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• Society of robots or systems 

• Robots are independent — owned by 
different stakeholders 

• Robots are autonomous (from the perspective of the regulator)

How can such systems be “designed” 
to produce good societal outcomes?
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Challenge: Design efficient HARE

2 “design parameters” 

• Regulatory power 

• Robot autonomy (adaptability)
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Fig. 1. Our initial hypothesis of how regulatory power and algorithmic
sophistication jointly impact regulability. Axes scales are left unspecified.

person. Future work should explore whether these results hold
for regulatory authorities consisting of groups of people, as
well as regulators aided by computational tools.

B. Algorithmic Sophistication

We refer to the complexity of control algorithms used by
individual robots in the society as algorithmic sophistication.
In general, it is difficult to quantify the sophistication of an
algorithm. Algorithms differ in many dimensions, and may
appear complex or simple based on perspective. Thus, in
this paper, we address a single dimension of algorithmic
sophistication: specifically, whether or not the algorithm learns
from its past experiences. We refer to algorithms in which the
robot does not adapt as simple automation. We use the term
adaptive automation to refer to algorithms that adapt behavior
based on past experiences. Thus, throughout this paper, we
use the term algorithmic sophistication to refer to the robots’
abilities to adapt to past experiences.

C. Regulability

In this paper, we analyze how regulatory power and algo-
rithmic sophistication jointly impact the regulability of HARE.
Fig. 1 illustrates our initial hypotheses prior to carrying out
this work. We anticipated that as algorithmic sophistication
increases, regulatory power must also increase to maintain
the same level of regulability. We also thought that higher
regulatory power would tend to lead to higher regulability.

IV. CASE STUDIES

To begin to understand how regulatory power and algorith-
mic sophistication jointly impact regulability, we conducted
two separate user studies in which participants regulated
simulated HARE. In the first study, participants used tolls
to manage a simple transportation system composed of au-
tonomous driverless cars. In the second study, participants
regulated the consumption of a limited water supply.

The simulated HARE studied in these studies are rather
simple – they do not necessarily capture the full dynamics
of real-world HARE. However, these HARE do emulate the
basic components of real-world HARE, thus providing a
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Fig. 2. A simple transportation network utilized by 300 driverless cars. Capac-
ities (Cij ) for each road are specified by the circled numbers. CDA = 300.

starting point for us to investigate how regulatory power and
algorithmic sophistication jointly impact regulability.

A. User Study 1 – Regulating Driverless Cars

1) Scenario: Smulated driverless cars (i.e., the robots) used
routing algorithms to navigate through the simple transporta-
tion network shown in Fig. 2. The regulatory authority was
tasked with regulating the driverless cars in a way that maxi-
mized traffic flow through the network, which was measured
as the throughput through Node D. To do this, the regulator
needed to keep the network congestion-free.

Congestion on a road occurred when the number of vehicles
on the road exceeded the road’s capacity. The speed of the
vehicles on road ij was proportional to:

Vij /
1

1 + e0.25(Nij�Cij)
+ 0.1 (1)

where Cij and Nij were the capacity and the current number
of vehicles on road ij, respectively. Thus, as traffic volume
reached the road’s capacity, traffic flow slowed substantially.

To influence the vehicles’ decisions, the regulatory authority
set tolls on each road via the GUI shown in Fig. 3. The tolls
were announced instantaneously to all of the vehicles. Initially,
tolls on all roads were set to $0.50. Participants were allowed
to increase or decrease each of the tolls as desired (between the
values of $0.00 and $0.99) by clicking on the corresponding
buttons. Participants could click the buttons in succession to
quickly make large toll adjustments.

The GUI showed a bird’s-eye view of the transportation
network, with the current location of each of the 300 vehicles
clearly marked. The GUI also displayed indicators showing
the number of vehicles currently on each road, as well as the
capacity of the roads.

Each simulated vehicle received payoffs for arriving at its
chosen destination and incurred costs for traversing roads.
Formally, the utility for going to node i was given by:

u(i) = v(i)� c(i), (2)

where v(i) was the payoff received for arriving at node i and
c(i) was the cost the vehicle incurred for moving to node i.
The control algorithm selected destinations (nodes) and routes
in attempt to maximize a car’s utility. Once a car reached its
destination, it immediately selected a new destination.
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In general, it is difficult to quantify the sophistication of an
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appear complex or simple based on perspective. Thus, in
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from its past experiences. We refer to algorithms in which the
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this work. We anticipated that as algorithmic sophistication
increases, regulatory power must also increase to maintain
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The simulated HARE studied in these studies are rather
simple – they do not necessarily capture the full dynamics
of real-world HARE. However, these HARE do emulate the
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starting point for us to investigate how regulatory power and
algorithmic sophistication jointly impact regulability.

A. User Study 1 – Regulating Driverless Cars

1) Scenario: Smulated driverless cars (i.e., the robots) used
routing algorithms to navigate through the simple transporta-
tion network shown in Fig. 2. The regulatory authority was
tasked with regulating the driverless cars in a way that maxi-
mized traffic flow through the network, which was measured
as the throughput through Node D. To do this, the regulator
needed to keep the network congestion-free.

Congestion on a road occurred when the number of vehicles
on the road exceeded the road’s capacity. The speed of the
vehicles on road ij was proportional to:

Vij /
1

1 + e0.25(Nij�Cij)
+ 0.1 (1)

where Cij and Nij were the capacity and the current number
of vehicles on road ij, respectively. Thus, as traffic volume
reached the road’s capacity, traffic flow slowed substantially.

To influence the vehicles’ decisions, the regulatory authority
set tolls on each road via the GUI shown in Fig. 3. The tolls
were announced instantaneously to all of the vehicles. Initially,
tolls on all roads were set to $0.50. Participants were allowed
to increase or decrease each of the tolls as desired (between the
values of $0.00 and $0.99) by clicking on the corresponding
buttons. Participants could click the buttons in succession to
quickly make large toll adjustments.

The GUI showed a bird’s-eye view of the transportation
network, with the current location of each of the 300 vehicles
clearly marked. The GUI also displayed indicators showing
the number of vehicles currently on each road, as well as the
capacity of the roads.

Each simulated vehicle received payoffs for arriving at its
chosen destination and incurred costs for traversing roads.
Formally, the utility for going to node i was given by:

u(i) = v(i)� c(i), (2)

where v(i) was the payoff received for arriving at node i and
c(i) was the cost the vehicle incurred for moving to node i.
The control algorithm selected destinations (nodes) and routes
in attempt to maximize a car’s utility. Once a car reached its
destination, it immediately selected a new destination.

Regulator’s Goal: 
Maximize throughput 

through node D
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person. Future work should explore whether these results hold
for regulatory authorities consisting of groups of people, as
well as regulators aided by computational tools.

B. Algorithmic Sophistication

We refer to the complexity of control algorithms used by
individual robots in the society as algorithmic sophistication.
In general, it is difficult to quantify the sophistication of an
algorithm. Algorithms differ in many dimensions, and may
appear complex or simple based on perspective. Thus, in
this paper, we address a single dimension of algorithmic
sophistication: specifically, whether or not the algorithm learns
from its past experiences. We refer to algorithms in which the
robot does not adapt as simple automation. We use the term
adaptive automation to refer to algorithms that adapt behavior
based on past experiences. Thus, throughout this paper, we
use the term algorithmic sophistication to refer to the robots’
abilities to adapt to past experiences.

C. Regulability

In this paper, we analyze how regulatory power and algo-
rithmic sophistication jointly impact the regulability of HARE.
Fig. 1 illustrates our initial hypotheses prior to carrying out
this work. We anticipated that as algorithmic sophistication
increases, regulatory power must also increase to maintain
the same level of regulability. We also thought that higher
regulatory power would tend to lead to higher regulability.

IV. CASE STUDIES

To begin to understand how regulatory power and algorith-
mic sophistication jointly impact regulability, we conducted
two separate user studies in which participants regulated
simulated HARE. In the first study, participants used tolls
to manage a simple transportation system composed of au-
tonomous driverless cars. In the second study, participants
regulated the consumption of a limited water supply.

The simulated HARE studied in these studies are rather
simple – they do not necessarily capture the full dynamics
of real-world HARE. However, these HARE do emulate the
basic components of real-world HARE, thus providing a
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starting point for us to investigate how regulatory power and
algorithmic sophistication jointly impact regulability.

A. User Study 1 – Regulating Driverless Cars

1) Scenario: Smulated driverless cars (i.e., the robots) used
routing algorithms to navigate through the simple transporta-
tion network shown in Fig. 2. The regulatory authority was
tasked with regulating the driverless cars in a way that maxi-
mized traffic flow through the network, which was measured
as the throughput through Node D. To do this, the regulator
needed to keep the network congestion-free.

Congestion on a road occurred when the number of vehicles
on the road exceeded the road’s capacity. The speed of the
vehicles on road ij was proportional to:

Vij /
1

1 + e0.25(Nij�Cij)
+ 0.1 (1)

where Cij and Nij were the capacity and the current number
of vehicles on road ij, respectively. Thus, as traffic volume
reached the road’s capacity, traffic flow slowed substantially.

To influence the vehicles’ decisions, the regulatory authority
set tolls on each road via the GUI shown in Fig. 3. The tolls
were announced instantaneously to all of the vehicles. Initially,
tolls on all roads were set to $0.50. Participants were allowed
to increase or decrease each of the tolls as desired (between the
values of $0.00 and $0.99) by clicking on the corresponding
buttons. Participants could click the buttons in succession to
quickly make large toll adjustments.

The GUI showed a bird’s-eye view of the transportation
network, with the current location of each of the 300 vehicles
clearly marked. The GUI also displayed indicators showing
the number of vehicles currently on each road, as well as the
capacity of the roads.

Each simulated vehicle received payoffs for arriving at its
chosen destination and incurred costs for traversing roads.
Formally, the utility for going to node i was given by:

u(i) = v(i)� c(i), (2)

where v(i) was the payoff received for arriving at node i and
c(i) was the cost the vehicle incurred for moving to node i.
The control algorithm selected destinations (nodes) and routes
in attempt to maximize a car’s utility. Once a car reached its
destination, it immediately selected a new destination.

Regulator’s Goal: 
Maximize throughput 

through node D

Needs to remove 
traffic congestion
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Table 1. Factor levels for robot adaptivity, which were defined based on

how travel costs (ct(i,g)) were estimated (Appendix B).

Level Cost Estimation

Simple The cars did not learn from their past experiences.
automation Travel costs were estimated assuming no congestion.
Adaptive All cars used reinforcement learning (based on their
automation own experiences) to determine travel costs.

time) operational cost. Thus, routes expected to take longer to
traverse or that had higher tolls tended to yield lower utility
and were more likely to be avoided by the cars.

Formally, each car estimated its current utility for going to
destination g from its current location i as follows:

u(i,g) = v(g)� ct(i,g)� c$(i,g), (1)

where v(g) was the utility for arriving at destination g, ct(i,g)
was the estimated travel cost for going from the car’s current
location to destination g, and c$(i,g) was the projected toll
charge for going to destination g (see Appendix B for details).

Since neither v(g) nor ct(i,g) (and how they might compare
to c$(i,g)) were known to the regulator (for any car), the
regulator could only determine how tolls might impact the
cars’ behavior through experimentation and observation.

Experimental Setup
We conducted a user study in which people regulated 300
simulated cars. In this study, we varied both robot adaptivity
and regulatory power to determine how these two variables
jointly impact people’s ability to effectively regulate HARE.
As summarized in Table 1, robot adaptivity contained two
factor levels indicating the type of navigation system used by
all the cars: simple automation and adaptive automation. In
both cases, each car used Dijkstra’s Algorithm and Eq. (1)
to determine which path to follow. However, the cars used
different mechanisms to estimate travel costs (ct(i,g)). Cars
that used simple automation estimated travel costs assuming
a congestion-free network. On the other hand, cars that used
adaptive automation estimated travel costs on each road using
reinforcement learning (Appendix B). Thus, cars that used
simple automation did not learn from their past experiences
(and, hence, only reacted to toll changes), whereas cars that
used adaptive automation learned over time.

We considered three levels of regulator power: none, limited
and unlimited (Table 2). For no regulatory power, no toll
changes were permitted (no participants needed). When given
unlimited regulatory power, participants could change tolls
as frequently and as much as they desired. However, under
limited regulatory power, participants were given a budget
which limited the total amount of toll changes. Initially, partic-
ipants received a toll-change fund of $0.30, which increased
by $0.007 each second. Thus, the total toll-change budget for
a 25-minute game was $10.80. The absolute value of each toll
change was subtracted from the budget. Toll changes were not
permitted that caused the budget to drop below zero.

Protocol
Forty-eight students and research staff from Masdar Institute
participated in the study. The following protocol was followed:

Table 2. Factor levels for regulatory power.

Level Description

None No toll changes were allowed.
Limited Regulators had a budget which limited the amount of toll

changes they could make.
Unlimited Regulators could change tolls as much as they desired.
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Figure 3. Average throughput observed in user study 1. Error bars show

the standard error of the mean.

• The participants were randomly and uniformly assigned
across four conditions: Simple-Limited, Adaptive-Limited,
Simple-Unlimited, or Adaptive-Unlimited.

• The participant was trained on how to play the game in
the designated condition, but with cars that chose routes
randomly. This training continued until the participant felt
comfortable with the objectives of the game, the user inter-
face, and how to set tolls.

• The participant played a 25-minute game. Initially, the
cars were randomly distributed across the four nodes in the
network, which immediately caused congestion to develop
on several roads. The participant needed to bring the sys-
tem to a congestion-free state as quickly as possible. Cars
were biased so that more cars preferred node C as a destina-
tion. To incentivize high performance, a high-score list was
displayed once the game completed.

• The participant completed a post-experiment questionnaire,
which asked which node more cars preferred and whether
or not the cars employed learning algorithms.

Twelve trials for both the Simple-None and Adaptive-None
conditions were also carried out (no participants required).

Results
Figure 3 shows the average performance of the HARE, mea-
sured as a percentage of optimal throughput over the duration
of the game, achieved in each condition. Absent regulations,
societies of driverless cars equipped with adaptive automation
performed much better than societies of cars using simple
automation. However, limited regulatory power reversed this
trend. Limited regulatory power led to vastly better outcomes
for societies composed of simple robots, but had no impact
on societies comprised of adaptive robots. While additional
(unlimited) regulatory power improved the efficiency of adap-
tive societies by a small amount, it decreased throughput for
societies comprised of simple robots.
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a 25-minute game was $10.80. The absolute value of each toll
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• The participants were randomly and uniformly assigned
across four conditions: Simple-Limited, Adaptive-Limited,
Simple-Unlimited, or Adaptive-Unlimited.

• The participant was trained on how to play the game in
the designated condition, but with cars that chose routes
randomly. This training continued until the participant felt
comfortable with the objectives of the game, the user inter-
face, and how to set tolls.

• The participant played a 25-minute game. Initially, the
cars were randomly distributed across the four nodes in the
network, which immediately caused congestion to develop
on several roads. The participant needed to bring the sys-
tem to a congestion-free state as quickly as possible. Cars
were biased so that more cars preferred node C as a destina-
tion. To incentivize high performance, a high-score list was
displayed once the game completed.

• The participant completed a post-experiment questionnaire,
which asked which node more cars preferred and whether
or not the cars employed learning algorithms.

Twelve trials for both the Simple-None and Adaptive-None
conditions were also carried out (no participants required).

Results
Figure 3 shows the average performance of the HARE, mea-
sured as a percentage of optimal throughput over the duration
of the game, achieved in each condition. Absent regulations,
societies of driverless cars equipped with adaptive automation
performed much better than societies of cars using simple
automation. However, limited regulatory power reversed this
trend. Limited regulatory power led to vastly better outcomes
for societies composed of simple robots, but had no impact
on societies comprised of adaptive robots. While additional
(unlimited) regulatory power improved the efficiency of adap-
tive societies by a small amount, it decreased throughput for
societies comprised of simple robots.
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• The participants were randomly and uniformly assigned
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• The participant was trained on how to play the game in
the designated condition, but with cars that chose routes
randomly. This training continued until the participant felt
comfortable with the objectives of the game, the user inter-
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conditions were also carried out (no participants required).

Results
Figure 3 shows the average performance of the HARE, mea-
sured as a percentage of optimal throughput over the duration
of the game, achieved in each condition. Absent regulations,
societies of driverless cars equipped with adaptive automation
performed much better than societies of cars using simple
automation. However, limited regulatory power reversed this
trend. Limited regulatory power led to vastly better outcomes
for societies composed of simple robots, but had no impact
on societies comprised of adaptive robots. While additional
(unlimited) regulatory power improved the efficiency of adap-
tive societies by a small amount, it decreased throughput for
societies comprised of simple robots.
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Table 1. Factor levels for robot adaptivity, which were defined based on

how travel costs (ct(i,g)) were estimated (Appendix B).

Level Cost Estimation

Simple The cars did not learn from their past experiences.
automation Travel costs were estimated assuming no congestion.
Adaptive All cars used reinforcement learning (based on their
automation own experiences) to determine travel costs.

time) operational cost. Thus, routes expected to take longer to
traverse or that had higher tolls tended to yield lower utility
and were more likely to be avoided by the cars.

Formally, each car estimated its current utility for going to
destination g from its current location i as follows:

u(i,g) = v(g)� ct(i,g)� c$(i,g), (1)

where v(g) was the utility for arriving at destination g, ct(i,g)
was the estimated travel cost for going from the car’s current
location to destination g, and c$(i,g) was the projected toll
charge for going to destination g (see Appendix B for details).

Since neither v(g) nor ct(i,g) (and how they might compare
to c$(i,g)) were known to the regulator (for any car), the
regulator could only determine how tolls might impact the
cars’ behavior through experimentation and observation.

Experimental Setup
We conducted a user study in which people regulated 300
simulated cars. In this study, we varied both robot adaptivity
and regulatory power to determine how these two variables
jointly impact people’s ability to effectively regulate HARE.
As summarized in Table 1, robot adaptivity contained two
factor levels indicating the type of navigation system used by
all the cars: simple automation and adaptive automation. In
both cases, each car used Dijkstra’s Algorithm and Eq. (1)
to determine which path to follow. However, the cars used
different mechanisms to estimate travel costs (ct(i,g)). Cars
that used simple automation estimated travel costs assuming
a congestion-free network. On the other hand, cars that used
adaptive automation estimated travel costs on each road using
reinforcement learning (Appendix B). Thus, cars that used
simple automation did not learn from their past experiences
(and, hence, only reacted to toll changes), whereas cars that
used adaptive automation learned over time.

We considered three levels of regulator power: none, limited
and unlimited (Table 2). For no regulatory power, no toll
changes were permitted (no participants needed). When given
unlimited regulatory power, participants could change tolls
as frequently and as much as they desired. However, under
limited regulatory power, participants were given a budget
which limited the total amount of toll changes. Initially, partic-
ipants received a toll-change fund of $0.30, which increased
by $0.007 each second. Thus, the total toll-change budget for
a 25-minute game was $10.80. The absolute value of each toll
change was subtracted from the budget. Toll changes were not
permitted that caused the budget to drop below zero.

Protocol
Forty-eight students and research staff from Masdar Institute
participated in the study. The following protocol was followed:

Table 2. Factor levels for regulatory power.

Level Description

None No toll changes were allowed.
Limited Regulators had a budget which limited the amount of toll

changes they could make.
Unlimited Regulators could change tolls as much as they desired.
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Figure 3. Average throughput observed in user study 1. Error bars show

the standard error of the mean.

• The participants were randomly and uniformly assigned
across four conditions: Simple-Limited, Adaptive-Limited,
Simple-Unlimited, or Adaptive-Unlimited.

• The participant was trained on how to play the game in
the designated condition, but with cars that chose routes
randomly. This training continued until the participant felt
comfortable with the objectives of the game, the user inter-
face, and how to set tolls.

• The participant played a 25-minute game. Initially, the
cars were randomly distributed across the four nodes in the
network, which immediately caused congestion to develop
on several roads. The participant needed to bring the sys-
tem to a congestion-free state as quickly as possible. Cars
were biased so that more cars preferred node C as a destina-
tion. To incentivize high performance, a high-score list was
displayed once the game completed.

• The participant completed a post-experiment questionnaire,
which asked which node more cars preferred and whether
or not the cars employed learning algorithms.

Twelve trials for both the Simple-None and Adaptive-None
conditions were also carried out (no participants required).

Results
Figure 3 shows the average performance of the HARE, mea-
sured as a percentage of optimal throughput over the duration
of the game, achieved in each condition. Absent regulations,
societies of driverless cars equipped with adaptive automation
performed much better than societies of cars using simple
automation. However, limited regulatory power reversed this
trend. Limited regulatory power led to vastly better outcomes
for societies composed of simple robots, but had no impact
on societies comprised of adaptive robots. While additional
(unlimited) regulatory power improved the efficiency of adap-
tive societies by a small amount, it decreased throughput for
societies comprised of simple robots.
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Robot Autonomy (2 levels)

Table 1. Factor levels for robot adaptivity, which were defined based on

how travel costs (ct(i,g)) were estimated (Appendix B).

Level Cost Estimation

Simple The cars did not learn from their past experiences.
automation Travel costs were estimated assuming no congestion.
Adaptive All cars used reinforcement learning (based on their
automation own experiences) to determine travel costs.

time) operational cost. Thus, routes expected to take longer to
traverse or that had higher tolls tended to yield lower utility
and were more likely to be avoided by the cars.

Formally, each car estimated its current utility for going to
destination g from its current location i as follows:

u(i,g) = v(g)� ct(i,g)� c$(i,g), (1)

where v(g) was the utility for arriving at destination g, ct(i,g)
was the estimated travel cost for going from the car’s current
location to destination g, and c$(i,g) was the projected toll
charge for going to destination g (see Appendix B for details).

Since neither v(g) nor ct(i,g) (and how they might compare
to c$(i,g)) were known to the regulator (for any car), the
regulator could only determine how tolls might impact the
cars’ behavior through experimentation and observation.

Experimental Setup
We conducted a user study in which people regulated 300
simulated cars. In this study, we varied both robot adaptivity
and regulatory power to determine how these two variables
jointly impact people’s ability to effectively regulate HARE.
As summarized in Table 1, robot adaptivity contained two
factor levels indicating the type of navigation system used by
all the cars: simple automation and adaptive automation. In
both cases, each car used Dijkstra’s Algorithm and Eq. (1)
to determine which path to follow. However, the cars used
different mechanisms to estimate travel costs (ct(i,g)). Cars
that used simple automation estimated travel costs assuming
a congestion-free network. On the other hand, cars that used
adaptive automation estimated travel costs on each road using
reinforcement learning (Appendix B). Thus, cars that used
simple automation did not learn from their past experiences
(and, hence, only reacted to toll changes), whereas cars that
used adaptive automation learned over time.

We considered three levels of regulator power: none, limited
and unlimited (Table 2). For no regulatory power, no toll
changes were permitted (no participants needed). When given
unlimited regulatory power, participants could change tolls
as frequently and as much as they desired. However, under
limited regulatory power, participants were given a budget
which limited the total amount of toll changes. Initially, partic-
ipants received a toll-change fund of $0.30, which increased
by $0.007 each second. Thus, the total toll-change budget for
a 25-minute game was $10.80. The absolute value of each toll
change was subtracted from the budget. Toll changes were not
permitted that caused the budget to drop below zero.

Protocol
Forty-eight students and research staff from Masdar Institute
participated in the study. The following protocol was followed:

Table 2. Factor levels for regulatory power.

Level Description

None No toll changes were allowed.
Limited Regulators had a budget which limited the amount of toll

changes they could make.
Unlimited Regulators could change tolls as much as they desired.
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Figure 3. Average throughput observed in user study 1. Error bars show

the standard error of the mean.

• The participants were randomly and uniformly assigned
across four conditions: Simple-Limited, Adaptive-Limited,
Simple-Unlimited, or Adaptive-Unlimited.

• The participant was trained on how to play the game in
the designated condition, but with cars that chose routes
randomly. This training continued until the participant felt
comfortable with the objectives of the game, the user inter-
face, and how to set tolls.

• The participant played a 25-minute game. Initially, the
cars were randomly distributed across the four nodes in the
network, which immediately caused congestion to develop
on several roads. The participant needed to bring the sys-
tem to a congestion-free state as quickly as possible. Cars
were biased so that more cars preferred node C as a destina-
tion. To incentivize high performance, a high-score list was
displayed once the game completed.

• The participant completed a post-experiment questionnaire,
which asked which node more cars preferred and whether
or not the cars employed learning algorithms.

Twelve trials for both the Simple-None and Adaptive-None
conditions were also carried out (no participants required).

Results
Figure 3 shows the average performance of the HARE, mea-
sured as a percentage of optimal throughput over the duration
of the game, achieved in each condition. Absent regulations,
societies of driverless cars equipped with adaptive automation
performed much better than societies of cars using simple
automation. However, limited regulatory power reversed this
trend. Limited regulatory power led to vastly better outcomes
for societies composed of simple robots, but had no impact
on societies comprised of adaptive robots. While additional
(unlimited) regulatory power improved the efficiency of adap-
tive societies by a small amount, it decreased throughput for
societies comprised of simple robots.
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Robot Behaviors

Robot Autonomy (2 levels)

• Simple — Estimate ct(i,g) assuming no congestion

Table 1. Factor levels for robot adaptivity, which were defined based on

how travel costs (ct(i,g)) were estimated (Appendix B).

Level Cost Estimation

Simple The cars did not learn from their past experiences.
automation Travel costs were estimated assuming no congestion.
Adaptive All cars used reinforcement learning (based on their
automation own experiences) to determine travel costs.

time) operational cost. Thus, routes expected to take longer to
traverse or that had higher tolls tended to yield lower utility
and were more likely to be avoided by the cars.

Formally, each car estimated its current utility for going to
destination g from its current location i as follows:

u(i,g) = v(g)� ct(i,g)� c$(i,g), (1)

where v(g) was the utility for arriving at destination g, ct(i,g)
was the estimated travel cost for going from the car’s current
location to destination g, and c$(i,g) was the projected toll
charge for going to destination g (see Appendix B for details).

Since neither v(g) nor ct(i,g) (and how they might compare
to c$(i,g)) were known to the regulator (for any car), the
regulator could only determine how tolls might impact the
cars’ behavior through experimentation and observation.

Experimental Setup
We conducted a user study in which people regulated 300
simulated cars. In this study, we varied both robot adaptivity
and regulatory power to determine how these two variables
jointly impact people’s ability to effectively regulate HARE.
As summarized in Table 1, robot adaptivity contained two
factor levels indicating the type of navigation system used by
all the cars: simple automation and adaptive automation. In
both cases, each car used Dijkstra’s Algorithm and Eq. (1)
to determine which path to follow. However, the cars used
different mechanisms to estimate travel costs (ct(i,g)). Cars
that used simple automation estimated travel costs assuming
a congestion-free network. On the other hand, cars that used
adaptive automation estimated travel costs on each road using
reinforcement learning (Appendix B). Thus, cars that used
simple automation did not learn from their past experiences
(and, hence, only reacted to toll changes), whereas cars that
used adaptive automation learned over time.

We considered three levels of regulator power: none, limited
and unlimited (Table 2). For no regulatory power, no toll
changes were permitted (no participants needed). When given
unlimited regulatory power, participants could change tolls
as frequently and as much as they desired. However, under
limited regulatory power, participants were given a budget
which limited the total amount of toll changes. Initially, partic-
ipants received a toll-change fund of $0.30, which increased
by $0.007 each second. Thus, the total toll-change budget for
a 25-minute game was $10.80. The absolute value of each toll
change was subtracted from the budget. Toll changes were not
permitted that caused the budget to drop below zero.

Protocol
Forty-eight students and research staff from Masdar Institute
participated in the study. The following protocol was followed:

Table 2. Factor levels for regulatory power.

Level Description

None No toll changes were allowed.
Limited Regulators had a budget which limited the amount of toll

changes they could make.
Unlimited Regulators could change tolls as much as they desired.
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Figure 3. Average throughput observed in user study 1. Error bars show

the standard error of the mean.

• The participants were randomly and uniformly assigned
across four conditions: Simple-Limited, Adaptive-Limited,
Simple-Unlimited, or Adaptive-Unlimited.

• The participant was trained on how to play the game in
the designated condition, but with cars that chose routes
randomly. This training continued until the participant felt
comfortable with the objectives of the game, the user inter-
face, and how to set tolls.

• The participant played a 25-minute game. Initially, the
cars were randomly distributed across the four nodes in the
network, which immediately caused congestion to develop
on several roads. The participant needed to bring the sys-
tem to a congestion-free state as quickly as possible. Cars
were biased so that more cars preferred node C as a destina-
tion. To incentivize high performance, a high-score list was
displayed once the game completed.

• The participant completed a post-experiment questionnaire,
which asked which node more cars preferred and whether
or not the cars employed learning algorithms.

Twelve trials for both the Simple-None and Adaptive-None
conditions were also carried out (no participants required).

Results
Figure 3 shows the average performance of the HARE, mea-
sured as a percentage of optimal throughput over the duration
of the game, achieved in each condition. Absent regulations,
societies of driverless cars equipped with adaptive automation
performed much better than societies of cars using simple
automation. However, limited regulatory power reversed this
trend. Limited regulatory power led to vastly better outcomes
for societies composed of simple robots, but had no impact
on societies comprised of adaptive robots. While additional
(unlimited) regulatory power improved the efficiency of adap-
tive societies by a small amount, it decreased throughput for
societies comprised of simple robots.
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Robot Behaviors

Robot Autonomy (2 levels)

• Simple — Estimate ct(i,g) assuming no congestion

• Adaptive — Estimate ct(i,g) using reinforcement learning

Table 1. Factor levels for robot adaptivity, which were defined based on

how travel costs (ct(i,g)) were estimated (Appendix B).

Level Cost Estimation

Simple The cars did not learn from their past experiences.
automation Travel costs were estimated assuming no congestion.
Adaptive All cars used reinforcement learning (based on their
automation own experiences) to determine travel costs.

time) operational cost. Thus, routes expected to take longer to
traverse or that had higher tolls tended to yield lower utility
and were more likely to be avoided by the cars.

Formally, each car estimated its current utility for going to
destination g from its current location i as follows:

u(i,g) = v(g)� ct(i,g)� c$(i,g), (1)

where v(g) was the utility for arriving at destination g, ct(i,g)
was the estimated travel cost for going from the car’s current
location to destination g, and c$(i,g) was the projected toll
charge for going to destination g (see Appendix B for details).

Since neither v(g) nor ct(i,g) (and how they might compare
to c$(i,g)) were known to the regulator (for any car), the
regulator could only determine how tolls might impact the
cars’ behavior through experimentation and observation.

Experimental Setup
We conducted a user study in which people regulated 300
simulated cars. In this study, we varied both robot adaptivity
and regulatory power to determine how these two variables
jointly impact people’s ability to effectively regulate HARE.
As summarized in Table 1, robot adaptivity contained two
factor levels indicating the type of navigation system used by
all the cars: simple automation and adaptive automation. In
both cases, each car used Dijkstra’s Algorithm and Eq. (1)
to determine which path to follow. However, the cars used
different mechanisms to estimate travel costs (ct(i,g)). Cars
that used simple automation estimated travel costs assuming
a congestion-free network. On the other hand, cars that used
adaptive automation estimated travel costs on each road using
reinforcement learning (Appendix B). Thus, cars that used
simple automation did not learn from their past experiences
(and, hence, only reacted to toll changes), whereas cars that
used adaptive automation learned over time.

We considered three levels of regulator power: none, limited
and unlimited (Table 2). For no regulatory power, no toll
changes were permitted (no participants needed). When given
unlimited regulatory power, participants could change tolls
as frequently and as much as they desired. However, under
limited regulatory power, participants were given a budget
which limited the total amount of toll changes. Initially, partic-
ipants received a toll-change fund of $0.30, which increased
by $0.007 each second. Thus, the total toll-change budget for
a 25-minute game was $10.80. The absolute value of each toll
change was subtracted from the budget. Toll changes were not
permitted that caused the budget to drop below zero.

Protocol
Forty-eight students and research staff from Masdar Institute
participated in the study. The following protocol was followed:

Table 2. Factor levels for regulatory power.

Level Description

None No toll changes were allowed.
Limited Regulators had a budget which limited the amount of toll

changes they could make.
Unlimited Regulators could change tolls as much as they desired.
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Figure 3. Average throughput observed in user study 1. Error bars show

the standard error of the mean.

• The participants were randomly and uniformly assigned
across four conditions: Simple-Limited, Adaptive-Limited,
Simple-Unlimited, or Adaptive-Unlimited.

• The participant was trained on how to play the game in
the designated condition, but with cars that chose routes
randomly. This training continued until the participant felt
comfortable with the objectives of the game, the user inter-
face, and how to set tolls.

• The participant played a 25-minute game. Initially, the
cars were randomly distributed across the four nodes in the
network, which immediately caused congestion to develop
on several roads. The participant needed to bring the sys-
tem to a congestion-free state as quickly as possible. Cars
were biased so that more cars preferred node C as a destina-
tion. To incentivize high performance, a high-score list was
displayed once the game completed.

• The participant completed a post-experiment questionnaire,
which asked which node more cars preferred and whether
or not the cars employed learning algorithms.

Twelve trials for both the Simple-None and Adaptive-None
conditions were also carried out (no participants required).

Results
Figure 3 shows the average performance of the HARE, mea-
sured as a percentage of optimal throughput over the duration
of the game, achieved in each condition. Absent regulations,
societies of driverless cars equipped with adaptive automation
performed much better than societies of cars using simple
automation. However, limited regulatory power reversed this
trend. Limited regulatory power led to vastly better outcomes
for societies composed of simple robots, but had no impact
on societies comprised of adaptive robots. While additional
(unlimited) regulatory power improved the efficiency of adap-
tive societies by a small amount, it decreased throughput for
societies comprised of simple robots.
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Regulatory Power

3 levels
• None — Regulator can do nothing

• Limited — Regulator can make limited toll changes

Regulator’s ability to change tolls



Regulatory Power

3 levels
• None — Regulator can do nothing

• Limited — Regulator can make limited toll changes

• Unlimited — Regulator can make unlimited toll changes

Regulator’s ability to change tolls
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Why Simple-Unlimited?
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(a) (b)
Figure 4. Data from user study 1. (a) Toll adjustments made per sec-

ond. (b) The number of participants that correctly deduced in the post-

experiment questionnaire (top) the node most preferred by the cars and

(bottom) whether or not the autonomous cars were learning.

An analysis of variance, where throughput was the depen-
dent variable and robot adaptivity and regulatory power
were independent variables, confirmed many of these trends.
This analysis showed a main affect for regulatory power
(F(1,66) = 30.47, p < 0.001), but not for robot adaptivity
(F(2,66) = 0.32, p = 0.572). However, there was an interac-
tion affect between robot adaptivity and regulatory power
(F(2,66) = 23.15, p < 0.001). Tukey post hoc analysis
showed that simple automation with no regulation was worse
than all other conditions (p < 0.001), while simple automa-
tion with limited regulatory power was better than all other
conditions (p  0.03 for each pairing). Regulatory power had
no significant impact on societies of adaptive robots.

We attribute the unanticipated drop in performance between
the Simple-Limited to the Simple-Unlimited conditions to
overuse of regulatory resources, which in turn led to partici-
pants having poorer models of the HARE. To see this, consider
Figure 4a, which shows the amount of toll adjustments made
by participants per second in the first user study. Unsurpris-
ingly, substantially more toll adjustments were made by regu-
lators who had unlimited regulatory power. While additional
toll adjustments may have been justified in the case of adaptive
automation, additional interventions were unnecessary when
robots used simple automation. While in the Simple-Limited
conditions participants were forced to wait before making
more toll changes due to a limited budget, many participants
did not do so in the Simple-Unlimited condition. Rather, they
continually made toll adjustments without waiting sufficient
time for the robots to adjust [39]. Thus, they were largely un-
able to effectively identify which node more robots preferred
(Figure 4b-top) and whether or not the robots were learning
(Figure 4b-bottom). Thus, limited resources appear to have
encouraged observation and were, hence, beneficial.

In summary, moderate levels of regulatory power combined
with non-adaptive robots had the highest social welfare. We
now consider a second scenario to get a second data point.

User Study 2 – Robotic Buildings
In this study, participants regulated the activity of tenants in a
robotic buildings that shared a limited water supply.

Water tank level

Utility 
indicators

Aggregate

Individual

Price controls and 
consumption indicators

Unfulfilled activities 
indicator

Figure 5. The (annotated) GUI used in study 2.

Scenario Overview
Eight (simulated) tenants of an apartment building shared a
limited water resource. Each tenant’s apartment was equipped
with robotic devices that automatically scheduled and executed
water-related activities (e.g., laundry, dish-washing, etc.) on
behalf of the tenant. A tenant programmed its own devices
to execute activities automatically using a control algorithm.
Water supplied to the building was collected and purified via a
renewable-energy source, a process that limited water avail-
ability such that water needs exceeded supply (Appendix C).

The regulator’s job was to set the per-unit cost of water in
each time period (we assumed a day with six time periods)
each day such that the aggregate utility across all tenants, days,
and periods was maximized. Participants set prices using
the GUI pictured in Figure 5, which, in addition to allowing
participants to change prices, displayed the current water level,
the amount of water consumed per period, the number and
value of tasks shed by the robotic devices, and the aggregate
and individual happiness of the tenants.

Each tenant employed a control algorithm designed to max-
imize its total utility. The water needs of each tenant were
defined by a set of activities. Activity i was defined by the 4-
tuple (ts(i), t f (i),s(i),v(i)), where the time interval [ts(i), t f (i))
defined the time window during which activity i could be ex-
ecuted, s(i) was the amount of water consumed by activity i,
and v(i) was how much the tenant valued the completion of
activity i. When activity i was carried out, the tenant received
utility u(i) = v(i)� c(i), where c(i) = s(i)p(t) was the cost
for executing activity i and p(t) was the per-unit cost of water
set by the regulator for period t.

Since the tenants’ water-related activities (and how the utilities
might compare to c(i)) were unknown to the regulator, the
regulator could only determine what prices to set through
experimentation and observation.

Experimental Setup
We considered societies in which (1) devices used simple (non-
adaptive) algorithms and (2) devices used adaptive algorithms
to schedule activities. As summarized in Table 3, simple
algorithms executed any activity with positive utility when
water was available. They did not adapt their behavior based
on their experience. On the other hand, adaptive algorithms
shifted their tenant’s activity schedules based on estimates of
water availability and price in each time period (Appendix D)
to maximize the tenant’s expected utility. We evaluated the
same three levels of regulatory power as in Study 1 (Table 4).
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Figure 4. Data from user study 1. (a) Toll adjustments made per sec-

ond. (b) The number of participants that correctly deduced in the post-

experiment questionnaire (top) the node most preferred by the cars and

(bottom) whether or not the autonomous cars were learning.

An analysis of variance, where throughput was the depen-
dent variable and robot adaptivity and regulatory power
were independent variables, confirmed many of these trends.
This analysis showed a main affect for regulatory power
(F(1,66) = 30.47, p < 0.001), but not for robot adaptivity
(F(2,66) = 0.32, p = 0.572). However, there was an interac-
tion affect between robot adaptivity and regulatory power
(F(2,66) = 23.15, p < 0.001). Tukey post hoc analysis
showed that simple automation with no regulation was worse
than all other conditions (p < 0.001), while simple automa-
tion with limited regulatory power was better than all other
conditions (p  0.03 for each pairing). Regulatory power had
no significant impact on societies of adaptive robots.

We attribute the unanticipated drop in performance between
the Simple-Limited to the Simple-Unlimited conditions to
overuse of regulatory resources, which in turn led to partici-
pants having poorer models of the HARE. To see this, consider
Figure 4a, which shows the amount of toll adjustments made
by participants per second in the first user study. Unsurpris-
ingly, substantially more toll adjustments were made by regu-
lators who had unlimited regulatory power. While additional
toll adjustments may have been justified in the case of adaptive
automation, additional interventions were unnecessary when
robots used simple automation. While in the Simple-Limited
conditions participants were forced to wait before making
more toll changes due to a limited budget, many participants
did not do so in the Simple-Unlimited condition. Rather, they
continually made toll adjustments without waiting sufficient
time for the robots to adjust [39]. Thus, they were largely un-
able to effectively identify which node more robots preferred
(Figure 4b-top) and whether or not the robots were learning
(Figure 4b-bottom). Thus, limited resources appear to have
encouraged observation and were, hence, beneficial.

In summary, moderate levels of regulatory power combined
with non-adaptive robots had the highest social welfare. We
now consider a second scenario to get a second data point.

User Study 2 – Robotic Buildings
In this study, participants regulated the activity of tenants in a
robotic buildings that shared a limited water supply.
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Figure 5. The (annotated) GUI used in study 2.

Scenario Overview
Eight (simulated) tenants of an apartment building shared a
limited water resource. Each tenant’s apartment was equipped
with robotic devices that automatically scheduled and executed
water-related activities (e.g., laundry, dish-washing, etc.) on
behalf of the tenant. A tenant programmed its own devices
to execute activities automatically using a control algorithm.
Water supplied to the building was collected and purified via a
renewable-energy source, a process that limited water avail-
ability such that water needs exceeded supply (Appendix C).

The regulator’s job was to set the per-unit cost of water in
each time period (we assumed a day with six time periods)
each day such that the aggregate utility across all tenants, days,
and periods was maximized. Participants set prices using
the GUI pictured in Figure 5, which, in addition to allowing
participants to change prices, displayed the current water level,
the amount of water consumed per period, the number and
value of tasks shed by the robotic devices, and the aggregate
and individual happiness of the tenants.

Each tenant employed a control algorithm designed to max-
imize its total utility. The water needs of each tenant were
defined by a set of activities. Activity i was defined by the 4-
tuple (ts(i), t f (i),s(i),v(i)), where the time interval [ts(i), t f (i))
defined the time window during which activity i could be ex-
ecuted, s(i) was the amount of water consumed by activity i,
and v(i) was how much the tenant valued the completion of
activity i. When activity i was carried out, the tenant received
utility u(i) = v(i)� c(i), where c(i) = s(i)p(t) was the cost
for executing activity i and p(t) was the per-unit cost of water
set by the regulator for period t.

Since the tenants’ water-related activities (and how the utilities
might compare to c(i)) were unknown to the regulator, the
regulator could only determine what prices to set through
experimentation and observation.

Experimental Setup
We considered societies in which (1) devices used simple (non-
adaptive) algorithms and (2) devices used adaptive algorithms
to schedule activities. As summarized in Table 3, simple
algorithms executed any activity with positive utility when
water was available. They did not adapt their behavior based
on their experience. On the other hand, adaptive algorithms
shifted their tenant’s activity schedules based on estimates of
water availability and price in each time period (Appendix D)
to maximize the tenant’s expected utility. We evaluated the
same three levels of regulatory power as in Study 1 (Table 4).
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Figure 4. Data from user study 1. (a) Toll adjustments made per sec-

ond. (b) The number of participants that correctly deduced in the post-

experiment questionnaire (top) the node most preferred by the cars and

(bottom) whether or not the autonomous cars were learning.

An analysis of variance, where throughput was the depen-
dent variable and robot adaptivity and regulatory power
were independent variables, confirmed many of these trends.
This analysis showed a main affect for regulatory power
(F(1,66) = 30.47, p < 0.001), but not for robot adaptivity
(F(2,66) = 0.32, p = 0.572). However, there was an interac-
tion affect between robot adaptivity and regulatory power
(F(2,66) = 23.15, p < 0.001). Tukey post hoc analysis
showed that simple automation with no regulation was worse
than all other conditions (p < 0.001), while simple automa-
tion with limited regulatory power was better than all other
conditions (p  0.03 for each pairing). Regulatory power had
no significant impact on societies of adaptive robots.

We attribute the unanticipated drop in performance between
the Simple-Limited to the Simple-Unlimited conditions to
overuse of regulatory resources, which in turn led to partici-
pants having poorer models of the HARE. To see this, consider
Figure 4a, which shows the amount of toll adjustments made
by participants per second in the first user study. Unsurpris-
ingly, substantially more toll adjustments were made by regu-
lators who had unlimited regulatory power. While additional
toll adjustments may have been justified in the case of adaptive
automation, additional interventions were unnecessary when
robots used simple automation. While in the Simple-Limited
conditions participants were forced to wait before making
more toll changes due to a limited budget, many participants
did not do so in the Simple-Unlimited condition. Rather, they
continually made toll adjustments without waiting sufficient
time for the robots to adjust [39]. Thus, they were largely un-
able to effectively identify which node more robots preferred
(Figure 4b-top) and whether or not the robots were learning
(Figure 4b-bottom). Thus, limited resources appear to have
encouraged observation and were, hence, beneficial.

In summary, moderate levels of regulatory power combined
with non-adaptive robots had the highest social welfare. We
now consider a second scenario to get a second data point.

User Study 2 – Robotic Buildings
In this study, participants regulated the activity of tenants in a
robotic buildings that shared a limited water supply.
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Figure 5. The (annotated) GUI used in study 2.

Scenario Overview
Eight (simulated) tenants of an apartment building shared a
limited water resource. Each tenant’s apartment was equipped
with robotic devices that automatically scheduled and executed
water-related activities (e.g., laundry, dish-washing, etc.) on
behalf of the tenant. A tenant programmed its own devices
to execute activities automatically using a control algorithm.
Water supplied to the building was collected and purified via a
renewable-energy source, a process that limited water avail-
ability such that water needs exceeded supply (Appendix C).

The regulator’s job was to set the per-unit cost of water in
each time period (we assumed a day with six time periods)
each day such that the aggregate utility across all tenants, days,
and periods was maximized. Participants set prices using
the GUI pictured in Figure 5, which, in addition to allowing
participants to change prices, displayed the current water level,
the amount of water consumed per period, the number and
value of tasks shed by the robotic devices, and the aggregate
and individual happiness of the tenants.

Each tenant employed a control algorithm designed to max-
imize its total utility. The water needs of each tenant were
defined by a set of activities. Activity i was defined by the 4-
tuple (ts(i), t f (i),s(i),v(i)), where the time interval [ts(i), t f (i))
defined the time window during which activity i could be ex-
ecuted, s(i) was the amount of water consumed by activity i,
and v(i) was how much the tenant valued the completion of
activity i. When activity i was carried out, the tenant received
utility u(i) = v(i)� c(i), where c(i) = s(i)p(t) was the cost
for executing activity i and p(t) was the per-unit cost of water
set by the regulator for period t.

Since the tenants’ water-related activities (and how the utilities
might compare to c(i)) were unknown to the regulator, the
regulator could only determine what prices to set through
experimentation and observation.

Experimental Setup
We considered societies in which (1) devices used simple (non-
adaptive) algorithms and (2) devices used adaptive algorithms
to schedule activities. As summarized in Table 3, simple
algorithms executed any activity with positive utility when
water was available. They did not adapt their behavior based
on their experience. On the other hand, adaptive algorithms
shifted their tenant’s activity schedules based on estimates of
water availability and price in each time period (Appendix D)
to maximize the tenant’s expected utility. We evaluated the
same three levels of regulatory power as in Study 1 (Table 4).
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Figure 4. Data from user study 1. (a) Toll adjustments made per sec-

ond. (b) The number of participants that correctly deduced in the post-

experiment questionnaire (top) the node most preferred by the cars and

(bottom) whether or not the autonomous cars were learning.

An analysis of variance, where throughput was the depen-
dent variable and robot adaptivity and regulatory power
were independent variables, confirmed many of these trends.
This analysis showed a main affect for regulatory power
(F(1,66) = 30.47, p < 0.001), but not for robot adaptivity
(F(2,66) = 0.32, p = 0.572). However, there was an interac-
tion affect between robot adaptivity and regulatory power
(F(2,66) = 23.15, p < 0.001). Tukey post hoc analysis
showed that simple automation with no regulation was worse
than all other conditions (p < 0.001), while simple automa-
tion with limited regulatory power was better than all other
conditions (p  0.03 for each pairing). Regulatory power had
no significant impact on societies of adaptive robots.

We attribute the unanticipated drop in performance between
the Simple-Limited to the Simple-Unlimited conditions to
overuse of regulatory resources, which in turn led to partici-
pants having poorer models of the HARE. To see this, consider
Figure 4a, which shows the amount of toll adjustments made
by participants per second in the first user study. Unsurpris-
ingly, substantially more toll adjustments were made by regu-
lators who had unlimited regulatory power. While additional
toll adjustments may have been justified in the case of adaptive
automation, additional interventions were unnecessary when
robots used simple automation. While in the Simple-Limited
conditions participants were forced to wait before making
more toll changes due to a limited budget, many participants
did not do so in the Simple-Unlimited condition. Rather, they
continually made toll adjustments without waiting sufficient
time for the robots to adjust [39]. Thus, they were largely un-
able to effectively identify which node more robots preferred
(Figure 4b-top) and whether or not the robots were learning
(Figure 4b-bottom). Thus, limited resources appear to have
encouraged observation and were, hence, beneficial.

In summary, moderate levels of regulatory power combined
with non-adaptive robots had the highest social welfare. We
now consider a second scenario to get a second data point.

User Study 2 – Robotic Buildings
In this study, participants regulated the activity of tenants in a
robotic buildings that shared a limited water supply.
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Figure 5. The (annotated) GUI used in study 2.

Scenario Overview
Eight (simulated) tenants of an apartment building shared a
limited water resource. Each tenant’s apartment was equipped
with robotic devices that automatically scheduled and executed
water-related activities (e.g., laundry, dish-washing, etc.) on
behalf of the tenant. A tenant programmed its own devices
to execute activities automatically using a control algorithm.
Water supplied to the building was collected and purified via a
renewable-energy source, a process that limited water avail-
ability such that water needs exceeded supply (Appendix C).

The regulator’s job was to set the per-unit cost of water in
each time period (we assumed a day with six time periods)
each day such that the aggregate utility across all tenants, days,
and periods was maximized. Participants set prices using
the GUI pictured in Figure 5, which, in addition to allowing
participants to change prices, displayed the current water level,
the amount of water consumed per period, the number and
value of tasks shed by the robotic devices, and the aggregate
and individual happiness of the tenants.

Each tenant employed a control algorithm designed to max-
imize its total utility. The water needs of each tenant were
defined by a set of activities. Activity i was defined by the 4-
tuple (ts(i), t f (i),s(i),v(i)), where the time interval [ts(i), t f (i))
defined the time window during which activity i could be ex-
ecuted, s(i) was the amount of water consumed by activity i,
and v(i) was how much the tenant valued the completion of
activity i. When activity i was carried out, the tenant received
utility u(i) = v(i)� c(i), where c(i) = s(i)p(t) was the cost
for executing activity i and p(t) was the per-unit cost of water
set by the regulator for period t.

Since the tenants’ water-related activities (and how the utilities
might compare to c(i)) were unknown to the regulator, the
regulator could only determine what prices to set through
experimentation and observation.

Experimental Setup
We considered societies in which (1) devices used simple (non-
adaptive) algorithms and (2) devices used adaptive algorithms
to schedule activities. As summarized in Table 3, simple
algorithms executed any activity with positive utility when
water was available. They did not adapt their behavior based
on their experience. On the other hand, adaptive algorithms
shifted their tenant’s activity schedules based on estimates of
water availability and price in each time period (Appendix D)
to maximize the tenant’s expected utility. We evaluated the
same three levels of regulatory power as in Study 1 (Table 4).
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Figure 4. Data from user study 1. (a) Toll adjustments made per sec-

ond. (b) The number of participants that correctly deduced in the post-

experiment questionnaire (top) the node most preferred by the cars and

(bottom) whether or not the autonomous cars were learning.

An analysis of variance, where throughput was the depen-
dent variable and robot adaptivity and regulatory power
were independent variables, confirmed many of these trends.
This analysis showed a main affect for regulatory power
(F(1,66) = 30.47, p < 0.001), but not for robot adaptivity
(F(2,66) = 0.32, p = 0.572). However, there was an interac-
tion affect between robot adaptivity and regulatory power
(F(2,66) = 23.15, p < 0.001). Tukey post hoc analysis
showed that simple automation with no regulation was worse
than all other conditions (p < 0.001), while simple automa-
tion with limited regulatory power was better than all other
conditions (p  0.03 for each pairing). Regulatory power had
no significant impact on societies of adaptive robots.

We attribute the unanticipated drop in performance between
the Simple-Limited to the Simple-Unlimited conditions to
overuse of regulatory resources, which in turn led to partici-
pants having poorer models of the HARE. To see this, consider
Figure 4a, which shows the amount of toll adjustments made
by participants per second in the first user study. Unsurpris-
ingly, substantially more toll adjustments were made by regu-
lators who had unlimited regulatory power. While additional
toll adjustments may have been justified in the case of adaptive
automation, additional interventions were unnecessary when
robots used simple automation. While in the Simple-Limited
conditions participants were forced to wait before making
more toll changes due to a limited budget, many participants
did not do so in the Simple-Unlimited condition. Rather, they
continually made toll adjustments without waiting sufficient
time for the robots to adjust [39]. Thus, they were largely un-
able to effectively identify which node more robots preferred
(Figure 4b-top) and whether or not the robots were learning
(Figure 4b-bottom). Thus, limited resources appear to have
encouraged observation and were, hence, beneficial.

In summary, moderate levels of regulatory power combined
with non-adaptive robots had the highest social welfare. We
now consider a second scenario to get a second data point.

User Study 2 – Robotic Buildings
In this study, participants regulated the activity of tenants in a
robotic buildings that shared a limited water supply.
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Figure 5. The (annotated) GUI used in study 2.

Scenario Overview
Eight (simulated) tenants of an apartment building shared a
limited water resource. Each tenant’s apartment was equipped
with robotic devices that automatically scheduled and executed
water-related activities (e.g., laundry, dish-washing, etc.) on
behalf of the tenant. A tenant programmed its own devices
to execute activities automatically using a control algorithm.
Water supplied to the building was collected and purified via a
renewable-energy source, a process that limited water avail-
ability such that water needs exceeded supply (Appendix C).

The regulator’s job was to set the per-unit cost of water in
each time period (we assumed a day with six time periods)
each day such that the aggregate utility across all tenants, days,
and periods was maximized. Participants set prices using
the GUI pictured in Figure 5, which, in addition to allowing
participants to change prices, displayed the current water level,
the amount of water consumed per period, the number and
value of tasks shed by the robotic devices, and the aggregate
and individual happiness of the tenants.

Each tenant employed a control algorithm designed to max-
imize its total utility. The water needs of each tenant were
defined by a set of activities. Activity i was defined by the 4-
tuple (ts(i), t f (i),s(i),v(i)), where the time interval [ts(i), t f (i))
defined the time window during which activity i could be ex-
ecuted, s(i) was the amount of water consumed by activity i,
and v(i) was how much the tenant valued the completion of
activity i. When activity i was carried out, the tenant received
utility u(i) = v(i)� c(i), where c(i) = s(i)p(t) was the cost
for executing activity i and p(t) was the per-unit cost of water
set by the regulator for period t.

Since the tenants’ water-related activities (and how the utilities
might compare to c(i)) were unknown to the regulator, the
regulator could only determine what prices to set through
experimentation and observation.

Experimental Setup
We considered societies in which (1) devices used simple (non-
adaptive) algorithms and (2) devices used adaptive algorithms
to schedule activities. As summarized in Table 3, simple
algorithms executed any activity with positive utility when
water was available. They did not adapt their behavior based
on their experience. On the other hand, adaptive algorithms
shifted their tenant’s activity schedules based on estimates of
water availability and price in each time period (Appendix D)
to maximize the tenant’s expected utility. We evaluated the
same three levels of regulatory power as in Study 1 (Table 4).
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Figure 4. Data from user study 1. (a) Toll adjustments made per sec-

ond. (b) The number of participants that correctly deduced in the post-

experiment questionnaire (top) the node most preferred by the cars and

(bottom) whether or not the autonomous cars were learning.

An analysis of variance, where throughput was the depen-
dent variable and robot adaptivity and regulatory power
were independent variables, confirmed many of these trends.
This analysis showed a main affect for regulatory power
(F(1,66) = 30.47, p < 0.001), but not for robot adaptivity
(F(2,66) = 0.32, p = 0.572). However, there was an interac-
tion affect between robot adaptivity and regulatory power
(F(2,66) = 23.15, p < 0.001). Tukey post hoc analysis
showed that simple automation with no regulation was worse
than all other conditions (p < 0.001), while simple automa-
tion with limited regulatory power was better than all other
conditions (p  0.03 for each pairing). Regulatory power had
no significant impact on societies of adaptive robots.

We attribute the unanticipated drop in performance between
the Simple-Limited to the Simple-Unlimited conditions to
overuse of regulatory resources, which in turn led to partici-
pants having poorer models of the HARE. To see this, consider
Figure 4a, which shows the amount of toll adjustments made
by participants per second in the first user study. Unsurpris-
ingly, substantially more toll adjustments were made by regu-
lators who had unlimited regulatory power. While additional
toll adjustments may have been justified in the case of adaptive
automation, additional interventions were unnecessary when
robots used simple automation. While in the Simple-Limited
conditions participants were forced to wait before making
more toll changes due to a limited budget, many participants
did not do so in the Simple-Unlimited condition. Rather, they
continually made toll adjustments without waiting sufficient
time for the robots to adjust [39]. Thus, they were largely un-
able to effectively identify which node more robots preferred
(Figure 4b-top) and whether or not the robots were learning
(Figure 4b-bottom). Thus, limited resources appear to have
encouraged observation and were, hence, beneficial.

In summary, moderate levels of regulatory power combined
with non-adaptive robots had the highest social welfare. We
now consider a second scenario to get a second data point.

User Study 2 – Robotic Buildings
In this study, participants regulated the activity of tenants in a
robotic buildings that shared a limited water supply.
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Figure 5. The (annotated) GUI used in study 2.

Scenario Overview
Eight (simulated) tenants of an apartment building shared a
limited water resource. Each tenant’s apartment was equipped
with robotic devices that automatically scheduled and executed
water-related activities (e.g., laundry, dish-washing, etc.) on
behalf of the tenant. A tenant programmed its own devices
to execute activities automatically using a control algorithm.
Water supplied to the building was collected and purified via a
renewable-energy source, a process that limited water avail-
ability such that water needs exceeded supply (Appendix C).

The regulator’s job was to set the per-unit cost of water in
each time period (we assumed a day with six time periods)
each day such that the aggregate utility across all tenants, days,
and periods was maximized. Participants set prices using
the GUI pictured in Figure 5, which, in addition to allowing
participants to change prices, displayed the current water level,
the amount of water consumed per period, the number and
value of tasks shed by the robotic devices, and the aggregate
and individual happiness of the tenants.

Each tenant employed a control algorithm designed to max-
imize its total utility. The water needs of each tenant were
defined by a set of activities. Activity i was defined by the 4-
tuple (ts(i), t f (i),s(i),v(i)), where the time interval [ts(i), t f (i))
defined the time window during which activity i could be ex-
ecuted, s(i) was the amount of water consumed by activity i,
and v(i) was how much the tenant valued the completion of
activity i. When activity i was carried out, the tenant received
utility u(i) = v(i)� c(i), where c(i) = s(i)p(t) was the cost
for executing activity i and p(t) was the per-unit cost of water
set by the regulator for period t.

Since the tenants’ water-related activities (and how the utilities
might compare to c(i)) were unknown to the regulator, the
regulator could only determine what prices to set through
experimentation and observation.

Experimental Setup
We considered societies in which (1) devices used simple (non-
adaptive) algorithms and (2) devices used adaptive algorithms
to schedule activities. As summarized in Table 3, simple
algorithms executed any activity with positive utility when
water was available. They did not adapt their behavior based
on their experience. On the other hand, adaptive algorithms
shifted their tenant’s activity schedules based on estimates of
water availability and price in each time period (Appendix D)
to maximize the tenant’s expected utility. We evaluated the
same three levels of regulatory power as in Study 1 (Table 4).
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Figure 4. Data from user study 1. (a) Toll adjustments made per sec-

ond. (b) The number of participants that correctly deduced in the post-

experiment questionnaire (top) the node most preferred by the cars and

(bottom) whether or not the autonomous cars were learning.

An analysis of variance, where throughput was the depen-
dent variable and robot adaptivity and regulatory power
were independent variables, confirmed many of these trends.
This analysis showed a main affect for regulatory power
(F(1,66) = 30.47, p < 0.001), but not for robot adaptivity
(F(2,66) = 0.32, p = 0.572). However, there was an interac-
tion affect between robot adaptivity and regulatory power
(F(2,66) = 23.15, p < 0.001). Tukey post hoc analysis
showed that simple automation with no regulation was worse
than all other conditions (p < 0.001), while simple automa-
tion with limited regulatory power was better than all other
conditions (p  0.03 for each pairing). Regulatory power had
no significant impact on societies of adaptive robots.

We attribute the unanticipated drop in performance between
the Simple-Limited to the Simple-Unlimited conditions to
overuse of regulatory resources, which in turn led to partici-
pants having poorer models of the HARE. To see this, consider
Figure 4a, which shows the amount of toll adjustments made
by participants per second in the first user study. Unsurpris-
ingly, substantially more toll adjustments were made by regu-
lators who had unlimited regulatory power. While additional
toll adjustments may have been justified in the case of adaptive
automation, additional interventions were unnecessary when
robots used simple automation. While in the Simple-Limited
conditions participants were forced to wait before making
more toll changes due to a limited budget, many participants
did not do so in the Simple-Unlimited condition. Rather, they
continually made toll adjustments without waiting sufficient
time for the robots to adjust [39]. Thus, they were largely un-
able to effectively identify which node more robots preferred
(Figure 4b-top) and whether or not the robots were learning
(Figure 4b-bottom). Thus, limited resources appear to have
encouraged observation and were, hence, beneficial.

In summary, moderate levels of regulatory power combined
with non-adaptive robots had the highest social welfare. We
now consider a second scenario to get a second data point.

User Study 2 – Robotic Buildings
In this study, participants regulated the activity of tenants in a
robotic buildings that shared a limited water supply.
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Figure 5. The (annotated) GUI used in study 2.

Scenario Overview
Eight (simulated) tenants of an apartment building shared a
limited water resource. Each tenant’s apartment was equipped
with robotic devices that automatically scheduled and executed
water-related activities (e.g., laundry, dish-washing, etc.) on
behalf of the tenant. A tenant programmed its own devices
to execute activities automatically using a control algorithm.
Water supplied to the building was collected and purified via a
renewable-energy source, a process that limited water avail-
ability such that water needs exceeded supply (Appendix C).

The regulator’s job was to set the per-unit cost of water in
each time period (we assumed a day with six time periods)
each day such that the aggregate utility across all tenants, days,
and periods was maximized. Participants set prices using
the GUI pictured in Figure 5, which, in addition to allowing
participants to change prices, displayed the current water level,
the amount of water consumed per period, the number and
value of tasks shed by the robotic devices, and the aggregate
and individual happiness of the tenants.

Each tenant employed a control algorithm designed to max-
imize its total utility. The water needs of each tenant were
defined by a set of activities. Activity i was defined by the 4-
tuple (ts(i), t f (i),s(i),v(i)), where the time interval [ts(i), t f (i))
defined the time window during which activity i could be ex-
ecuted, s(i) was the amount of water consumed by activity i,
and v(i) was how much the tenant valued the completion of
activity i. When activity i was carried out, the tenant received
utility u(i) = v(i)� c(i), where c(i) = s(i)p(t) was the cost
for executing activity i and p(t) was the per-unit cost of water
set by the regulator for period t.

Since the tenants’ water-related activities (and how the utilities
might compare to c(i)) were unknown to the regulator, the
regulator could only determine what prices to set through
experimentation and observation.

Experimental Setup
We considered societies in which (1) devices used simple (non-
adaptive) algorithms and (2) devices used adaptive algorithms
to schedule activities. As summarized in Table 3, simple
algorithms executed any activity with positive utility when
water was available. They did not adapt their behavior based
on their experience. On the other hand, adaptive algorithms
shifted their tenant’s activity schedules based on estimates of
water availability and price in each time period (Appendix D)
to maximize the tenant’s expected utility. We evaluated the
same three levels of regulatory power as in Study 1 (Table 4).
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Figure 4. Data from user study 1. (a) Toll adjustments made per sec-

ond. (b) The number of participants that correctly deduced in the post-

experiment questionnaire (top) the node most preferred by the cars and

(bottom) whether or not the autonomous cars were learning.

An analysis of variance, where throughput was the depen-
dent variable and robot adaptivity and regulatory power
were independent variables, confirmed many of these trends.
This analysis showed a main affect for regulatory power
(F(1,66) = 30.47, p < 0.001), but not for robot adaptivity
(F(2,66) = 0.32, p = 0.572). However, there was an interac-
tion affect between robot adaptivity and regulatory power
(F(2,66) = 23.15, p < 0.001). Tukey post hoc analysis
showed that simple automation with no regulation was worse
than all other conditions (p < 0.001), while simple automa-
tion with limited regulatory power was better than all other
conditions (p  0.03 for each pairing). Regulatory power had
no significant impact on societies of adaptive robots.

We attribute the unanticipated drop in performance between
the Simple-Limited to the Simple-Unlimited conditions to
overuse of regulatory resources, which in turn led to partici-
pants having poorer models of the HARE. To see this, consider
Figure 4a, which shows the amount of toll adjustments made
by participants per second in the first user study. Unsurpris-
ingly, substantially more toll adjustments were made by regu-
lators who had unlimited regulatory power. While additional
toll adjustments may have been justified in the case of adaptive
automation, additional interventions were unnecessary when
robots used simple automation. While in the Simple-Limited
conditions participants were forced to wait before making
more toll changes due to a limited budget, many participants
did not do so in the Simple-Unlimited condition. Rather, they
continually made toll adjustments without waiting sufficient
time for the robots to adjust [39]. Thus, they were largely un-
able to effectively identify which node more robots preferred
(Figure 4b-top) and whether or not the robots were learning
(Figure 4b-bottom). Thus, limited resources appear to have
encouraged observation and were, hence, beneficial.

In summary, moderate levels of regulatory power combined
with non-adaptive robots had the highest social welfare. We
now consider a second scenario to get a second data point.

User Study 2 – Robotic Buildings
In this study, participants regulated the activity of tenants in a
robotic buildings that shared a limited water supply.
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Figure 5. The (annotated) GUI used in study 2.

Scenario Overview
Eight (simulated) tenants of an apartment building shared a
limited water resource. Each tenant’s apartment was equipped
with robotic devices that automatically scheduled and executed
water-related activities (e.g., laundry, dish-washing, etc.) on
behalf of the tenant. A tenant programmed its own devices
to execute activities automatically using a control algorithm.
Water supplied to the building was collected and purified via a
renewable-energy source, a process that limited water avail-
ability such that water needs exceeded supply (Appendix C).

The regulator’s job was to set the per-unit cost of water in
each time period (we assumed a day with six time periods)
each day such that the aggregate utility across all tenants, days,
and periods was maximized. Participants set prices using
the GUI pictured in Figure 5, which, in addition to allowing
participants to change prices, displayed the current water level,
the amount of water consumed per period, the number and
value of tasks shed by the robotic devices, and the aggregate
and individual happiness of the tenants.

Each tenant employed a control algorithm designed to max-
imize its total utility. The water needs of each tenant were
defined by a set of activities. Activity i was defined by the 4-
tuple (ts(i), t f (i),s(i),v(i)), where the time interval [ts(i), t f (i))
defined the time window during which activity i could be ex-
ecuted, s(i) was the amount of water consumed by activity i,
and v(i) was how much the tenant valued the completion of
activity i. When activity i was carried out, the tenant received
utility u(i) = v(i)� c(i), where c(i) = s(i)p(t) was the cost
for executing activity i and p(t) was the per-unit cost of water
set by the regulator for period t.

Since the tenants’ water-related activities (and how the utilities
might compare to c(i)) were unknown to the regulator, the
regulator could only determine what prices to set through
experimentation and observation.

Experimental Setup
We considered societies in which (1) devices used simple (non-
adaptive) algorithms and (2) devices used adaptive algorithms
to schedule activities. As summarized in Table 3, simple
algorithms executed any activity with positive utility when
water was available. They did not adapt their behavior based
on their experience. On the other hand, adaptive algorithms
shifted their tenant’s activity schedules based on estimates of
water availability and price in each time period (Appendix D)
to maximize the tenant’s expected utility. We evaluated the
same three levels of regulatory power as in Study 1 (Table 4).
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experiment questionnaire (top) the node most preferred by the cars and

(bottom) whether or not the autonomous cars were learning.

An analysis of variance, where throughput was the depen-
dent variable and robot adaptivity and regulatory power
were independent variables, confirmed many of these trends.
This analysis showed a main affect for regulatory power
(F(1,66) = 30.47, p < 0.001), but not for robot adaptivity
(F(2,66) = 0.32, p = 0.572). However, there was an interac-
tion affect between robot adaptivity and regulatory power
(F(2,66) = 23.15, p < 0.001). Tukey post hoc analysis
showed that simple automation with no regulation was worse
than all other conditions (p < 0.001), while simple automa-
tion with limited regulatory power was better than all other
conditions (p  0.03 for each pairing). Regulatory power had
no significant impact on societies of adaptive robots.

We attribute the unanticipated drop in performance between
the Simple-Limited to the Simple-Unlimited conditions to
overuse of regulatory resources, which in turn led to partici-
pants having poorer models of the HARE. To see this, consider
Figure 4a, which shows the amount of toll adjustments made
by participants per second in the first user study. Unsurpris-
ingly, substantially more toll adjustments were made by regu-
lators who had unlimited regulatory power. While additional
toll adjustments may have been justified in the case of adaptive
automation, additional interventions were unnecessary when
robots used simple automation. While in the Simple-Limited
conditions participants were forced to wait before making
more toll changes due to a limited budget, many participants
did not do so in the Simple-Unlimited condition. Rather, they
continually made toll adjustments without waiting sufficient
time for the robots to adjust [39]. Thus, they were largely un-
able to effectively identify which node more robots preferred
(Figure 4b-top) and whether or not the robots were learning
(Figure 4b-bottom). Thus, limited resources appear to have
encouraged observation and were, hence, beneficial.

In summary, moderate levels of regulatory power combined
with non-adaptive robots had the highest social welfare. We
now consider a second scenario to get a second data point.

User Study 2 – Robotic Buildings
In this study, participants regulated the activity of tenants in a
robotic buildings that shared a limited water supply.

Water tank level

Utility 
indicators

Aggregate

Individual

Price controls and 
consumption indicators

Unfulfilled activities 
indicator

Figure 5. The (annotated) GUI used in study 2.

Scenario Overview
Eight (simulated) tenants of an apartment building shared a
limited water resource. Each tenant’s apartment was equipped
with robotic devices that automatically scheduled and executed
water-related activities (e.g., laundry, dish-washing, etc.) on
behalf of the tenant. A tenant programmed its own devices
to execute activities automatically using a control algorithm.
Water supplied to the building was collected and purified via a
renewable-energy source, a process that limited water avail-
ability such that water needs exceeded supply (Appendix C).

The regulator’s job was to set the per-unit cost of water in
each time period (we assumed a day with six time periods)
each day such that the aggregate utility across all tenants, days,
and periods was maximized. Participants set prices using
the GUI pictured in Figure 5, which, in addition to allowing
participants to change prices, displayed the current water level,
the amount of water consumed per period, the number and
value of tasks shed by the robotic devices, and the aggregate
and individual happiness of the tenants.

Each tenant employed a control algorithm designed to max-
imize its total utility. The water needs of each tenant were
defined by a set of activities. Activity i was defined by the 4-
tuple (ts(i), t f (i),s(i),v(i)), where the time interval [ts(i), t f (i))
defined the time window during which activity i could be ex-
ecuted, s(i) was the amount of water consumed by activity i,
and v(i) was how much the tenant valued the completion of
activity i. When activity i was carried out, the tenant received
utility u(i) = v(i)� c(i), where c(i) = s(i)p(t) was the cost
for executing activity i and p(t) was the per-unit cost of water
set by the regulator for period t.

Since the tenants’ water-related activities (and how the utilities
might compare to c(i)) were unknown to the regulator, the
regulator could only determine what prices to set through
experimentation and observation.

Experimental Setup
We considered societies in which (1) devices used simple (non-
adaptive) algorithms and (2) devices used adaptive algorithms
to schedule activities. As summarized in Table 3, simple
algorithms executed any activity with positive utility when
water was available. They did not adapt their behavior based
on their experience. On the other hand, adaptive algorithms
shifted their tenant’s activity schedules based on estimates of
water availability and price in each time period (Appendix D)
to maximize the tenant’s expected utility. We evaluated the
same three levels of regulatory power as in Study 1 (Table 4).
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experiment questionnaire (top) the node most preferred by the cars and

(bottom) whether or not the autonomous cars were learning.

An analysis of variance, where throughput was the depen-
dent variable and robot adaptivity and regulatory power
were independent variables, confirmed many of these trends.
This analysis showed a main affect for regulatory power
(F(1,66) = 30.47, p < 0.001), but not for robot adaptivity
(F(2,66) = 0.32, p = 0.572). However, there was an interac-
tion affect between robot adaptivity and regulatory power
(F(2,66) = 23.15, p < 0.001). Tukey post hoc analysis
showed that simple automation with no regulation was worse
than all other conditions (p < 0.001), while simple automa-
tion with limited regulatory power was better than all other
conditions (p  0.03 for each pairing). Regulatory power had
no significant impact on societies of adaptive robots.

We attribute the unanticipated drop in performance between
the Simple-Limited to the Simple-Unlimited conditions to
overuse of regulatory resources, which in turn led to partici-
pants having poorer models of the HARE. To see this, consider
Figure 4a, which shows the amount of toll adjustments made
by participants per second in the first user study. Unsurpris-
ingly, substantially more toll adjustments were made by regu-
lators who had unlimited regulatory power. While additional
toll adjustments may have been justified in the case of adaptive
automation, additional interventions were unnecessary when
robots used simple automation. While in the Simple-Limited
conditions participants were forced to wait before making
more toll changes due to a limited budget, many participants
did not do so in the Simple-Unlimited condition. Rather, they
continually made toll adjustments without waiting sufficient
time for the robots to adjust [39]. Thus, they were largely un-
able to effectively identify which node more robots preferred
(Figure 4b-top) and whether or not the robots were learning
(Figure 4b-bottom). Thus, limited resources appear to have
encouraged observation and were, hence, beneficial.

In summary, moderate levels of regulatory power combined
with non-adaptive robots had the highest social welfare. We
now consider a second scenario to get a second data point.

User Study 2 – Robotic Buildings
In this study, participants regulated the activity of tenants in a
robotic buildings that shared a limited water supply.
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Figure 5. The (annotated) GUI used in study 2.

Scenario Overview
Eight (simulated) tenants of an apartment building shared a
limited water resource. Each tenant’s apartment was equipped
with robotic devices that automatically scheduled and executed
water-related activities (e.g., laundry, dish-washing, etc.) on
behalf of the tenant. A tenant programmed its own devices
to execute activities automatically using a control algorithm.
Water supplied to the building was collected and purified via a
renewable-energy source, a process that limited water avail-
ability such that water needs exceeded supply (Appendix C).

The regulator’s job was to set the per-unit cost of water in
each time period (we assumed a day with six time periods)
each day such that the aggregate utility across all tenants, days,
and periods was maximized. Participants set prices using
the GUI pictured in Figure 5, which, in addition to allowing
participants to change prices, displayed the current water level,
the amount of water consumed per period, the number and
value of tasks shed by the robotic devices, and the aggregate
and individual happiness of the tenants.

Each tenant employed a control algorithm designed to max-
imize its total utility. The water needs of each tenant were
defined by a set of activities. Activity i was defined by the 4-
tuple (ts(i), t f (i),s(i),v(i)), where the time interval [ts(i), t f (i))
defined the time window during which activity i could be ex-
ecuted, s(i) was the amount of water consumed by activity i,
and v(i) was how much the tenant valued the completion of
activity i. When activity i was carried out, the tenant received
utility u(i) = v(i)� c(i), where c(i) = s(i)p(t) was the cost
for executing activity i and p(t) was the per-unit cost of water
set by the regulator for period t.

Since the tenants’ water-related activities (and how the utilities
might compare to c(i)) were unknown to the regulator, the
regulator could only determine what prices to set through
experimentation and observation.

Experimental Setup
We considered societies in which (1) devices used simple (non-
adaptive) algorithms and (2) devices used adaptive algorithms
to schedule activities. As summarized in Table 3, simple
algorithms executed any activity with positive utility when
water was available. They did not adapt their behavior based
on their experience. On the other hand, adaptive algorithms
shifted their tenant’s activity schedules based on estimates of
water availability and price in each time period (Appendix D)
to maximize the tenant’s expected utility. We evaluated the
same three levels of regulatory power as in Study 1 (Table 4).

Simple automation was 
easier to model



Automated Help

A

B

D

C

Tollbooth

Tollbooth

Tollbooth

Tollbooth

Tollbooth

Tollbooth



Automated Help
• Predict when the congestion will occur

A

B

D

C

Tollbooth

Tollbooth

Tollbooth

Tollbooth

Tollbooth

Tollbooth



Automated Help
• Predict when the congestion will occur

• Alert the regulator of predicted congestion

A

B

D

C

Tollbooth

Tollbooth

Tollbooth

Tollbooth

Tollbooth

Tollbooth



Automated Help
• Predict when the congestion will occur

• Alert the regulator of predicted congestion

A

B

D

C

Tollbooth

Tollbooth

Tollbooth

Tollbooth

Tollbooth

Tollbooth



Outcome

 Simple automation Adaptive automation

0
10
20
30
40
50
60
70
80
90

100

Limited Unlimited Limited Unlimited
Regulation

%
 O

pt
im

al
 T

hr
ou

gh
pu

t

Forecasting  Yes  No



Outcome

 Simple automation Adaptive automation

0
10
20
30
40
50
60
70
80
90

100

Limited Unlimited Limited Unlimited
Regulation

%
 O

pt
im

al
 T

hr
ou

gh
pu

t

Forecasting  Yes  No



Outcome

 Simple automation Adaptive automation

0
10
20
30
40
50
60
70
80
90

100

Limited Unlimited Limited Unlimited
Regulation

%
 O

pt
im

al
 T

hr
ou

gh
pu

t

Forecasting  Yes  No

Decision support 
made Simple-Limited 

worse!



Outcome

 Simple automation Adaptive automation

0
10
20
30
40
50
60
70
80
90

100

Limited Unlimited Limited Unlimited
Regulation

%
 O

pt
im

al
 T

hr
ou

gh
pu

t

Forecasting  Yes  No

Decision support 
made Simple-Limited 

worse!

Why? Regulators 
had a poorer model 

of the cars.



Toward a General Theory

3 “Forces”: 

• Adaptive robots -> Regulator must spend more time modeling 

• Adaptive robots -> Regulators need more regulatory power 

• More regulator power -> Decreased time modeling robots
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Conclusions and Future 
Work

• Data points that suggest less is more
• Limited regulator power with simple robots 

produced the best results

• Just outliers?  Or part of a general trend?

• Can we find a way to do more with more?
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