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Abstract— While the design of autonomous robots often
emphasizes developing proficient robots, another important
attribute of autonomous robot systems is their ability to evaluate
their own proficiency and limitations. A robot should be able to
assess how well it can perform a task before, during, and after
it attempts the task. Thus, we consider the following question:
How can we design autonomous robots that know their own
limits? Toward this end, this paper presents an approach, called
assumption-alignment tracking (AAT), for designing autonomous
robots that can effectively evaluate their own limits. In AAT, the
robot combines (a) measures of how well its decision-making
algorithms align with its environment and hardware systems
with (b) its past experiences to assess its ability to succeed at
a given task. The effectiveness of AAT in assessing a robot’s
limits are illustrated in a robot navigation task.

I. INTRODUCTION

The design of autonomous robot systems has understand-
ably emphasized the development of proficient robots – i.e.,
robots that can effectively carry out tasks in a variety of
different environments. While developing proficient robots is
an ultimate goal, we argue that an autonomous robot should
have an additional, related capability: the ability to identify
when it can and cannot successfully carry out a task.

Proficiency self-assessment is valuable for several reasons.
First, safety concerns dictate that autonomous systems should
identify when they will fail, are failing, and have failed to
accomplish a task [1], [2] and to be able to explain those
failures [3], [4], [5], [6]. Second, because autonomous robots
typically operate in the context of a team, the ability to know
one’s competence and limits can help in the creation and
adaptation of synergistic plans [7], [8]. Third, knowing one’s
limits can be used to improve robot behavior. For example,
proficiency self-assessment can be used to determine when to
continue learning and when to exploit one’s current knowl-
edge [9], [10]. As such, autonomous robot design should
focus on both proficiency and self-evaluation of proficiency.

We propose that proficiency self-assessment requires at
least three evaluations (Fig. 1). First, the robot must deter-
mine whether it has a set of decision-making algorithms (or
behavior generators) that can be combined to perform the
desired task [11]. Second, the robot must have a performance
standard, which gives it an understanding of what constitutes
desirable (or acceptable) performance on that task. Finally,
the robot must estimate its performance and compare this
estimate to the performance standard.

*This work was supported in part by the U.S. Office of Naval Research
(ONR) under Grant #N00014-18-1-2503.

1Department of Mechanical Engineering, Texas A&M University, College
Station, TX, USA. alvikag@tamu.edu

2Computer Science Department, Brigham Young University, Provo, UT,
USA. Contact: crandall@cs.byu.edu

Generator Completeness:  The robot has algorithms (or 
behavior generators) necessary to perform the task

Expectation Awareness: The robot has a performance 
standard that represents acceptable/effective performance

Performance Evaluation: The robot has a performance 
estimate, which it compares to the performance standard

Fig. 1. Three components necessary for an autonomous robot to self-assess
its ability to perform a task.

Although each of the three components shown in Fig. 1
is necessary for performing proficiency self-assessment, this
paper focuses on the third component: How can a robot
effectively estimate its performance at any time during task
execution? In particular, we propose and analyze an approach
based on the following view of proficiency self-assessment:
Proficiency self-assessment is awareness of how well one’s
‘generators’ (i.e., decision-making algorithms) interact and
align with the environment(s), robot hardware, and task(s)
under consideration. Empirical results demonstrate that this
view can yield useful proficiency estimates.

II. ESTIMATING PERFORMANCE USING AAT

Estimating performance in arbitrary environments and
scenarios is challenging because it is difficult to determine
how environmental characteristics, the robot’s hardware, and
the robot’s decision-making algorithms (or generators) will
combine to impact the robot’s performance. This is difficult
for post hoc estimates, but even more difficult for a priori and
in situ estimates. Past work has conjectured that a robot’s per-
formance is a function of the complexity of the environment
in which the autonomous system operates (e.g., [12], [13]).
Unfortunately, quantifying how complexity impacts a robot’s
ability to perform a task remains an unsolved problem.

Alternative to a complexity approach, we assert that robot
performance is sensitive to how well its generators align
with its environment and hardware. This alignment can
be determined via a set of metrics that do not require a
direct assessment of the complexity of the environment, but
rather is made by tracking the veracity of the assumptions
upon which the robot’s generators rely. We call this method
assumption-alignment tracking (AAT).

With AAT, a robot estimates its performance via a two-
step process. First, the robot evaluates the veracity of the
assumptions made in the implementation of its generators
(Fig. 2). To give the robot this capability, the robot designer
must identify the assumptions made in the construction of the
generators and then create tools that allow the robot to assess
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Fig. 2. In assumption-alignment tracking (AAT), the robot continually
monitors how well its generators (or decision-making algorithms) align
with its hardware and its current environment. These evaluations involve
determining how well the generators’ inputs and outputs meet assumptions.

the veracity of these assumptions. Second, the outcomes of
the evaluations over time are used, in conjunction with the
robot’s past experiences, to predict the robot’s performance
on the task. We discuss each step in turn.

A. Evaluating Generator Assumptions

As asserted in many No-Free-Lunch Theorems (e.g., [14]),
all decision-making algorithms (or generators) for au-
tonomous robot systems are based on assumptions or biases
that dictate their performance [15]. When these assumptions
and biases are correct, the robot’s behavior and its impact on
the world are predictable and satisfactory. However, when the
assumptions are not met, the robot’s behavior and its impact
on the world are both less predictable and less likely to be
satisfactory. Thus, the first step in AAT is to identify and
evaluate these assumptions and biases.

Fig. 2 illustrates two important forms of assumptions
related to a robot’s generators: assumptions about generator
(1) inputs and (2) outputs. Assumptions about generator
inputs include assumptions about the robot’s sensors, the
robot’s actuators, and the properties of the environment.
For example, a mapping system for a robot performing
a navigation task might assume that sensor readings have
low variance and that the sensor can detect the objects
in the environment. On the other hand, assumptions about
generator outputs relate to the properties of the outcomes of
generator decisions. For example, a robot navigation system
might assume that the robot’s mapping system will compute
consistent positions of stationary objects in the environment.

Once generator assumptions are identified, the system
designer should create assumption checkers which contin-
ually check assumption veracity. Initial assessments begin
before the robot starts to operate in the environment (i.e.,
a priori; these assessments are mainly limited to input
assumptions) and then continue throughout the mission (i.e.,
in situ assessments). The resulting time-series of assessments
over each of the assumptions forms the alignment profile,
which can then be used to evaluate the robot’s ability to
perform the given task in the current environment.

Formally, let Φ = {φ1, · · · , φM} be the set of M as-
sumptions made by the robot’s generators, and let xtφi be
the assessment of the veracity of assumption φi at time t,
produced from some subset of observations made up to time
t. Also, let x(t) = (xtφ1

, · · · , xtφM ) be the vector of veracity
assessments made at time t. Then, the alignment profile at

time t, denoted X(t), is the following time series:

X(t) = 〈x(1),x(2), · · · ,x(t)〉 (1)

Note that veracity assessments share similarities with
other prior work. For example, Ramesh et al. [7] advocate
for tracking so-called robot vitals, which appear to be
assessments of assumptions made about generator outputs.
Similarly, Das et al. [4] use assessments of generator outputs
to produce explanations to assist users in fault recovery of a
robot system. Finally, Béné and Doyen create viability tests
that compare performance to pre-defined thresholds and use
the result to estimate the resilience of an agent [16].

B. Estimating Performance from Prior Experiences

The alignment profile X(t) provides detailed information
about a robot’s performance on a task. When the alignment
profile identifies no or few assumption violations, the robot
assumes it performs at its purported performance level,
denoted as p̂(t) at time t. p̂(t) encodes the robot’s expected
performance under normal circumstances. However, assump-
tion violations mean that the robot is possibly operating in a
scenario for which its generators are not designed, and thus
its performance is likely to vary from p̂(t). In such cases, we
propose that X(t) composes a scenario-independent feature
set that serves as input to prediction algorithms that estimate
the robot’s performance. Thus, AAT estimates the robot’s
performance at time t, denoted p(t), as a function of the
purported performance p̂(t) and the alignment profile X(t):

p(t) = f(p̂(t),X(t)). (2)

This paper advocates neither for a specific means for deter-
mining or estimating the function f , nor a specific structure
of p(t); many are possible. However, in the next section, we
demonstrate a simple prediction function f for a robot navi-
gation task that represents p(t) as a probability distribution.
Empirical results show that this prediction function allows
a robot to effectively estimate its performance in previously
unseen environments, thus illustrating the usefulness of AAT.

III. CASE STUDY: ROBOT NAVIGATION

This section illustrates how AAT, defined by Eqs. 1-
2, can be used to perform proficiency self-assessment in
a navigation task. After describing the task domain and
robot system, we then describe an AAT implementation and
analyze its ability to perform proficiency self-assessment.

A. Task Domain

The (simulated) robot can spin in place in either direction
or move straight forward. It is equipped with two sensors:
a camera that looks down on the world from above and a
sensor that detects when the robot is on a charging pad.

The robot’s task is to navigate through the world to its
charger within a certain amount of time. This paper con-
siders the four scenarios shown in Fig. 3. These simulation
environments include the robot (shown as a blue circle in the
figures) and its charger (shown as a red square in the figures).
All other entities shown in the figures, including black line



Maze 1 Maze 2 Maze 3 Maze 4
Fig. 3. Four worlds (or mazes) used in our study. The blue (circle) robot
is tasked with getting to its charger (the red square). Black line segments
and other robots (green and pink circles) are obstacles in the environment.

TABLE I
COMBINATION OF VARIATIONS USED IN THE SCENARIOS OF OUR STUDY

Combination of Variations Range of Parameters
Camera noise-Robot bias Noise: 0 to 0.3; Bias: -2 to 2
Camera noise-Robot speed Noise: 0 to 0.3; Speed: 1 to 11m/s
Camera distortion-Robot bias Distortion: -2 to 2; Bias: -2 to 2
Camera distortion-Robot speed Distortion: -2 to 2; Speed: 1 to 11m/s

segments and pink and green robots (shown as circles), are
obstacles through which the blue robot cannot pass.

Performance is determined by the time taken by the robot
to reach the charger. The four worlds shown in Fig. 3 are
designed to represent different difficulty levels, determined
by the initial distance between robot and charger as well as
the number and placement of obstacles. The performance
standards must be tailored to each world since each world
is different. Acceptable performances in Mazes 1-4 are
subjectively set such that the robot should reach the charger
within 60, 150, 300, and 220 seconds, respectively.

To evaluate the ability of the robot to perform proficiency
self-assessment, the simulator is configured to allow a human
to act as a foil to the robot. The human can modify the robot’s
environment and its hardware, yielding 41 simulations in
each world. We, acting as the foil, varied these scenarios
by modifying the robot’s camera sensor and actuators in two
ways each: the noise and distortion of the camera image, and
the speed and bias of the robot’s wheels (negative bias causes
the robot to drift right when moving straight, while positive
bias causes the robot to drift left). Table I describes how
these variations were randomized and combined together
throughout the scenarios. These combinations were spread
out evenly across the simulations in the four worlds.

B. Robot Generators

The autonomous robot system is equipped with three dif-
ferent decision-making algorithms (or generators) to perform
the navigation task: (1) a mapper, (2) a path planner, and (3) a
controller. The mapper takes as input the camera image and
creates a map of the environment by detecting and localizing
itself and its charger in the world. It also creates an obstacle
map of the world. Mapper assumptions are: (1) the camera
produces up-to-date images, (2) the camera is in the expected
location, is oriented downward, and has the assumed view-
angle, (3) the camera sees color according to specification,
(4) the camera has low noise and distortion, (5) the robot
is blue and the charger red, and no other objects in the
environment are those colors, (6) the robot and charger are
visible in the camera image, and (7) all obstacles are also
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Fig. 4. The list of alignment checkers implemented in our robot system.

visible and are not white in color. The assumed output of
the mapper is a consistent and accurate map of the world.

The planner takes as input the map, created by the mapper
every time a new camera image is received, to plan a path
from the robot to the charger using RRT* [17]. In addition
to assuming the map created by the mapper is correct,
the planner assumes: (1) the robot is of the assumed size
and shape, (2) the world is stationary (other than robot
movement), (3) there is a path to the charger that can be
found within 1500 iterations of RRT*, and (4) the open space
in the world has uniform cost (i.e., the robot as easily through
one open space as another). The assumed planner output is
a planned path with a consistent path length.

The controller takes as input the planned path and outputs
commands to the robot’s actuators, which move the robot
along the chosen path to the charger. In addition to assuming
the path selected by the planner is desirable, the controller
assumes: (1) the robot’s actuators are engaged (and react
to the controller’s commands), (2) the robot spins at the
expected speed, (3) the robot moves straight when going
forward, and (4) the robot moves at the expected speed.
The expected output of the controller are wheel movements
that move the robot in the expected manner through the
world. Together with the expected output of the other two
generators, the generators are assumed to cause the robot to
approach the charger at an expected rate.

C. Evaluating Generator Assumptions

The AAT process requires identifying the assumptions
made in the creation of the generators and then assessing
the veracity of these assumptions. To do this, we designed
alignment checkers for each of the assumptions listed in the
previous subsection. (As an exception, we did not create an
alignment checker to verify that the camera was located and
oriented as expected due to the difficulty.) These alignment
checkers are listed in Fig. 4. Each alignment checker returns
a boolean value at each time step depending on whether the
alignment checker deemed the corresponding assumption to
be true or false. These valuations create the alignment profile
X(t) that is used by the performance estimator.

D. Estimating Performance

When all assumptions are met, the robot’s behaviors are
generally understood, and the decisions made by its gener-
ators lead it to consistently navigate to its charger. In such



situations, the robot can effectively estimate its performance
on the task as the purported performance p̂(t), defined as the
total time it takes to reach the goal:

p̂(t) = t+ g(t). (3)

Here, t is the time elapsed in the mission so far and g(t) is the
estimated remaining time to complete the task. Experiments
conducted under nominal circumstances showed that:

g(t) = 4|P |+ 1.2 · dist(P )

vmax
, (4)

where P is a set of segments defining the planned path from
the robot’s current position to its charger, |P | is the number
of segments in the path, dist(P ) is the length of the path
P , and vmax is the robot’s assumed maximum speed. The
first portion of Eq. (4) (i.e, 4|P |) indicates that it takes the
robot approximately 4 seconds on average to orient to the
new direction after each segment. The second half of this
equation specifies the average time required to traverse the
segments of the path when assumptions are met.

When generator assumptions are violated, Eq. (3) is un-
likely to be an accurate estimate of the robot’s performance.
Thus, AAT estimates the robot’s performance on the task
using a function of the form specified in Eq. (2). The robot
estimates this function f from its prior experiences using
a k-nearest neighbor algorithm. Specifically, the algorithm
computes a set of data samples Y taken at periodic time
stamps throughout past operations. Each sample y ∈ Y , is
a tuple denoted by y = (τ, s̄, ζ, zτ1 , · · · , zτM , η). Here, τ is
the time in the mission at which the sample was taken, s̄ is
the average speed the robot has traveled so far up to sample
time τ , ζ is the proportion of the distance the robot has
traveled to the charger from its initial position, η = T

p̂(τ)
is a multiplier specifying the amount of time beyond the
nominally predicted time the robot actually required to reach
the goal in that past experience, T is the realized time-to-
completion in that scenario, and zτi = λzτ−1

i + (1 − λ)xτi
(where z0

i = 0 and λ ∈ [0, 1]; we used λ = 0.3) is an
exponential average of the boolean values of assumption i
as computed by the alignment checker in question.

The kNN algorithm for estimating f estimates the robot’s
performance at any time using the k = 15 samples in the set
Y that are deemed to be the closest to the current mission
state. We compare three different distance functions, each
utilizing a different set of predictors. The first prediction
function is based, not on AAT, but on the rate-of-work (RoW)
the robot has accomplished in the mission so far. Formally,
let s be the sample that denotes the current mission state.
The distance between s and any sample y ∈ Y is then:

DRoW(s, y) = 2|ss̄ − ys̄|+ 3|sζ − yζ |. (5)

Here, the tuple variable for each subscript is given as a
subscript to the sample (e.g., ys̄ denotes the average speed in
sample y). Thus, in this distance function, past experiences
are selected based on similarities in how fast the robot
was approaching the charger as well as the robot’s current
progress on the mission. The coefficients used in Eq. 5
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Fig. 5. The average number of detected violations of assumptions per unit
time compared with task performance (completion time) in Mazes 2 (left)
and 3 (right). Similar trends were found in Mazes 1 and 4. Blue lines depict
linear fits to the data. Simulations were automatically terminated after 400
seconds, meaning that completion times marked as 400 seconds could have
potentially been much higher had the simulation been run to completion.

were chosen to weight the two aspects of RoW used in this
study, though these choices were not carefully scrutinized
for optimality, suggesting better fit could be obtained.

The second distance function is based on the assessments
made by alignment checkers and is given by:

DCheckers(s, y) =

M∑
i=1

|szτi − yzτi |. (6)

In this distance function, the robot seeks past experiences for
which its assessments of its assumptions are similar.

Finally, the third distance function combines the first two
distance functions, and is given by:

DCheckers+RoW(s, d) = DRoW(s, d) +Dcheckers(s, d). (7)

Let N ⊆ Y be the subset of k samples from the robot’s set
of past experiences Y deemed to be the closest to the current
state s. Then, each sample n ∈ N predicts the performance
of the robot to be:

pn(t) = p̂(t) · nη. (8)

In this way, the k samples in N provide a distribution of the
robot’s performance, where each sample n ∈ N is weighted
inversely proportional to its distance from s.

Combined with Eq. (8), the distance functions specified
in Eqs. 5-7 specify prediction functions with different pre-
dictors. All three prediction functions use the purported
performance as a predictor. However, only the prediction
functions that use Eqs. 6 and 7 utilize AAT. The other
prediction function is used as a point of comparison to assess
the value of the alignment profile in predicting performance.

E. Results

We first observe the correlation between robot perfor-
mance (measured as time-to-completion) and the number of
detected assumption violations per unit time. This correlation
is visualized in Fig. 5 for two of the worlds. In each world,
task performance is negatively correlated with the number
of violations in assumptions. As the number of detected
assumption violations per unit time increases, completion
time also tends to increase. Pearson correlations confirm
statistically significant (p < 0.001) and strong correlations
between the number of alignment violations and completion
times (r = 0.778, 0.874, 0.802, and 0.890 for Mazes 1-4,
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Fig. 6. AAT effectively discriminates between success and failure. (a) The average predicted probability of success over time (using the distance function
in Eq. 7) for cases in which the robot completed and did not complete the mission on time. Error ribbons show the standard error of the mean. (b) ROC
curves showing the ability of the performance estimator to determine whether the robot’s performance meets an acceptable threshold at various points
in time (using the distance function in Eq. 7). (c) The discriminabilty of the predictor (as measured by the area under the ROC curve–0.5 indicates no
discriminability) over time using the three different distance functions.

respectively). Thus, tracking the veracity of assumptions can
be useful to understanding robot performance.

Next, we evaluate the ability of the prediction functions
created using Eqs. 5-8 to produce predictions that can be
used in proficiency self-assessment. To do this, we used data
collected in the scenarios conducted in Mazes 1 and 2 as
training data to estimate the prediction functions, and then
tested the robot on scenarios performed in Mazes 3 and 4. In
particular, we used the prediction functions to estimate the
probability that the robot would reach its charger within an
acceptable amount of time (defined as 300 and 220 seconds
in Maze 3 and 4, respectively) in each scenario.

Fig. 6a shows that when both rate-of-work and assumption
tracking are used (Eq. 7), the prediction function effectively
differentiates between scenarios where the robot succeeds
and scenarios where the robot does not succeed. In instances
in which the robot fails to complete the task on time, the
algorithm estimates that the success probability is much
lower than the estimates of the success probability for a robot
that eventually succeeded. These differences in predicted
probability of success began in the early stages of the
mission, suggesting that the predictor can make effective a
priori assessments (before beginning to move). Additional
analysis is provided in Fig. 6b, which shows receiver oper-
ating characteristic (ROC) curves for predicting success or
failure at various times throughout the mission.

Finally, Fig. 6c compares the effectiveness of the three
distance functions (Eqs. 5-7) by plotting the area under the
ROC curve over time. The RoW predictor (Eq. 5), which
make the assumption that the robot’s performance in the task
up to the current time t is indicative of future performance,
are less effective early in the task, though this predictor
eventually has high discriminability. On the other hand,
alignment checkers produce reasonably good predictions
early in the mission (though discriminability rises more
slowly over time), thus producing more effective assessments
earlier. The combined predictor (which uses both RoW and
alignment checkers) is the most successful over all.

IV. TRADE-OFFS IN THE DESIGN SPACE

While the case study described in the previous section
illustrates that AAT can effectively be used in the design

of autonomous robot systems to effectively perform profi-
ciency self-assessment in previously unseen environments,
we observed that it took more time and effort for us to
implement AAT in these systems than it took for us to create
the generators that determined the robots’ behaviors. For
example, the generators for the robot system in the prior
section (including sensing, planning, and acting) required
just 1100 lines of computer code. However, the current
implementation of the AAT capabilities (including assessing
input and output assumptions and defining the prediction
function f ) required over 2700 lines of code.

This highlights a potential trade-off in the design and
development of autonomous robot systems. Should system
designers focus more on developing proficient autonomous
behavior or on creating proficient assessments of behavior?
This trade-off is visualized by Fig. 7a, which compares sev-
eral hypothetical systems. System A represents a system in
which designers spent all of their time developing proficient
robot behaviors and ignored the problem of proficiency self-
assessment. Such a system would be acceptable in scenarios
in which either the robot never fails or when it is unnecessary
to identify failures. However, in situations in which failing to
identify failures has large implications, System B (in which
system designers focus more extensively on developing
proficiency self-assessment capabilities) would be a better
choice. System C illustrates a potential middle ground. In
System C, the robot has neither ideal behavior generation
nor ideal behavior assessment, but efficient investment in
both directions leads to a robot that is reasonably proficient
in both behavior generation and behavior assessment.

This tradeoff space suggests that modest proficiency as-
sessment capabilities might be sufficient in many situations.
For example, limiting the number of assumptions that are
tracked in AAT would theoretically reduce assessment cov-
erage therefore decrease the accuracy of proficiency assess-
ments. However, the case studies showed that the assump-
tion veracities appear to be correlated with each other. For
example, changes in the veracity of assumptions made about
the robot’s sensors and actuators tend to correlate with (and
likely cause) violations in assumptions made about generator
outputs. In this example, violated assumptions about gen-
erator output are symptoms of violated input assumptions.
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Fig. 7. An illustration of the trade-off between implementation effort and the discriminability of AAT. (a) Hypothetical trade-off for designing robots that
have both proficient behavior and are proficient at assessing their behavior. (b) Implementation effort to create various subsets of assumption checkers as
measured by the number of the number of checkers (top) and lines of computer code (bottom). (c) The discriminability of AAT as a function of mission
time based on the area under the ROC curve for various subsets of assumption checkers. (d) The tradeoff between implementation effort and discriminability
after 5% of the mission was complete. 1 - Implementation Effort is computed as one minus the percentage of checkers used. An ideal outcome would be
in the upper right-hand corner – which would indicate perfect discriminability achieved without any implementation effort.

Additionally, assessments of some input assumptions tend to
correlate with each other. For example, violating assumptions
about the amount of sensor noise often causes the robot
to believe that its actuators are not behaving according to
assumptions as well. These observations give credence to
the idea that not all assumptions need to be tracked for the
robot to self-assess its proficiency.

The assessment-behavior tradeoff space was explored by
evaluating how well AAT estimated robot performance in
the first case study (a robot navigation task) given various
subsets of checkers identified in Fig. 4. Since these subsets
require different amounts of effort to implement, as measured
by both lines of code and number of alignment checkers
(Fig. 7b), it is informative to evaluate how they impact the
ability of the robot to assess its performance.

Fig. 7c uses the area under the ROC curve to compare the
ability of each subset of checkers to accurately discriminate
between success and failure over the initial stages of the
robot’s mission. The figure shows that all subsets of checkers
differentiate between success and failure substantially better
than random guesses even at the start of the task. After
10% of the mission is completed, all subsets or checkers
produce similarly high discriminability. However, the subsets
of Output and Actuator alignment checkers (Fig. 4) initially
produced lower discriminability than the other subsets of
checkers, suggesting that assessment accuracy is affected by
which checker subset is chosen but that some subsets can be
very accurate. These results indicate that not all generator
assumptions need to be tracked in order for the robot to do
a reasonably good job of assessing its own proficiency, but
that the subset of checkers chosen is important.

The trade-off between the implementation effort and dis-
criminability of AAT in the first case study presented in the
previous section is plotted in Fig. 7d. Ideally, the system
would produce full discriminability at no effort to the system
creator, which would produce a point in the upper right-hand
corner of this figure. In practice, the figure shows that set of
Sensor alignment checkers (Fig. 4) seems to provide a good
trade-off in producing high discriminability with relatively
low implementation effort in the scenarios tested.

We are not suggesting that Sensor alignment checkers will
always produce an ideal trade-off between implementation
effort and discriminability. Different systems and scenarios

would likely produce different results with respect to these
trade-offs. However, these results do demonstrate that not
all assumption checkers need to be implemented for AAT
to do a reasonably good job at proficiency self-assessment.
Identifying effective subsets of checkers to implement can
substantially reduce the effort required to implement AAT.

The tradeoff between time spent generating quality behav-
iors and performing quality assessment can be misleading.
The metaphor of writing test cases for computer code is
applicable. Frequently, doing unit testing in software engi-
neering produces better code in less time. We hypothesize
that something similar will likely occur with creating align-
ment checkers in parallel with creating behavior generators.
Explicitly identifying and tracking assumptions made in the
implementation of decision-making algorithms (or genera-
tors) can help to produce more effective robot behavior.

V. CONCLUSIONS AND FUTURE WORK

This paper formalizes a method for designing robot sys-
tems that perform proficiency self-assessment. This method,
called assumption-alignment tracking (AAT), is developed
from the perspective that proficiency self-assessment is
awareness of how one’s generators (i.e., decision-making
algorithms) interact and align with the environment(s), robot
hardware, and task(s) under consideration. In AAT, the robot
continually monitors the veracity of input and output assump-
tions made in the construction of its generators, and then uses
these assessments to estimate the robot’s ability to perform
the task at hand. A robot navigation study demonstrated that
AAT can perform informative proficiency self-assessment.

Future work is needed to better establish AAT’s usefulness
as a systematic approach to performing proficiency self-
assessment. This includes evaluating AAT in a broader set
of applications, better understanding the design trade-offs be-
tween generator quality and alignment checker coverage, and
using assumption assessments to develop explanations [18]
about the system’s proficiency assessments. Further work is
also needed to establish benchmarks for proficiency self-
assessment [19]. Through these and other related effort, we
believe that we can learn to systematically create autonomous
robots and systems that can assess their own capabilities and
limitations in previously unseen environments and scenarios.
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