallback position) of agenti, is such thatv ∈ P . This means
that the mixed strategy solution caused by each agent play-
ing its fallback is PE, so the S-Algorithm has converged to
a PE mixed strategy solution and we are finished. In case 2,
we have thatα (the joint aspirations) falls below the pareto
boundary, but then rises above it again. If this happens, we
have case 1, unlessα again falls below the pareto boundary
at some future time (in which case we have case 3). In case
3, α falls below the pareto boundary and stays there until
a mutually satisficing solution is found. It is with this case
that we are concerned.

As mentioned previously, there exists at leastT ≥ ρε
δ

time steps for which a) only pure strategy solutions that are
ε-PE are mutually satisficing and b) the probability that one
of these solutions will be played (pp) is nonzero. We cannot
be sure how many of such solutions are present, however, we
know that there is at least one. Therefore, at each time step

3In many games, the number of actions is different for each
agent. We assume that the number of actions for each agent in the
game is the same. The proofs in this paper for games in which this
assumption does not hold follow trivially.



Chicken (Extended)

C D O

C (1,1) (-1,3) (0,-0.25)
D (3,-1) (-5,-5) (0,-0.5)
O (-0.25,0) (-0.5,0) (0,0)

(a) (b) (c)

Figure 4: (a) Game matrix (b) Game’s payoff space (c) Relationship betweenλ andq

of T , pp ≥ 1
mn .4 From this it is straight-forward to observe

that the probabilityq′ = 1− q that anε-PE solution will not
be chosen during theT time steps has an upper bound of

q′ = (1− pp)
T =

(
1− 1

mn

)T

.

SubstitutingT ≥ ρε
δ andq′ = 1− q and solving forq yields

q ≥ 1−
(

1− 1
mn

) ρε
δ

.

Since all the variables are fixed on the right-hand side of the
equation exceptδ, the lower bound onq is determined byδ.
Solving forδ we have

δ ≤
ρε ln

(
1− 1

mn

)
ln(1− q)

. (5)

This means that for any nonzero-sum matrix game in which
ρ > 0, there exists aδ that boundsq.

Theorem 2. If ρ > 0, the probabilityq that the S-Algorithm
(in self play) converges to anε-PE solution can be made
arbitrarily close to one by setting the learning rateλ appro-
priately.

Proof. The result follows trivially from (2) and (5), and
yields

λ ≥ 1−
ρε ln

(
1− 1

mn

)
ln(1− q)(h$ − l$)

. (6)

Thus,q can be made arbitrarily close to one.

The above proofs serve to illustrate that the S-Algorithm
can be guaranteed to converge with arbitrarily high proba-
bility to ε-PE solutions in self play. Additionally, they show
thatλ must approach one exponentially asn increases and
polynomially asm increases. However, the bounds they
establish (see Equations (5) and (6)) are tight bounds only
for a worst case game. They are quite pessimistic for many
other games. Depending on the game, various assumptions

4Note that sincemn is the number of pure strategy solutions in
the game,pp ≥ 1

mn .

can be made to better approximate the relationship between
λ and q. First, for many practical games, the bound onδ
given in Theorem 3 can be replaced by the average estimate
δ = (1−λ)(h$−fb), where fb is an agent’s fallback position
and can be estimated asfb = 1

mn

∑
a∈A ui(a). Second, the

minimum distanceγ from the pareto boundary to any non-
ε-PE solution is likely greater thanε (and never smaller).
Thus, if γ is known, it can be used in place ofε to tighten
the bound. Third, in most games, there is a high probability
pa that the S-Algorithm will settle on aε-PE solution even
if it does not do so during the time intervalT . A reasonable
modeling assumption ispa = 0.5. These assumptions yield

q = 1− (1− pa)
(

1− 1
mn

)T

, (7)

whereT = ργ
(1−λ)(h$−fb) .

The accuracy of (7) for a 2-agent, 3-action game of
chicken is shown in Figure 4. The matrix game, shown in
Figure 4(a), is the same as the traditional 2-action chicken
game except that agents can also “opt out” (O). Figure 4(c)
compares the relationship betweenλ andq as predicted by
(6) and (7) with the actual relationship obtained from em-
pirical results. For the plots, we assumedρ = 1. While the
theoretical bound from (6) calls for pessimistic values ofλ
in many games, (7) gives a more reasonable estimate.

Discussion on the S-Algorithm
We showed in the previous subsection that the S-Algorithm,
in self play, converges toε-PE solutions with high proba-
bility if parameters are set appropriately. Furthermore, it is
able to do so without knowledge of the game structure or the
actions of other agents. On the downside, the S-Algorithm
does not have the ability to adapt to changing environments.
This is because a changing environment means, essentially,
a new game, so the S-Algorithm must begin its aspirations
above the pareto boundary in order to be able to guarantee a
high probability of convergence toε-PE solutions. Also, the
S-Algorithm generally only learns pure strategy solutions.

Satisficing with Trembles
Karandikaret al. (1998) offer an alteration to their algorithm
that incorporates trembles in aspirations. In their approach,



1. Letλ ∈(0, 1] be a learning rate and letη be the probability

of trembling. Initialize,

sat = false α0
i = random

2. Repeat

(a) Select an actionat
i according to the following criteria:

at
i ←

{
at−1

i if (sat)

rand(Ai) otherwise

whererand(Ai) denotes a random selection from the setAi.

(b) Receive rewardrt and update:

i. sat←
{

true if (rt ≥ αt
i)

false otherwise

ii. Update aspiration level

αt+1
i ← λαt

i + (1− λ)rt

if 0 ≤ (rt − αt+1
i ) < φ, then, with probabilityη

α
t+1
i ← α

t+1
i + β (8)

Table 2: The S-Algorithm with trembles (SAwT) for agent
i.

an agent’s aspirations are trembled according to some proba-
bility distribution function. By doing this, they showed that
agents played cooperatively most of the time regardless of
initial aspirations.

Thus, a natural extension of the S-Algorithm is to add
trembles in aspirations. This allows initial aspirations to be
anything (they do not have to be above the pareto bound-
ary). Trembles in aspirations also help prevent premature
selection of local maxima and allow adaptation to chang-
ing environments, such as non-stationary worlds and those
with other learning agents. We call this algorithm the S-
Algorithm with Trembles (SAwT).

The SAwT algorithm is shown in Table 2. Like the S-
Algorithm, SAwT performs a relaxation search. However,
SAwT differs from the S-Algorithm in two ways. First, with
SAwT, aspirations may be initialized to any value.5 Second,
SAwT agenti trembles its aspirations with probabilityη only
when a) it is satisfied (i.e.,(rt − αt+1

i ) ≥ 0) and b)αt+1
i is

close tort (i.e.,(rt−αt+1
i ) < φ). This means that ifφ6 andη

are quite small, trembles in aspirations will only (generally)
occur when agents are mutually satisfied (i.e., have settled
on a solution).

The variableβ in (8) determines how much aspirations are
trembled. We only tremble aspirations upward, soβ > 0.
Also, so that aspirations remain “reasonable,”αt+1

i + β
should not be significantly greater than the maximum pay-
off an agent can receive. There are several ways to handle
this. In this paper, we always tremble aspirations to slightly
higher than the highest payoff an agent can receive (let this
value beh$).7

Since SAwT eliminates the need for high initial aspira-
tions by trembling its aspirations upward periodically, it can
deal with changing environments as long as aspirations are

5A good way of doing this in practice is to set aspirations to just
slightly higher than the first payoff received.

6For the results in this paper,φ = 0.01
7Making h$ slightly higher than the highest payoff received is

done to avoid premature convergence.

trembled above the pareto boundary. Since SAwT trembles
its aspirations to the highest payoff it has seen so far, it will
tremble its aspirations so that the joint aspirations of the
agents will be above the pareto boundary as long as it has
seen at some point the highest payoff (or some higher pay-
off) of the current game/environment. Additionally, SAwT
generally trembles its aspirations so that the other two initial
aspiration requirements of the S-Algorithm are met as well.
This means that SAwT can be applied to the same large set
of matrix games as the S-Algorithm. Since trembles in as-
pirations generally cause them to meet the initial aspiration
requirements of the S-Algorithm, SAwT can be made (by
setting the learning rateλ appropriately) to settle with arbi-
trarily high probability onε-PE solutions, even in changing
environments.

Guaranteedε-Pareto Efficiency for Nonzero-Sum
Games
In this section, we provide a theorem that says that SAwT
can be guaranteed to playε-PE solutions arbitrarily high per-
centages of the time if parametersλ, φ, andη are set appro-
priately. In the interest of space, we provide only an outline
of its proof.

Theorem 3. In n-agent, m-action repeated-play games,
there exist values ofλ and η such that SAwT (in self play)
will play ε-PE solutions arbitrarily high percentages of the
time.

Proof. (Outline) - A repeated play game with SAwT agents
consists of a series ofepochs. Three events occur in an epoch
that divide it into two stages. Thesearch stagebegins when
one of the agents in the game trembles its aspirations, pro-
ceeds while aspirations are relaxed, and concludes when the
agents settle on a solution. The search stage may include
agents trembling their aspirations before settling on a solu-
tion. Again, however, ifφ andη are sufficiently small, such
occurrences will generally be rare. Theconvergence stage
begins when the agents settle on a solution and ends when
one of the agents trembles its aspirations. Letts denote the
length of the search stage and lettn denote the length of the
convergence stage. Thus, the length of an epoch istc + ts.

For any repeated-play game, letbε be the percentage of
the time that SAwT agents playε-PE solutions (in self play).
Since a repeated-play game (if long enough) consists of a
sequence of epochs,bε is the same as the average probabil-
ity that ε-PE solutions are played over an epoch. Letpc be
the probability that a solution played during the convergence
stage isε-PE, and letps be the probability that a solution
played during the search stage isε-PE. So, we have

bε =
pctc + psts

tc + ts
(9)

wheretc is the average length of a convergence stage andts
is the average length of a search stage. In Theorems 1 and
2 we discussed the probabilityq that the S-Algorithm (and,
thus, SAwT) settle onε-PE solutions. The search stage of
SAwT is essentially the S-Algorithm minus the slight pos-
sibility of “pre-convergence” trembles soq places a bound
onpc. Additionally, if we assume that noε-PE solutions are



played in the search stage, we haveps = 0. We need only
find bounds, then, fortc and ts. We give two lemmas to
place bounds on these variables.

Lemma 4. The average amount of time spent in the conver-
gence stage of an epoch (tc) has the lower bound

tc ≥
1

1− (1− η)n
, (10)

wheren is the number of agents andη is the tremble rate.

Lemma 5. The average amount of timets that SAwT agents
(in self play) spend playing non-ε-PE solutions in the search
stage of an epoch is (provided thatpr 6= 0), in the worst case
matrix game, bounded by

ts ≤
ln

(
ε

h$−l$

)
lnλ

+
mn

pr
, (11)

wherepr is the probability that all agents will play randomly
on a given iteration after aspirations fall below the pareto
boundary.

Plugging all of these bounds into Equation (9) we get the
bound

bε ≥
q

1 + ts[1− (1− η)n]
. (12)

Observe from Equation (12) that ifη = 0, then SAwT
is equivalent to the S-Algorithm andbε = q. Otherwise,
bε < q. Thus, in order forbε to be arbitrarily close to one,q
must be made arbitrarily close to one andbε must be made
arbitrarily close toq. Since there exists aλ that makesq any-
thing between zero and one (see Theorem 2),q can be made
arbitrarily close to one. Sincebε approachesq (from below)
asη approaches zero,bε can be made arbitrarily close toq.
Thus, there exists values ofλ andη such that SAwT (in self
play) will play ε-PE solutions arbitrarily high percentages of
the time.

Equation (12) gives a pessimistic lower bound onbε for
most games since it deals with worst case games. As an
example, consider the 3-agent, 3-action MASD withε = 0.5
andq = 0.99 (which defines the learning rateλ). The actual
percentage of time thatε-PE solutions are played is plotted
in Figure 5 against the lower-bound shown in Equation (12).

Fairness
In the previous section we discussed how SAwT can be
made to playε-PE solutions arbitrarily high percentages of
the time in most nonzero-sum games. In this section, we
briefly discuss how SAwT learns to play “fair”ε-PE solu-
tions, which can be either pure or mixed strategy solutions.

Fairness is based on the notion of fallback positions. An
agent retreats to its fallback position when it is not content
with its payoffs. SAwT’s fallback is to play randomly when
it is not satisfied. Thus, its fallback position (in self play)

is, in general, approximately the random payoff
∑

a∈A ui(a)

mn .
However, if one agent has more good payoffs than another,
it has more satisficing options, which means that play is not

Figure 5: Shows the lower bound ofbε plotted against actual
empirical results from a 3-agent, 3-action MASD, withε =
0.5.

exactly random. Since an agent that has more good payoffs
has more power, it should possibly receive higher payoffs.
Essentially, we use the termfair to indicate solutions that
give both agents payoffs determined by their respective bar-
gaining powers, which is largely determined by the strengths
of their fallback positions.

Littman and Stone (2003) use the notion of a fallback to
compute a desirable (PE and fair) solution for the agents to
play. Their technique can be used in two-agent matrix games
in which the entire payoff matrix is known. SAwT learns
to play similar solutions to those computed by Littman and
Stone’s algorithm without knowledge of the payoff matrix
or the actions played by other agents. Additionally, SAwT
learnsε-PE and “fairness” inn-agent (n ≥ 2) games.

As examples, we compare the solutions proposed by
Littman and Stone’s algorithm with the solutions learned by
SAwT in self play in two games: a 2-agent, 4-action MASD
and the battle of the sexes (BotS) game. For both examples,
λ = 0.99 andη = 0.001.

In the 2-agent, 4-action MASD, Littman proposes that the
“fair” result is for each agent to fully cooperate, or give ev-
erything to the group. SAwT settles on this solution 86.6%
of the time, settles on two other closely related PE solutions
8.4% of the time, and settles on a non-PE solution 5% of
the time. Thus, in this game, SAwT mostly converges to the
“fair” solution.

The BotS matrix game is shown in Table 3. At the top
of each cell in the table (each cell corresponds to a pure
strategy solution of the game) is the joint payoff. Below the
joint-payoff and to the left is the percent of time that Littman
proposes that a solution be played; to the right is the percent
of time that SAwT settles on the solution. As can be seen,
SAwT settles on each solution the same percentage of time
that Littman and Stone’s algorithm proposes.

Discussion
We have advocated that multiagent learning algorithms (for
repeated play games) should converge to near pareto effi-
cient (and “fair”) solutions. Furthermore, these algorithms
should be able to learn when minimal information about the
environment and the other agents in the game are available
and be able to adapt to non-stationary environments. We
have described a multiagent learning algorithm (SAwT) that



C D
c (1, 1) (3, 4)

0 | 0 50 | 50
d (4, 3) (2, 2)

50 | 50 0 | 0

Table 3: Payoff matrix and results for the Battle of the Sexes
(BotS) game.

achieves these goals in self play.
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