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ABSTRACT

LEARNING SUCCESSFUL STRATEGIES IN REPEATED

GENERAL-SUM GAMES

Jacob W. Crandall

Computer Science

Doctor of Philosophy

Many environments in which an agent can use reinforcement learning techniques

to learn profitable strategies are affected by other learning agents. These situations

can be modeled as general-sum games. When playing repeated general-sum games

with other learning agents, the goal of a self-interested learning agent is to maximize

its own payoffs over time. Traditional reinforcement learning algorithms learn myopic

strategies in these games. As a result, they learn strategies that produce undesirable

results in many games. In this dissertation, we develop and analyze algorithms that

learn non-myopic strategies when playing many important infinitely repeated general-

sum games. We show that, in many of these games, these algorithms outperform

existing multiagent learning algorithms. We derive performance guarantees for these

algorithms (for certain learning parameters) and show that these guarantees become

stronger and apply to larger classes of games as more information is observed and used

by the agents. We establish these results through empirical studies and mathematical

proofs.
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Chapter 1

Introduction

1.1 Motivation

As technology advances, so does the need for artificial agents that can operate

successfully in complex environments. However, obtaining successful behavior from

artificial agents is a daunting task, since many of these environments are dynamic,

complex, and may not be known in advance. Giving these agents the ability to learn

is one way to overcome such challenges.

Endowing artificial agents with the ability to learn successfully in arbitrary sit-

uations is challenging. One reason for this difficulty is that many environments are

non-stationary, such as those in which an agent interacts with other learning agents.

Learning is particularly difficult in such environments since the consequences of an

action may change over time. Additionally, an agent must determine how its actions

affect the subsequent actions of other learning agents. Predicting these consequences

is challenging because agents differ widely in the ways that they learn.

One common characteristic of real-life situations is that they repeat, sometimes

many times, which results in repeated interactions between agents. These repeated

interactions, whether between humans or machines (or both), should lead to improved

behavior, since they give agents opportunities to learn. Thus, in many situations,

multiagent learning inherently involves repeated play1. In these situations, agents

should learn to act in ways that improve their own payoffs over time, which means

that agents must be concerned not only with the immediate consequences of their

actions, but also with their long-term effects.

The situations in which agents repeatedly interact vary widely. A common situa-

tion (or game2) is one in which a loss to one agent is the gain of another agent. These

games are called zero-sum games. A second kind of situation arises when the joint be-

havior of the agents favors all agents equally. Such games are called fully cooperative

games, and require only that agents learn to coordinate their actions appropriately.

Between the two extremes of zero-sum games and fully cooperative games are a large

class of games in which agents have conflicting interests. Frequently, such games

1The term repeated play is a term from game theory that suggests that the same game is played
repeatedly by the same agents.

2We assume, as in game theory, that real-world situations can be encoded as games.
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mean that learning agents must learn to cooperate with each other if they want to

be successful. These three kinds of games constitute repeated general-sum games.

Regardless of the game structure, the goal of a (self-interested) agent in a repeated

game is to maximize its own payoffs over time. Thus, three qualities determine the

success of a learning agent: a) the quality of the strategies the agent eventually

learns to play, b) the speed at which the agent learns them, and c) the classes of

agents with whom the agent can effectively associate. While all three criteria are

important, performing well in one criterion may come at the expense of one of the

others. For example, an agent may choose to learn slowly in order to ensure that it

learns correctly.

In addition to the three criteria just mentioned, a critical attribute of a multiagent

learning algorithm is the knowledge that it requires of its environment. Due to sensor

quality, among other things, an agent may not be able to know the actions taken by

other agents, the learning methods used by other agents (if the agents are learning at

all), the payoffs received by other agents, or even the payoffs that it receives itself3.

Nevertheless, if an agent desires to learn successfully in these environments, it must

be able to do so despite various knowledge deficiencies about its environment.

To date, multiagent learning algorithms have been largely unsuccessful at learn-

ing in general-sum games as a whole [52]. One reason for this failure is that most

multiagent learning algorithms have been designed with the purpose of learning game

theoretic solution concepts. While these solution concepts are important, they often

make assumptions that do not apply to all infinitely repeated games between learn-

ing agents. As a result, these multiagent learning algorithms often learn myopic (and

unprofitable) behavior in many theoretically important repeated games.

In this dissertation, we will discuss and develop multiagent learning algorithms

that learn less myopic (and, thus, more profitable) solutions in infinitely repeated

general-sum games.

1.2 Thesis Statement

When playing repeated general-sum games with other learning agents, the goal of

a self-interested learning agent is to maximize its own payoffs over time. Algorithms

can be developed that learn (when associating with other learning agents) to play

strategies that produce significantly higher average payoffs over time than existing

algorithms in many important infinitely repeated general-sum games. Performance

guarantees for these algorithms can be established for certain learning parameters,

and these guarantees become stronger and apply to larger classes of agents as more

information is observed and used by the agents. These results can be established

through empirical studies and mathematical proofs.

3We maintain that, if an agent is to learn, it must be able to determine the payoffs that its actions
yield. However, the degrees to which an agent knows its payoffs may vary.
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1.3 Contents

The outline of this dissertation is as follows. In Chapter 2, we give important back-

ground information and review related work. Specifically, we discuss game theoretic

concepts and other related topics, review existing multiagent learning algorithms, and

discuss general-sum games in more detail.

In Chapter 3, we consider the case in which an agent knows its own actions and

can observe its own payoffs, but not those of its associates. We analyze an existing

algorithm from the literature [70], and prove that it converges with high probability

when associating with copies of itself4 to near pareto efficient5 solutions in all general-

sum matrix games, provided that specific conditions are met. We show that these

conditions can be satisfied in most infinitely repeated general-sum matrix games (and

all 2-player matrix games). A preliminary version of this work was published in [24].

In Chapter 4, we present a trembling-hand version of the algorithm discussed in

Chapter 3. We show (empirically) that this algorithm learns in self play to satisfy the

conditions necessary for convergence (with high probability) to near pareto efficient

solutions in general-sum matrix games if a) the conditions can be satisfied and if b) all

agents benefit from doing so. Preliminary work for this chapter was published in [24].

We consider in Chapter 5 the case in which an agent can observe the actions of

other agents. Under these conditions, a learning agent should possess two properties.

First, an agent should never learn to play a strategy that produces average payoffs

less than the minimax value of the game. Second an agent should learn to coop-

erate/compromise when doing so increases its payoffs. No learning algorithm from

the literature is known to possess both of these properties without having knowledge

of the payoffs of other agents. We present a reinforcement learning algorithm that

provably satisfies the first property in all general-sum matrix games and empirically

displays (in self play) the second property in a wide range of games. This chapter

is an extended version of a paper published in the 22nd International Conference on

Machine Learning [20].

The algorithm presented in Chapter 5 is designed only for matrix games. In Chap-

ter 6, we extend this algorithm to the more general case of stochastic games. We show

(empirically) that this algorithm continues to possess the same two properties (i.e.,

security and cooperate/compromise) in several important stochastic games. Multia-

gent learning algorithms in the literature do not satisfy these properties in many of

these games.

In Chapter 7, we summarize the results from the previous chapters and discuss

future work.

In the main body of the dissertation, we do not consider the case in which an agent

4We refer to situations in which an agent associates with copies of itself as self play.
5We will describe this term in more detail in Chapter 2. In short, a solution is pareto efficient if

no other solution benefits one agent without hurting another agent.
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knows the payoffs of other agents. However, when this information is available, an

agent has the possibility of learning/associating more effectively with a larger class of

agents. In Appendix A, we present a separate algorithm for such situations and show

empirical results that suggest that this algorithm can learn pareto efficient solutions

with a much larger class of agents. As this work is still considered preliminary in

nature, we do not include it in the main body of this dissertation. This work was

published in [22].
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Chapter 2

Background and Related Work

In this chapter, we give necessary background information for the work of this

dissertation. Additionally, we will review some of the more relevant work found in

the literature.

Specifically, this chapter will proceed as follows. In the next section, we formally

define the multiagent learning problem. Many of the central issues of the multiagent

learning problem are related to game theory. Hence, we review important aspects

of game theory in Section 2.2. However, game theory assumes that all agents are

rational, which is certainly not true of all learning agents. Thus, in Section 2.3, we

outline some alternate perspectives of decision making. In Section 2.4, we review past

related work in multiagent learning. We review general-sum games in more detail in

Section 2.5. In Section 2.6, we discuss the kinds of important information an agent

may or may not know when it is learning. Finally, we provide a brief discussion about

the current state of multiagent learning in the last section of this chapter.

2.1 The Multiagent Learning Problem

In this section, we formalize the multiagent learning problem. Let I be a set

of n agents. Each agent i can choose from a set of actions denoted by Ai. Let

a = (a1, a2, . . . , an), where ai ∈ Ai, be a joint action for the n agents specified by I,

and let A = A1 × · · · × An be the set of possible joint actions of these agents. Let

at
i ∈ Ai denote the action played by agent i at time t, and let at = (at

1, a
t
2, . . . , a

t
n) be

the vector denoting the joint action played by the n agents at time t. Also, let at(J),

where J ⊆ I, be the joint actions of the |J | agents in J . Let a−i be the joint actions

of all agents except agent i.

Central to multiagent learning is the payoff matrix. Let R = {R1, · · · , Rn} be the

set of payoff matrices of the game, where Ri is the payoff matrix of agent i. Let ri(a)

be the payoff to player1 i when the joint action a is played, and let rt
i be the payoff

to player i at time t. Also, let ri(ai, a−i) be the payoff to player i when it plays ai

and the rest of the agents play a−i.
2

1We use the terms player and agent interchangeably.
2More general definitions related to payoff matrices can be given. This definition assumes a

deterministic payoff matrix. However, this definition will suffice for motivating the work of this
dissertation. We will discuss a more general definition in Chapter 5.
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a b
A 1, 1 -1, 2
B 2, -1 0, 0

Table 2.1: An example of a 2-agent, 2-action matrix game.

We are now ready to formally define what is meant by the term matrix game.

Definition 2.1. (Matrix Game) A matrix game is the tuple (I, A, R), where I, A,

and R are defined previously.

As we will be referring to matrix games extensively throughout this dissertation,

we will display them in the format seen in Table 2.1. In this matrix game I =

(player 1, player 2). Player 1 is referred to as the row player and player 2 is the

column player (since player 1 selects a row and player 2 selects the column). Thus,

A1 = {A, B}, A2 = {a, b}, and A = {(A, a), (A, b), (B, a), (B, b)}. Each cell in the

game matrix (shown in Table 2.1) shows the payoffs that are rewarded to the agents

for the unique joint action specified by the row and column. The payoff to the row

player (player 1) is listed first, followed by the payoff to the column player (player

2). For example, if the row player plays B and the column player plays a (which is

the joint action (B, a)), then the row player receives a payoff of 2, while the column

player receives a payoff of -1. Thus, the individual payoff matrices for this game (R1

and R2) are R1 =

[
1 −1

2 0

]
and R2 =

[
1 2

−1 0

]
.

A strategy for agent i is a distribution πi over its action set Ai. Such a strategy

may be a pure strategy (where all probability is placed on a single action) or a mixed

strategy (otherwise). The joint strategy played by the n agents is π = (π1, π2, . . . , πn)

and, thus, ri(π) is the expected payoff for agent i when the joint strategy π is played.

A solution (or outcome) is a particular joint strategy3.

The task of a learning agent is to learn to play a strategy πi such that its average

payoff over time (denoted r̄i for agent i) is maximized. Let r̄i be given by

r̄i =
1

T

T∑
t=1

ri(π
t
i , π

t
−i) (2.1)

where πt
i is the strategy played by agent i at time t, πt

−i is the joint strategy played

by all the agents except agent i, and 1 ≤ T ≤ ∞ is the number of episodes in the

game.

We consider the case in which each round of the game is played between the same

agents. Thus, the length of the game (i.e., T ) is important since it affects how an

3While a solution is a joint strategy, we often refer to a solution as the joint payoff that it
produces.
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agent should behave. For example, in the one-shot game (i.e., when T = 1) the agents

need not consider how their current action will affect the subsequent actions of the

other agents. Thus, they should play so as to maximize the reward that they will

receive in that round. On the other hand, if T →∞ (known as an infinitely repeated

game), the agents should consider how their actions will affect the actions of the

agents in subsequent rounds. When T is somewhere in between these two extremes,

the agents must find a balance between maximizing rewards in the current episode

and considering how actions will affect subsequent rewards. We note that the agents

may not know T . In these situations, the agents may believe that play will terminate

with probability γ after each episode.

While successful agents should have the ability to learn to act successfully for all

values of T , we focus in this dissertation on infinitely repeated games or games in

which the probability that play will continue after each episode (i.e., γ) is close to

unity.

In this dissertation, we only consider simultaneous move games. In each episode4

of a simultaneous move matrix game, each agent selects an action without knowledge

of the actions selected by the other agents. The agents are then rewarded based on

the resulting joint action. We note that a second kind of game is a turn-taking game

in which the agents take turns selecting actions. While some argue that turn-taking

games are more representative of real world situations [10], we note that stochastic

games, which we will discuss in Chapter 6, can be designed so that agents must

consider both simultaneous and sequential (turn-taking) decision making.5

2.2 Game Theory

Game theory seeks to explain how agents (should) act so as to maximize their

payoffs when they are associating with other agents. As such, it is relevant to the

multiagent learning problem (at least to the degree that it does explain how agents

should act). In this section, we give a brief overview of the concepts and results that

have had the most influence on the multiagent learning problem to date. A more

in-depth treatment of game theory can be found, among other places, in [35].

2.2.1 Game Theory’s Big Assumption: Rationality

In game theory, all agents are assumed to be rational. That is, game theory

assumes that each agent will play so as to maximize its own payoffs over time. Implicit

with this assumption is the assumption that agents have unlimited resources for

4An episode of a matrix game is simply the play of a single joint action and the assignment of
the subsequent payoffs

5Stochastic games can represent (if designed as such) a combination of simultaneous and turn-
taking games only when the actions of other agents can be observed after each joint action taken by
the agents.
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determining a course of action. This assumption is frequently violated. As a result,

an agent’s associates often behave (seemingly) irrationally. Thus, game theoretic

concepts may dictate behavior that results in low average payoffs over time.

A second drawback of game theory (and its assumption of rationality) is that

it cannot always define what is best. This is because many situations have multiple

equilibria6. In such situations, the agents may not agree on which equilibrium rational

agents should learn to play. Thus, rationality does not always define how an agent

should behave.

Despite these drawbacks, game theory has played an important role in many mul-

tiagent learning algorithms. Specifically, the behavior of these algorithms can some-

times be described by game theory. Additionally, game theory has defined important

goals for multiagent learning algorithms to attain.

2.2.2 Equilibrium Concepts

Central to game theory are equilibria. That is, the play of rational agents should

converge to some strategy. Perhaps the most important of these equilibrium concepts

is the Nash equilibrium.

The Nash Equilibrium

The Nash equilibrium (NE) has had the most impact on the design and evaluation

of multiagent learning algorithms to date. The concept of a Nash equilibrium is closely

tied to the best response. Formally, the strategy π∗i is a best response for agent i if

ri(π
∗
i , π−i) ≥ ri(πi, π−i) for all possible πi. When all agents play best responses to

the strategies of other agents, the result is an NE. Thus, in an NE, no agent has

an incentive to unilaterally change its strategy. Nash showed that every game has

at least one NE [60]. However, there is no known algorithm for calculating NEs in

polynomial time [61].

While a self-interested agent should play a best response to the strategies of other

agents (and, thus, all agents should play a best response resulting in an NE), many

games have multiple NEs. In fact, many games have an infinite number of NEs of

the repeated game (rNEs), which we will discuss shortly. Thus, the task of a learning

agent does not end with learning a best response. Rather, a learning agent must

influence its associates to play so that its best response is as profitable as possible.

One-Shot Nash Equilibrium

When only the payoffs of the current episode (in matrix games) are considered,

an NE is said to be a one-shot NE. While the one-shot NE is meant in general for

one-shot games, it has frequently been a goal of multiagent learning algorithms in

6We discuss equilibrium concepts shortly.
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repeated games (e.g., [9, 41, 52, 18, 8]). This is not completely without justification,

as all one-shot NE are NEs of the repeated game7.

Minimax

Like the one-shot NE, the minimax solution, another central result of game theory,

is calculated over the payoffs of the game matrix. The minimax solution (or strategy)

for agent i (denoted πm
i ), which is the strategy that maximizes the minimum payoff

that an agent can receive, is given by

πm
i = argmax

πi

min
a−i

ri(πi, a−i) (2.2)

Note that the minimax solution can be a pure or mixed strategy. However, the min

operator need only be over pure strategy solutions (i.e., the joint actions in the set

A−i). The minimax value for agent i (denoted mi) is the average payoff received by

agent i when it plays its minimax strategy and the other agents seek to minimize its

payoffs. Formally, the minimax value for agent i is given by

mi = max
πi

min
a−i

ri(πi, a−i) (2.3)

The minimax solution is intriguing for several reasons. First, in constant-sum

games (games in which the payoffs of the agents for any given strategy sum to a

constant), the minimax solution is the unique NE of the game (regardless of whether

the game is repeated or one-shot). However, the minimax solution is not a one-shot

NE in all general-sum games, although it is an NE of the repeated game. Nevertheless,

the minimax value is the highest payoff an agent can expect to receive without the

cooperation of its associates, regardless of the game.

Unlike the NE, the minimax solution and value can be computed via linear pro-

gramming [51].

Pareto Efficiency

Before discussing rNE, we must first discuss the concept of pareto efficiency. To

do so, we first define what it means to be pareto dominated, a term we will use to

define pareto efficiency.

Definition 2.2. (Pareto Dominated) A solution π is strictly pareto dominated if

there exists a joint action a ∈ A for which ri(a) > ri(π) for all i and weakly pareto

dominated if there exists a joint action a ∈ A for which ri(a) ≥ ri(π) for all i.

Definition 2.3. (Pareto Efficient) A solution π is weakly pareto efficient (PE) if it

is not strictly pareto dominated and strictly PE if it is not weakly pareto dominated.

7This result can be obtained from the folk theorem, which we discuss shortly.
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cooperate defect
cooperate 1, 1 -1, 2

defect 2, -1 0, 0

Table 2.2: Payoff matrix for prisoner’s dilemma game.

We note that these definitions specify that the solution π need only be pareto

efficient with respect to pure strategies in order to be considered pareto efficient.

This means that the joint payoff corresponding to a pareto efficient solution π may

very well reside in the interior of the game’s convex hull.

Another point about pareto efficiency that deserves mentioning is that pareto

efficiency should not, ultimately, be the only goal of a self interested agent. This is

because many pareto dominated solutions can give a single agent higher payoffs than

some pareto efficient solutions. However, in games between successful learners, play

should converge to pareto efficient solutions. This is particularly true of self play.

Otherwise, the average expected payoff of an agent will be lower than it need be. We

note several learning algorithms have included pareto efficiency as a goal, including

those described in [67, 62]).

The Folk Theorem and Nash Equilibrium of the Repeated Game

The folk theorem for repeated games is an important part of game theory (although

it has been largely ignored in portions of the multiagent learning community until

recently). A good description of it can be found in, among other places, [35]. Here, we

review it and discuss its implications to multiagent learning in repeated general-sum

games.

Consider the prisoner’s dilemma matrix game shown in Table 2.2. The joint payoff

space of the prisoner’s dilemma game is shown in Figure 2.1. In the figure, the x-

axis shows the payoffs to the row player and the y-axis shows the payoffs to the

column player. Convex combinations of the various joint payoffs of the game form

the game’s payoff space (defined by the game’s convex hull), which is the union of

the shaded regions (light and dark) in the figure. Since each player can guarantee

itself a non-negative payoff by playing defect, neither of the players has incentive to

receive an average payoff (over time) less than 0. Thus, the darkly shaded region

in the figure shows the set of joint payoffs that the agents may possibly accept as

reasonable average payoffs per episode of the game. The folk theorem says that any

joint payoff in this region can be sustained by an rNE, provided that the discount

rates of the players are close to unity (i.e., players believe that play will continue with

high probability after each episode).

More formally, let C be the set of points contained in the convex hull of the game.

Any joint payoff (r1, r2) ∈ C such that r1 ≥ m1 and r2 ≥ m2 can be sustained by an
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Figure 2.1: Payoff space of the prisoner’s dilemma game shown in Table 2.2.

rNE provided, again, that the discount rates of the players are close to unity. Note

that this means that all one-shot NEs are rNEs, as all one-shot NEs do not give an

agent a payoff below its minimax value. The folk theorem can be extended to games

of more than two players [35].

The folk theorem shows that there are an infinite number of rNEs in all games

in which the joint payoff m = (m1, m2) is not pareto efficient (which constitutes

a large portion of general-sum games). Thus, while the folk theorem identifies the

existence of rNEs, it does little to identify which equilibrium (and strategies) that

agents should learn to play. It does, however, help to identify the types of payoffs an

agent can expect to receive. Since a self-interested agent should seek to maximize its

own payoffs over time, it should not, in most cases, be content to play its part of an

NE in which it only receives its security level (mi). Whether this is the case largely

depends on its associate(s), but in many games, such as the prisoner’s dilemma, all

agents may achieve payoffs higher than their security levels if they are willing to

cooperate. In most circumstances, we believe that, if all agents learn successfully,

they should learn to play a pareto efficient rNE.

Littman and Stone [53] give an algorithm to compute, in polynomial time, a

particular rNE for two agent games. In their algorithm, they select an rNE that

yields payoffs that maximize the product of the agents’ advantages8. This type of

equilibrium solution is suggested by Nash [59].9

While maximizing the product of the agents’ advantages is a reasonable target

rNE (it is pareto efficient and produces reasonably high payoffs for each agent), it

may not be the solution that a self-interested agent would want to adopt. To see

this, consider the matrix game chicken shown in Table 2.3. The game’s payoff space

8Littman defines agent i’s advantage for the joint action a as ri(a)−mi.
9The Nash bargaining solution depends on four axioms, one of which is the independence of

irrelevant alternatives. Littman’s algorithm appears to violate this axiom.
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swerve straight

swerve 3, 3 2, 3.5
straight 3.5, 2 1, 1

Table 2.3: Payoff matrix for the game chicken.

Figure 2.2: Payoff space of the game chicken shown in Table 2.3.

is shown in Figure 2.2. In chicken, each agent can guarantee itself at least 2 points

per episode if it always plays swerve. The one-shot NEs of chicken are for the row

player to play swerve and the column player to play straight and vice versa (labeled as

points C and B in Figure 2.2, respectively). However, when the game repeats many

times, a self-interested agent might be a fool to always accept a payoff of 2, since there

are many rNE that give it higher payoffs. Littman’s algorithm calculates that both

agents should always swerve resulting in a payoff of 3 for each agent (labeled A in

Figure 2.2). However, if the column player will continue to swerve as long as the row

player plays straight no more than every fifth play, then the row player should learn

to play straight every fifth play. This would result in the more desirable (for the row

player) average joint payoff of (3.1, 2.8) (shown as point D in Figure 2.2). However,

learning to play straight every fifth play could result in lower payoffs to the row player

over time if the column player will not “accept” this behavior. Therefore, the solution

that the row player should learn to play is unknown without an understanding of how

the column player will behave.

Correlated Equilibrium

Another powerful equilibrium concept is that of correlated equilibrium (CE) [1].

To understand CEs, consider the case in which each agent observes a signal. The

signals observed by the agents may be correlated or independent. If each agent plays

a best response to the strategies of the other agents given its observed signal, then
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the resulting strategy is a CE. Thus, in a CE, the signal dictates which strategies the

agents should play. A simple example of a CE is a traffic signal. When two agents

meet at an intersection (going in orthogonal directions), the agents receive the signal

(from the traffic light) of either <GO,STOP> or <STOP,GO>. It is a CE for each agent to

obey its signal, as it is a best response (given that the other agent obeys its signal) for

each agent to do so. A formal definition of CEs is given in [1] (among other places).

When the signals observed by the agents are not correlated, CEs are NEs. Thus,

CEs are a superset of NEs. However, unlike NEs, CEs can be computed via linear pro-

gramming. Additionally, while no algorithm is known to converge to NEs in general,

no-regret algorithms (which we will discuss shortly) [31] do converge to CEs [40].

2.3 Alternate Perspectives

While game theory is a powerful method for describing the behavior of rational

agents, not all agents are rational (at least from the perspective of game theory).

However, many seemingly irrational agents are successful; more so, sometimes, than

rational agents (which calls into question the rationality of so called rational agents).

One such agent is copy-cat algorithm tit-for-tat (TFT) [2], which was designed

for the iterated prisoner’s dilemma. In this game, TFT simply plays the action its

associate played on the previous episode. This strategy is, from the perspective of

game theory, irrational, since it would cooperate even when it would be beneficial

for it to defect. However, Axelrod found that TFT performed very well in iterated

prisoner’s dilemma tournaments when associating with a large class of agents. In

fact, in the tournaments conducted by Axelrod, TFT came out the winner.

Because of repeated examples (such as that of TFT) of seemingly irrationality

among successful agents, alternate theories of decision making have been developed.

Some of these theories seek to do completely away with the rationality assumption.

Others seek to modify it slightly or to add to it. In the rest of this section, we present

several of these alternate theories for decision making.

One alternate theory of decision making is known as bounded rationality, a term

coined by Herbert Simon [68]. Bounded rationality says that an agent’s rationality is

bounded by time and knowledge constraints. Thus, rather than seeking to maximize

payoffs, agents seek instead to obtain payoffs that are good enough, or satisficing.

Stirling furthered the notion of satisficing by defining a satisficing equilibrium [74].

A satisficing equilibrium is a joint strategy that yields a result that is good enough for

all agents (i.e., a joint strategy that is satisficing to all agents). While Simon uses an

aspiration-based model, Stirling and his associates argue for a satisficing model with

dichotomous attributes [74, 73, 58, 38].

Satisficing with dichotomous attributes is related to the idea of suspending judg-

ment presented by Levi [48, 49]. Levi argues that when an agent is presented with
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two conflicting criteria, it must withhold making a judgment (i.e., keep the two cri-

teria separate) until sufficient information can be gathered to resolve the conflict.

This methodology flies in the face of traditional approaches, which combine the two

criteria into one before making a decision.

Many have argued that bounds on rationality mean that agents must use heuris-

tics (based on what they already know) to make decisions [34, 64]. Related to this

argument is Damasio’s somatic marker hypothesis which discusses the role of emotions

in the decision making process [25, 26]. Other theories for decision making include

psychological game theory [17], behavioral game theory [11], and Frank’s commitment

model [32]. Others argue that altruistic behavior, not self-interest, largely governs

agents within societies. This, they argue, helps explain why agents cooperate when

they do not necessarily benefit from doing so. A large collection of articles on this

subject can be found in [30].

2.4 Existing Learning Algorithms

In this section, we overview related work in multiagent learning. Because of

the vast number of multiagent learning algorithms found in the literature, we must

restrict our attention to those that have had the most impact on the multiagent

learning community as well as to those that seem to be particularly connected to the

work presented in this dissertation. We divide the learning algorithms that we review

into four different (although related) categories: belief-based learning, reinforcement

learning, no-regret learning, and principle-based learning.

2.4.1 Belief-based Learning

Belief-based agents construct models of the strategies employed by their asso-

ciates. They then use these beliefs to calculate an optimal policy. Many such algo-

rithms exist, the most studied of which are Fictitious Play [33] and Bayesian learning

(see, for example, [45]).

Fictitious Play

A fictitious play agent models the strategies of its associates by recording the

empirical distribution of their actions. The agent then plays a best response to its

beliefs about the other agents’ strategies. It provably converges (in self play) to a

NE in games that are iterated dominance solvable10, and does fairly well in learning

one-shot NEs in other games as well (see, for example, [43]). However, it is known

to not converge in games such as Shapley’s game (which is shown in Table 2.4). A

number of other drawbacks of fictitious play include a) it assumes that transitions

10Iterated dominance solvable games are games that can be solved by iteratively removing actions
that are dominated.
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a b c
A 0, 0 0, 1 1, 0
B 1, 0 0, 0 0, 1
C 0, 1 1, 0 0, 0

Table 2.4: Shapley’s Game.

and reward functions are known for all players (i.e., huge knowledge requirements),

and b) it, like many other multiagent learning algorithms, generally performs poorly

in repeated general-sum games in which no one-shot NE is pareto efficient.

An interesting result regarding belief-based agents such as fictitious play is given

in [71]. In this work, Stimpson et al. show that learning models such as fictitious

play are unable to adapt their behavior to the strategies of associates in a specific

public goods game [11]. Thus, the behavior of such agents in this game is essentially

reduced to a purely random strategy.

Bayesian Learning

Fictitious play is a special case of Bayesian learning [33]. General cases of Bayesian

learning have been studied in multiagent systems, perhaps most notably in [45]. In

this work, Kalai and Lehrer show that Bayesian learners that know their own payoff

matrices must eventually play according to an rNE, as long as the individuals’ initial

beliefs about the play of their associates are compatible with the true strategies chosen

their associates. However, no guarantee is placed on which rNE they will learn to

play.

Another important (earlier) work on Bayesian learning is given by Aumann [1]. In

this work, Aumann shows that Bayesian learning leads to convergence to correlated

equilibria.

2.4.2 Reinforcement Learning

Reinforcement learning [44, 75] has frequently been used in multiagent learning

algorithms. However, the use of reinforcement learning algorithms in multiagent en-

vironments is not justified mathematically since multiple learners make the environ-

ment non-stationary. These environments are non-stationary because the strategies of

learning agents change over time. Nevertheless, reinforcement learning has frequently

been used in multiagent contexts, and not without success (e.g. [16, 66]).

Q-learning

The most commonly used (and extended) reinforcement learning algorithm in

multiagent learning has been Q-learning [76]. Since many of the algorithms we discuss
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in this dissertation are based (to some degree) on this algorithm we now discuss it

briefly.

In Q-learning, an agent seeks to learn the true expected discounted reward Q∗(s, a)

that it will receive for taking an action a from a particular state s. It does so by

maintaining a Q-estimate Qt(s, a) for each state action pair (s, a). Each time that

action a is taken from state s, the Q-estimate Qt(s, a) is updated using the following

equation:

Qt(s, a) = (1− α)Qt−1(s, a) + α[r + γ max
b

Qt−1(s
′, b)] (2.4)

where r is the immediate reward received, α is the learning rate, s′ is the agent’s

subsequent state, and γ is the discount factor. It has been shown that, as long as

each state-action pair (s, a) is visited/taken infinitely often and the learning rate is

decreased slowly but not too slowly, Qt(s, a) will converge in stationary environments

to Q∗(s, a) [76]. However, since environments affected by multiple learners are non-

stationary, these convergence guarantees do no apply to Q-learners associating with

other learners in repeated games.

While Q-learners typically learn slowly, they require little knowledge of their en-

vironment. A Q-learner requires only that it know the actions it can take from each

state and the immediate rewards that it receives when it takes those actions. It does

not require a model of its environment (i.e., state transition probabilities and reward

structure).

Like fictitious play, Q-learning agents and their variants do not typically learn

desirable policies when they play (with other learners) repeated games in which no

one-shot NE is pareto efficient. One exception to this is found in a Q-learning algo-

rithm designed by Sandholm and Crites [66] for use in an iterated prisoner’s dilemma.

Sandholm and Crites showed that the Q-learning algorithm can be made more ef-

fective when the actions of other agents are observable, since these actions can be

incorporated into the agent’s state (see also [16, 57]). In such cases, they found that

Q-learners are sometimes able to learn mutual cooperation in the iterated prisoner’s

dilemma in self play (although their results show that defection is still frequently

learned by these learners).

Because Q-learning is not suited for multiagent environments, a number of exten-

sions of the Q-learning algorithm to multiagent domains have been attempted. We

now review these algorithms11.

Minimax-Q

Since Q-learning is not mathematically designed for multiagent contexts, it has

been adapted in several interesting ways. The first of these adaptations, called

11We note that these algorithms are joint-action learners [16]. Joint-action learners learn based on
the joint strategies of the agents rather than their individual strategies. Joint-action learners must
be able to observe the actions of other agents.
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minimax-Q, was presented by Littman [51] for two-agent zero-sum games. Littman

replaced the max operator in Equation (2.4) (i.e., maxb Qt−1(s
′, b)) with a minimax

operator over the Q-values of the subsequent state s′. He proved [55] that this tech-

nique converges to the game theoretic optimal value (minimax solution) for two-agent

zero-sum games. It is not, however, effective in exploiting inferior agents.12 Minimax-

Q also requires knowledge of the actions of other agents.

Nash-Q

A second variation of Q-learning, known as Nash-Q in the literature, was proposed

by Hu and Wellman [41]. Hu and Wellman targeted multiagent learning in general

sum games by replacing the max operator in Equation (2.4) with the payoff associated

with a NE of the Q-values of the subsequent state s′. In order to do so, they required

that the payoffs and actions of all agents in the game be known (so that the Q-values

of all agents in the game can be calculated). The algorithm provably converges to a

one-shot NE solution (again, over the Q-values) in a limited set of games [41, 7].

Friend-or-Foe Q-learning

A third variation of multiagent Q-learning, called friend-or-foe Q-learning, was

proposed by Littman [52]. Friend-or-foe Q-learning targets adversarial and fully co-

operative games. In this algorithm, an agent labels each associate as a friend or

a foe. If an agent is a foe, then Q-values are updated as in the minimax-Q. If an

agent is labeled a friend, then the max operator in Equation (2.4) is replaced with

maxa1∈A1, a2∈A2 Q(s′, a1, a2) (for two agent games), where A1 and A2 are the set of

actions in state s′ available to agents 1 (self) and 2 (friend) respectively. If asso-

ciates are labeled correctly, the algorithm is guaranteed (in self play) to converge to

a one-shot NE in both adversarial and fully cooperative games. In fully cooperative

games, friend-Q learns (again, in self play) to play the one-shot NE that yields the

highest payoff to all agents. Friend-or-foe Q-learning requires the same knowledge of

the environment as minimax-Q.

Correlated Q-learning

A fourth variation on the Q-learning algorithm generalizes friend-or-foe Q-learning.

This variation, by Greenwald and Hall [39], replaces the max operator in the Q-update

equation with a mechanism that calculates a correlated equilibrium. While somewhat

promising in some contexts, correlated Q-learning can lead to convergence to unprof-

itable equilibria. Additionally, calculating an appropriate correlated equilibrium is

awkward and requires large knowledge requirements. These knowledge requirements

include knowledge of the actions and payoffs of all agents.

12Traditional Q-learners are sometimes successful at exploiting inferior agents.
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Wolf-PHC

An important work by Bowling and Veloso [9] further shows the difficulties asso-

ciated with multiagent learning in general-sum games. Bowling and Veloso proposed

two desiderata that a multiagent learning algorithm should be able to achieve: a) ra-

tionality, which they define as learning to play a best response to the stationary

strategies of associates/opponents and b) convergence to a stationary policy. None

of the previous algorithms presented in the literature fulfilled these two qualities in

general-sum games. They proposed an algorithm, called WoLF-PHC (Win or Learn

Fast Policy Hill-Climbing), that fulfills these properties in some important games (in

self play). An agent need only know the actions it can take and the rewards that it

receives in order to implement WoLF-PHC.

This work by Bowling and Veloso has given rise to a large variety of new algo-

rithms, including those that seek to fulfill the rationality and convergence properties

(of which [18] is a notable example). Additionally, this work has led to discussions

of exploiter agents [14, 5], as well as a proposed improvement to the WoLF-PHC

algorithm [4].

Learning Aspirations via Reinforcement Learning

While most reinforcement learning algorithms learn the payoffs associated with

specific actions, a separate vein of reinforcement learning has focused instead on

learning aspiration levels and then using the principle of satisficing to generate strate-

gies [46, 72, 70, 71, 24]. This approach has lead to algorithms that learn near pareto

efficient and fair solutions. We discuss these approaches in more detail in Chapters 3

and 4 of this dissertation.

2.4.3 No-regret Learning

No-regret algorithms (also known as universally consistent algorithms [33]) are

becoming increasingly popular in the literature. Loosely, regret compares an algo-

rithm’s performance with that of its best strategy (or expert [50]). An algorithm is

said to have no-regret if it performs at least as well (in the limit) as its best strategy.

A formal description can be found in [31].

No-regret learning converges to NEs in dominance-solvable, constant-sum, and

2×2 general-sum games, but does not converge in Shapley’s Game [43]. This result is

reminiscent of fictitious play. However, no-regret learners require much less knowledge

of the environment than does fictitious play.

A challenge of no-regret algorithms is determining the performance of unplayed

strategies in order to measure regret. This is done by comparing a strategy against

the empirical distribution of associates’ actions. However, this approach often leads
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c d
C 3, 3 0, 5
D 5, 0 1, 1

Figure 2.3: Average payoffs over time for GIGA-WoLF [8] (in self play) in the iterated
prisoner’s dilemma game shown at left. The payoff matrix played by the agents is
shown at left.

to myopic behavior since it assumes that an agent’s actions do not affect the fu-

ture strategies of its associates. This assumption is not true of play between learn-

ing agents. Figure 2.3 demonstrates this myopic behavior in the iterated prisoner’s

dilemma for the no-regret learning algorithm called GIGA-WoLF [8]. The figure

shows that GIGA-WoLF (quickly) learns to defect in self play, which yields a payoff

of 1 to both agents. We note that this myopic (and pareto dominated) behavior is

typical of most of the algorithms we have discussed in this chapter, and is not limited

to no-regret algorithms.

Algorithms have been developed with intentions to overcome this problem while

maintaining properties of no-regret [27, 15]. However, these algorithms have been

primarily validated for games played with static agents (such as TFT) rather than

games played with other learners.

2.4.4 Principle-based Learning

Of late, a number of algorithms have emerged that select strategies based on

various principles other than on the best response. We make particular mention of

algorithms using the (interconnected) principles of reputation, signaling, and teach-

ing. Below, we outline some justifications for the use of these principles in multiagent

learning as well as some algorithms that follow them.

Reputation

When multiple learning agents interact in repeated general-sum games, reputa-

tions [47, 56] may be established to improve payoffs (or decrease them, if undesirable

reputations are established). However, agents must be careful that the signals used

to build reputations can be perceived by the other learning agents, since attempting
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to construct such reputations may be costly if they are not perceived [32]. We have

done some preliminary work on the role of reputations in multiagent learning [23, 21].

Signaling

Agents send signals (whether explicitly or implicitly, intentionally or uninten-

tionally) that establish their reputations. In his book The Stag Hunt [69], Skyrms

identifies signaling as one of the three important issues for play to converge in social

situations to mutually beneficial equilibrium points (rather than undesirable ones).

Skyrms discusses how signals that contain sufficient information lead to the selection

of certain equilibrium solutions over others. He calls such systems signaling systems.

Work on determining the importance of signals has been plentiful. Of particular

relevance is [65], which analyzes the effect of signaling on pigeons playing the iter-

ated prisoner’s dilemma. However, the application of signals in multiagent learning

algorithms has not been abundant, although Sen et al. [67] does address the matter.

We have done some preliminary work involving implicit signaling in the iterated pris-

oner’s dilemma [36, 23, 21]. We note also that work on correlated equilibria is tied

closely to signaling.

Teaching

The principles of signaling and reputation both tie in closely to the principle of

teaching. When a learning agent acts in repeated environments with other learners,

it also acts as a teacher to the other agents in the system. However, most multiagent

learning algorithms developed to date have not taken this into account, probably

because of the complexity it appears to add to the learning process. However, teaching

techniques have been used with success by non-learning (static) algorithms.

Littman and Stone [54] demonstrated how a couple of different kinds of “leader”

algorithms can teach best-response learners to play various strategies in two-agent,

two-action canonical games. The first, called Bully, calculates a strategy that induces

best-response agents to play the Nash equilibrium of the stage game most suited to

the Bully agent. The second agent, called Godfather, computes a revenge strategy

(tit-for-tat in the prisoner’s dilemma) to be used if the other agent does not play

cooperatively. Both leader algorithms demonstrate superior performance in selected

games against certain associates, although they both can perform poorly in self-play.

In concluding their paper, Littman and Stone conclude that combinations of leader

and best-response qualities should be incorporated into learning agents. This work is

the foundation for several learning algorithms in the literature [63, 62, 22].

Other examples of teaching in the literature include Camerer et al.’s strategic

teacher [12], work by Baker and Rachlin [3], and TFT. In all these cases, the “teach-

ing” is done by a static agent rather than a learner. We have presented other prelim-

inary results on how teaching methods can be incorporated in learners in [23, 21, 22].
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Matching Pennies Rock, Paper, Scissors

a b
A 1, -1 -1, 1
B -1, 1 1, -1

r p s
R 0, 0 -1, 1 1, -1
P 1, -1 0, 0 -1, 1
S -1, 1 1, -1 0, 0

Table 2.5: Two simple competitive matrix games, called zero-sum games. The loss
to one agent is the gain to the other.

We note that a serious drawback of algorithms using these principles is that they,

like game theory, often assume knowledge of the actions and payoffs of other agents.

2.5 General-Sum Games

In this dissertation, we will analyze multiagent learning algorithms in repeated

general-sum games. As we mentioned in Chapter 1, general-sum games can be divided

into three classes or categories: competitive games, cooperative games, and games of

conflicting interest. In this section, we briefly discuss the main characteristics of

each category. We also provide example matrix games for each category that have

generated particular interest in the literature. While we present only matrix games

in this chapter, we note that versions of many of these games also exist in stochastic

(multi-state) games, which we discuss in Chapter 6.

2.5.1 Competitive Games

In competitive games, a loss to one agent is the gain of another agent. Competitive

games have no solution in which all agents receive an average payoff greater than their

minimax value mi. Two simple (yet popular) examples of competitive matrix games

are shown in Table 2.5. Both of these games have a single rNE (a one-shot NE) which

is the minimax solution. Thus, in these games, an agent should receive an average

payoff of mi (provided, of course, that its opponent is unexploitable).

2.5.2 Cooperative Games

Cooperative games are exactly opposite of competitive games. In these games,

all agents share common goals, some of which may be more profitable than others.

Table 2.6 shows a fully cooperative game with two one-shot NEs ((A, a) and (B, b)),

and an infinite number of rNEs. The NE (A, a) is the most desirable outcome.
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a b
A 4, 4 0, 0
B 0, 0 2, 2

Table 2.6: A fully cooperative matrix game.

Prisoner’s Dilemma Chicken Battle of the Sexes

c d
C 3, 3 1, 4
D 4, 1 2, 2

c d
C 3, 3 2, 4
D 4, 2 1, 1

c d
C 1, 1 3, 4
D 4, 3 2, 2

Staghunt Tricky Game Shapley’s Game

c d
C 4, 4 1, 3
D 3, 1 2, 2

a b
A 0, 3 3, 2
B 1, 0 2, 1

a b c
A 0, 0 0, 1 1, 0
B 1, 0 0, 0 0, 1
C 0, 1 1, 0 0, 0

Table 2.7: Six games of conflicting interest. In these matrix games, agents must offer
and accept compromise to be successful when they associate with other successful
learners.

2.5.3 Games of Conflicting Interest

In games of conflicting interest, agents do not necessarily agree on the solution

that should be played. However, the agents need not compete. In fact, in these

games, agents can offer and accept compromises to increase their average payoffs over

time. Table 2.7 shows six games of conflicting interest. We now discuss these games

since we we will be discussing the performance of learning algorithms in these games

throughout this dissertation.

Prisoner’s Dilemma The prisoner’s dilemma is perhaps the most studied social

dilemma (e.g., [2, 13]), as it appears to model many social situations. In the prisoner’s

dilemma, defection (D for player 1 and d for player 2) is each agent’s dominant13

action. The joint action in which both agents defect is pareto dominated (by the

solution (C, c)). Both agents can increase their payoffs by coaxing the other agent

to cooperate. To do so, an agent must (usually) be willing to cooperate (at least

to some degree) in return. An n-agent, m-action version of this game is given by

Stimpson [70, 71].

Chicken The game chicken has been shown to model the Cuban Missile Crisis [13]

among other real-life situations. The game has two one-shot NEs ((C, d) and (D, c)).

13A dominant action produces a higher payoff (to the agent playing the action) than any other
action regardless of the actions played by associates.
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However, in a repeated game, either agent may be unwilling to repeatedly receive a

payoff of 2 (its minimax value) when much more profitable solutions are available.

Thus, in such cases, compromises can be reached, such as the rNE (C, c) (among

others).

Battle of the Sexes This game models the stereotypical dilemma between hus-

band and wife. They want to be together (hopefully) but do not always like doing the

same things. This dilemma has been studied repeatedly (e.g., [13]) in the literature.

Frequently, it is assumed that playing one of the one-shot NE solutions repeatedly,

yielding payoffs of 4 to one player and 3 to the other, is acceptable behavior. However,

an alternate (and possibly more desirable) solution is for the agents to alternate (take

turns) receiving the high payoff (of 4).

Staghunt It has been argued that the staghunt models repeated social interac-

tions more realistically than the prisoner’s dilemma [69]. While it appears that the

solution to the game is obvious (the solution (C, c) is best for both agents), fear of

defection by the associating agent can lead to the NE (D, d), which gives each agent

only a payoff of 2. This fear is increased if payoffs of 1 in this payoff matrix are

lowered considerably, which case we will study in subsequent chapters.

Tricky Game This game, presented in [8] is an interesting game theoretically,

although it is not likely to be seen in nature. In this game, mi = 1 for each agent.

The unique one-shot NE is for each agent to play randomly, resulting in an average

payoff of 1.5. However, this one-shot NE is clearly pareto dominated by the solution

(A, b) (among others), which is the solution suggested by Littman [53]). Agents can

offer and accept compromises (as well as issue threats) to ensure that this solution

(or some other closely related solution) is played.

Shapley’s Game This game (which is studied in, among other places, [33]) has

often been used to show that various learning algorithms do not converge. The game

has a unique one-shot NE in which all agents play randomly. This NE yields a payoff

of 1
3

to each agent. However, if the agents alternate between “winning” (receiving a

payoff of 1) and “losing” (receiving a payoff of 0), they each receive an average payoff

of 1
2
. This pareto efficient strategy (which can be an rNE) is ignored in the literature.

2.6 Knowledge and Information

We mentioned previously that artificial agents should be able to learn given the

knowledge afforded by their environments. When environments afford more informa-

tion, agents should be able to use the extra information to learn more successfully

(i.e., learn faster and learn better solutions). All of the games we have mentioned

in this chapter can be played in environments that afford various amounts of knowl-

edge to an agent. Below, we list the various categories of information (in order of

increasing sophistication) that may be available to an agent in these (and other)
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games. Knowledge of each category can be available to an agent in various degrees

(i.e., probabilistically).

• An agent’s own actions. Knowledge of the actions that one can take is a

basic requirement of agency. An agent must be able to determine what it can

do in order for it to make a choice.

• An agent’s own payoffs. We also consider being able to observe the payoffs

that one receives as a basic knowledge requirement for learning. However, in-

formation in this category may be available to an agent in various degrees. For

example, an agent may sometimes know many consequences of various actions

prior to acting in its environment, or it may need to learn these consequences

through experimentation.

• Existence of other agents. Knowledge of whether other agents are acting on

the same environment can dramatically increase an agents ability to learn.

• Associates’ actions. Knowledge of the actions that other agents in the envi-

ronment take can make the learning problem much easier in many situations.

Information of this type may also be observable in varying degrees.

• Associates’ payoffs. Being able to observe the payoffs that associates receive

allows the interactions between agents to be much more complicated. For ex-

ample, if an agent knows (to some degree) the payoffs that other agents receive,

it can make intelligent threats to induce those agents to act in different ways.

• Associates’ internals. Knowing (or being able to learn) the internal state

and processes of associates can be very useful to an agent. However, it is not

always practical, particularly if one’s associates are complex. Information such

as the learning processes employed by associates, learning rates, etc. fit into

this category.

Note that when an agent does not know the payoffs and actions of other agents,

offering and accepting beneficial compromises becomes increasingly difficult. Never-

theless, successful learners should learn to do so.

2.7 Discussion

The most influential approaches to multiagent learning to date have advocated

that learning agents should seek to learn to play best-response strategies. Typically,

this has been done by seeking to learn an equilibrium strategy based on the current

episode (i.e., a myopic best response). Nevertheless, it has been shown that these

(myopic) best-response approaches do not always produce adequate payoffs over time

in games between learning agents [54]. Examples of games in which (myopic) best
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response strategies demonstrate undesirable characteristics include social dilemmas,

such as the iterated prisoner’s dilemma, chicken, public goods games, etc. We advo-

cate that learning algorithms must be developed that can learn to offer and accept

profitable compromises (when beneficial) in these games. Furthermore, agents should

learn to protect themselves from being exploited.
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Chapter 3

Learning Near Pareto Efficient Solutions with Minimal Knowl-

edge Requirements Using Satisficing

3.1 Introduction

Many applications to which multiagent learning can be applied require agents to

cooperate with and adapt to each other on an ongoing basis. Thus, inherently, these

applications of multiagent learning involve repeated play. This suggests that in many

applications, the Nash equilibrium perspective should be replaced by a Nash bar-

gaining perspective [59, 60], since learning a one-shot best-response (locally optimal)

solution is not always desirable when agents interact repeatedly. It is, therefore, im-

portant that multiagent learning algorithms be developed that learn bargaining-like

solutions. This entails that the algorithms learn to play pareto efficient or near pareto

efficient solutions high percentages of the time when it is feasible, and have a solid

fallback position when it is not. Such an approach also dictates that solutions be fair,

meaning (loosely) that all agents receive relatively high payoffs.

Many real-world applications also require agents to learn in non-stationary en-

vironments where only partial information about the world and/or other agents is

available. Thus, it is desirable for multiagent learning algorithms to learn effectively

when minimal information is available to the agent.

In this chapter, we discuss multiagent learning in repeated general-sum matrix

games with these two goals in mind: a) learning near pareto efficient solutions and

b) requiring minimal knowledge/information about the environment. Specifically, we

focus on learning near pareto efficient solutions when only knowledge of one’s own

actions and payoffs are available. Thus, we assume that an agent cannot observe the

actions and payoffs of other agents.

While many multiagent learning algorithms have been developed, one of the more

promising algorithms for learning pareto efficient solutions is a satisficing learning

algorithm developed by Karandikar et al. [46]. Karandikar et al. analyzed the algo-

rithm in a set of two-agent repeated play matrix games and found that, in self play,

it converges to a pareto efficient (and cooperative) solution with probability close

to unity. This algorithm was modified slightly and analyzed in a multiagent social

dilemma (MASD) by Stimpson and Goodrich [72, 71, 70]. Again, they found that,

when certain conditions are met, the satisficing algorithm (in self play) converges to
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a pareto efficient solution with probability close to one in the MASD.

In this chapter, we analyze the algorithm presented by Stimpson and Goodrich

(which we call the S-Algorithm) in the context of general-sum matrix games. We

show that the S-Algorithm converges to a near pareto efficient solution (in self play)

provided that certain conditions are met. We show that these conditions can be met in

most repeated general-sum games (and all 2-agent general-sum games). Additionally,

we present an empirical study showing the behavior of the S-Algorithm (in self play) in

a variety of general-sum matrix games. In this study, we compare the performance of

the S-Algorithm with the performance of two other well-analyzed learning algorithms

(WoLF-PHC [9] and Q-learning [76]).

The structure of this chapter is as follows. In Section 3.2, we provide some back-

ground information. This includes a list of terms and definitions that we will use

throughout this chapter, as well as a discussion of related work. We will then review

previous work on aspiration-based satisficing learning in Section 3.3. In Section 3.4,

we show that the S-Algorithm learns (in self play) to play near pareto efficient solu-

tions in most general-sum matrix games with arbitrarily high probability, provided

that certain initial conditions are met. We present an empirical study of the S-

Algorithm in Section 3.5. In the last section, we summarize the chapter and provide

further commentary on the S-Algorithm.

3.2 Background

In this section, we give some background information relevant to this chapter.

First, we give terms and definitions that we will use throughout the chapter. We

follow this with a discussion of some related work.

3.2.1 Terms and Definitions

In this chapter, we use the same notation related to strategies and payoffs that

was introduced in the previous chapter. We now define additional terms and notation.

We begin by revisiting the notion of pareto efficiency.

Definition 3.1. (Pareto Dominated) A solution π is strictly pareto dominated if

there exists a joint action a ∈ A for which ri(a) > ri(π) for all i and weakly pareto

dominated if there exists a joint action a ∈ A for which ri(a) ≥ ri(π) for all i.

Definition 3.2. (Pareto Efficient) A solution π is weakly pareto efficient (PE) if it

is not strictly pareto dominated and strictly PE if it is not weakly pareto dominated.

Unless specified, the former (i.e. weakly PE) terminology is implied.

While pareto efficiency can be a goal of an agent who is involved in repeated play,

it is sometimes difficult and impractical to guarantee. We relax this goal slightly by

seeking near pareto efficiency.
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a b c
A 1, 4 1.3, 2.8 2, 2
B 3, 3 0.6, 0.4 2.3, 0.9
C 4.5, 1 0.2, 2 3.2, 0.3

Figure 3.1: Diagram (shown at right) of the regions P, Pε (with ε = 0.5), and Dε in
the payoff space R2 for the 3× 3 matrix game (shown at left).

Definition 3.3. (ε-Pareto Dominated) A solution π is strictly ε-pareto dominated

if there exists a joint action a ∈ A for which ri(a) > ri(π) + ε for all i and weakly

ε-pareto dominated if there exists a joint action a ∈ A for which ri(a) ≥ ri(π)+ ε for

all i.

Definition 3.4. (ε-Pareto Efficient) A solution π is weakly ε-pareto efficient (ε-PE)

if it is not strictly ε-pareto dominated and strictly ε-PE if it is not weakly ε-pareto

dominated. The former (i.e. weakly ε-PE) terminology is implied unless specified

otherwise.

We now give names to various regions of the reward space of n agents, some of

which are shown (graphically) in Figure 3.1 for an arbitrary 3×3 matrix game (shown

at left) with ε = 0.5. The ×’s depict the joint payoffs of the pure strategy solutions

of the game. Let Rn denote the real-valued reward space. Let D be the subset of Rn

that is weakly pareto dominated. Let P = Rn−D. That is, P is the subset of Rn that

is strictly PE. Also, let Dε be the subset of Rn that is strictly ε-pareto dominated.

Finally, let Pε = D− Dε.

The pareto boundary divides set D from set P in the payoff space Rn. If v ∈ D,

then v is said to be below the pareto boundary. If v ∈ P, v is said to be above

the pareto boundary. Likewise, the ε-pareto boundary divides set Dε from set Pε.

If v ∈ Dε or v ∈ Pε, then v is said to be below or above the ε-pareto boundary,

respectively.

Also, we say that the pure strategy solution a ∈ X, where X is some region of the

payoff space, if (r1(a), . . . , rn(a)) ∈ X.

It is also important to understand the way we use terms associated with satisficing.

Let αt
i be agent i’s aspiration level at time t, and let αt = (αt

1, . . . , α
t
n) be the joint
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aspirations of the agents at time t. A solution π is satisficing to agent i if ri(π) ≥ αt
i.

Likewise, an agent is satisfied if the most recently played joint action was satisficing

to it. A solution π is mutually satisficing at time t if ri(π) ≥ αt
i for all i. Let Si(αi) be

the set of pure strategy solutions that are satisficing to agent i given its aspiration level

αi. Then, we have the mutually satisficing set S(α) = S1(α1)∩S2(α2)∩ · · · ∩Sn(αn).

3.2.2 Related Work

In this chapter, we discuss learning near pareto efficient solutions (in self play).

Few learning algorithms have had this as a goal in the context of general-sum games,

particularly when the actions and payoffs of other agents are not observable. We

refer the reader to Section 2.2.2 for a further discussion on learning pareto efficient

solutions in general-sum games.

Many algorithms have been developed which assume that the actions and payoffs

of other agents are not available. In particular, many no-regret algorithms have this

property (e.g., [31, 8, 43]), as well as WoLF-PHC [9], and standard (independent-

action) Q-learners [76]. We note that each of these algorithms tends to play myopically

in repeated matrix games, particularly in games in which no one-shot NE is pareto

efficient.

This section discusses an aspiration-based satisficing learning algorithm. Satisfic-

ing, which is a term meaning good enough, has its roots in work by Simon on bounded

rationality [68]. An alternate form of satisficing (using dichotomous attributes) is pre-

sented by Stirling and associates [74, 73, 58, 38], which is based somewhat on Levi’s

work on suspending judgment [48, 49]. A combination of Q-learning and dichotomous

satisficing for single agent problems is manifest in Goodrich’s Satisficing Q-learning

algorithm [37].

3.3 Aspiration-based Satisficing Learning

In this section, we review two versions of the aspiration-based satisficing learning

algorithm. First, we review the work of Karandikar et al. [46]. Second, we review the

work of Stimpson and Goodrich [70, 72, 71].

3.3.1 Karandikar et al. (1998)

Karandikar et al. [46] studied the behavior of a satisficing algorithm in the set

of 2 × 2 matrix games depicted in Figure 3.2. The authors imposed the following

constraints on the values of the matrix: σ > δ > 0 and 0 ≤ θ 6= δ. When θ > σ the

game is a prisoner’s dilemma.1 Also, when θ = 0, the game is a pure coordination

game, where the joint actions (C, C) and (D, D) are both one-shot NEs.

1Note that this does not constitute a prisoner’s dilemma as defined by Axelrod [2]. Axelrod
imposed the additional constraint that σ > θ

2 .

29



C D
C σ, σ 0, θ
D θ, 0 δ, δ

Figure 3.2: 2× 2 matrix game studied by Karandikar et al. The following constraints
on the values of the matrix where imposed: σ > δ > 0 and 0 ≤ θ 6= δ.

Repeat
(a) Select an action at

i according to the following rule:
if (rt−1

i < αt−1
i ) then with probability 1− p

at
i 6= at−1

i (switch actions)
otherwise

at
i = at−1

i

(b) Receive reward rt
i and update aspiration level:

With probability η

αt+1
i = g(αt

i)
Otherwise

αt+1
i ← λαt

i + (1− λ)rt
i

Algorithm 3.1: The satisficing algorithm for agent i as presented by Karandikar et al.

The Algorithm

The satisficing learning algorithm as presented by Karandikar et al. is given in

Algorithm 3.1. In short, an agent repeats its action of the previous episode whenever

it is satisfied. Otherwise, the agent is disappointed and it switches its action with

probability 1− p (thus, it repeats the action of the previous episode with probability

p). The probability p is based on the degree of the agent’s disappointment, which is

given by αt
i−rt

i . The authors specify that p should be bounded away from 0, meaning

that an agent continues its same action with at least some probability p̃ > 0 (thus,

p ≥ p̃). The probability p is called the agent’s inertia.

After both agents select an action, the resulting reward rt
i is observed and the

aspiration level (αt
i) is either perturbed according to the distribution g(αt

i)
2 or moved

toward rt
i using the convex combination

αt+1
i ← λαt

i + (1− λ)rt
i (3.1)

2Karandikar et al. did not discuss the distribution g(αt
i) in great detail other than specifying that

aspiration trembles could occur on either side of αt
i. Also, aspirations should remain in the region

of feasible payoffs. In the next chapter, we will analyze how this distribution affects the long-term
performance of the algorithm.
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While most learning algorithms found in the literature have focused on learning

the value of an action, Karandikar et al.’s algorithm focuses instead on learning an

appropriate aspiration level. We will show in Chapter 5 that these approaches are

indeed quite similar. However, the aspiration-based approach offers many important

insights into the multiagent learning problem that are not immediately obvious (nor

typically used) in action-based learning approaches.

Results

Karandikar et al. considered the situation in which two satisficing agents (with

identical learning rates) play the set of matrix games defined in Figure 3.2. The

behavior of these two agents can be described by a Markov process Pη over the state

space, which can be identified as the set E ≡ A×Rn. A related process is the process

P , which describes the joint behavior of the agents in the absence of trembles. We

refer to Pη as the trembled process and P as the untrembled process.

Let st = (at−1, αt−1) denote the state of the process at time t3. A pure strategy

state is a state in αt−1
i = rt−1

i (at−1). Thus, if the untrembled process P is in a pure

strategy state at time T , then st = st+1 for all t > T thereafter. Karandikar et

al. showed that, in the set of games depicted in Figure 3.2, P converges to some pure

strategy state regardless of the initial state s0.

The authors also showed that the trembled process Pη converges to a unique

invariant distribution, regardless of the initial state of the algorithm. Additionally,

they showed (and this is their main result) that the limit invariant distribution places

almost all of its weight on the (C, C) pure strategy state, provided that the learning

rate λ is sufficiently close to unity.

Intuition behind this result is depicted by Figure 3.3. Because of aspiration trem-

bles (among other things), the joint aspirations will eventually move into the shaded

region of the payoff space, which is the region in which only the (C, C) solution is

mutually satisficing. Since agents repeat their actions when they are satisfied, the

longer that aspirations remain in this region, the more likely the agent is to enter

the (C, C) pure strategy state. Since λ controls how quickly aspirations change over

time, λ close to unity means that the agent will spend most of its time in the (C, C)

pure strategy state.

The argument (and corresponding proof) showing that λ controls the minimum

amount of time that joint aspirations will remain in a given region was also made by

Stimpson et al. (as we will see). Since we will also be using this result, we now review

it (in the form of a lemma). We note that since this lemma assumes the absence of

aspiration trembles, it is applicable only to the untrembled process P .

3Note that st is determined by the joint action and joint aspirations of the previous episode since
agent i’s behavior is dependent on the comparison between rt−1

i and αt−1
i (see Algorithm 3.1).
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Figure 3.3: The payoff space of a particular prisoner’s dilemma game. Once aspira-
tions enter the shaded region, only mutual cooperation is mutually satisficing.

Let T (λ, x) be the minimum number of episodes before a single agent’s aspirations

have deviated by x units (i.e., |αT (λ,x)+t
i − αt

i| ≥ x) (given the learning rate λ).

Lemma 3.1. As λ→ 1, T (λ, x)→∞ for all x > 0.

Proof. It follows from the aspiration update rule given in Equation 3.1 that the max-

imum change in an agent’s aspiration level in one episode is given by

|αt+1
i − αt

i| = (1− λ)|rt
i − αt

i| ≤ (1− λ)W (3.2)

where W is the maximum difference between aspirations and payoffs, given by max(rmax
i −

αt
i, α

t
i − rmin

i ), where rmax
i and rmin

i are the maximum and minimum payoffs that an

agent can receive on any given episode. Then it follows that

T (λ, x) =

⌊
x

(1− λ)W

⌋
(3.3)

It is obvious from Equation (3.3) that T (λ, x)→∞ as λ→ 1.

In the infinitely repeated games in question, the (C, C) outcome is as much as

one can expect to receive (at least when limited to pure strategy outcomes) when

associating with another learner. This is because both agents can fallback to the

defection action (its minimax solution) if its associate tries to do better by defecting.

However, aspiration-based satisficing learning algorithms is the only class of learning

algorithms that we know of that learns mutual cooperation in self play of the iterated

prisoner’s dilemma when the actions and payoffs of other agents are unknown.
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Karanikar et al. noted that the ability of this algorithm to learn mutual coop-

eration in these games comes with a price. While many (action-based) learning al-

gorithms seek to learn a best response when associating with static (non-learning)

agents, the satisficing learning algorithm does not. Indeed, the satisficing learning

algorithm typically does not learn a best response to a static mixed strategy (and in

some circumstances, a static pure strategy). The desirable features of the satisficing

learning algorithm (i.e., convergence to pareto efficient solutions in which all agents

benefit) arise from the joint behavior of the agents.

3.3.2 Stimpson et al. (2003)

Stimpson and Goodrich extended the satisficing learning algorithm to n-agent,

m-action matrix games, and analyzed the algorithm in a multiagent social dilemma

(MASD). We now review the resulting algorithm (which we call the S-Algorithm),

the MASD (as presented in [71]), and Stimpson et al.’s findings.

Algorithm

The S-Algorithm is shown in Algorithm 3.2. The algorithm is identical to the sat-

isficing learning algorithm presented by Karandikar et al. except for three important

differences. First, the S-Algorithm requires (for success) that initial aspirations be

set high4. Second, the S-Algorithm does not explicitly incorporate inertia (although

an element of inertia still remains since an action yielding a non-satisficing result will

be repeated with probability 1
Ai

). This modification becomes necessary for extending

the algorithm to m-action games. Third, no aspiration trembles are employed by the

S-Algorithm.

To better understand the S-Algorithm, consider Figure 3.4, which shows the payoff

space of a 3 × 3 matrix game (shown with ε = 0.5). The payoffs to player 1 are

plotted as x-coordinates and the payoffs to player 2 are plotted as y-coordinates.

In the figure, ×’s indicate ε-PE solutions, +’s indicate non-ε-PE solutions, and the

circle (o) indicates the current joint aspirations of the agents. All solutions in the

region marked by the gray rectangle (the satisficing region) are mutually satisficing.

At the time shown in the figure, the only solution in the satisficing region is ε-PE.

Once the solution in the satisficing region is played, it will be played in every episode

thereafter. However, if it is not played by the agents, aspirations are likely to relax

until the satisficing region contains a (pure strategy) solution that is not ε-PE, which

would make convergence to a non-ε-PE solution possible. Thus, as in Karandikar’s

4We note that setting initial aspirations appropriately requires that various values of the game
matrix are known. Even though the game matrix is unknown (and, even, unobservable), an agent
can observe its highest payoff (with high probability) during an exploration period prior to beginning
learning if associates also adequately explore during this time period. This value can be used to
initialize an agent’s aspiration level.
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1. Set initial aspirations (α0
i ) high

2. Repeat
(a) Select an action at

i according to the following criteria:

at
i ←

{
at−1

i if (αt−1
i ≤ rt−1

i )
rand(Ai) otherwise

where rand(Ai) denotes a random selection from the set Ai.

(b) Receive reward rt
i and update aspiration level:

αt+1
i ← λαt

i + (1− λ)rt
i

Algorithm 3.2: The S-Algorithm for agent i as presented by Stimpson and Goodrich.

Figure 3.4: The payoff space of a 3× 3 matrix game.

version of the algorithm, slower learning rates (i.e., high λ) make convergence to ε-PE

solutions more likely.

A Multiagent Social Dilemma (MASD)

Stimpson and Goodrich analyzed the S-Algorithm in a multiagent social dilemma

(MASD) [71, 70]. In each episode of the MASD, each of the n agents is faced with the

decision of allocating M units of some discrete resource toward either its own goal or

the group goal (i.e., a common goal shared by the n agents). Let at
i be the amount

contributed by agent i toward the group goal at time t (and thus agent i contributes

M − at
i toward its own selfish goal). For each agent, there are M + 1 possible actions

(at
i ∈ {0, 1, . . . ,M}). Let each agent’s payoff be represented as a linear combination
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of the amount the group contributes to the group goal and the amount the agent

contributes to its own goal. Let kGi
be agent i’s weighting of the group goal and let

kSi
be agent i’s weighting of its own selfish goal. Then rt

i(a
t) (agent i’s payoff at time

t when the joint action at is played) is given by

rt
i(a

t) = kGi

[
n∑

j=1

at
j

]
+ kSi

(M − at
i) (3.4)

If we suppose that only the relative (not absolute) utilities are important (and

assume that all agents use the same weights kG and kS), the number of parameters

can be reduced by letting kG = 1
nM

and kS = k
M

, where k is some positive constant5.

A resulting relative payoff of rt
i(a

t) can be used, given by

rt
i(a

t) =

[
1
n

∑n
j=1 at

j

]
− kat

i

M(1− k)
(3.5)

Figure 3.5 shows the payoff space of a two-agent MASD with k = 0.6, M = 3,

and n = 2. The solution marked with the o is the solution in which both agents

allocate all their resources to the group goal. The solution marked * is the solution

corresponding to the event in which each agent allocates all of its resources to its

own individual goal. The two solutions marked +’s correspond to the events in which

one agent gives all its resources to the group good, and the other contributes all its

resources to its own individual goal. These four specially marked solutions correspond

to the payoff space of a prisoner’s dilemma, and the convex hull of these four solutions

is equivalent to the convex hull of the MASD6. The other solutions of this game are

marked with ×’s in the figure.

Results

Most of the work of Stimpson et al. focuses on the MASD. However, their initial

work [72] gives an empirical study of the (slightly modified) S-Algorithm in the set

of matrix games defined by Karandikar. The study analyzes how different learning

rates and initial parameter settings affect the performance of the S-Algorithm in these

games. Perhaps the most insightful of their findings is that the probability of mutual

cooperation is not only dependent on the learning rate λ, but it is also dependent on

how initial aspirations are set. They concluded that initial aspirations should be set

high.

Stimpson et al. also showed that Q-learners and basic belief-based agents do not

perform well in the MASD. They showed that the behavior of basic belief-based agents

5The game is really only interesting when 1
n < k < 1.

6This insight shows that playing the classical iterated prisoner’s dilemma is essentially a MASD
(with n = 2) if the state of the agents is based on the previous M joint actions of the agents (when
such information is observable).
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Figure 3.5: The payoff space of a 4× 4 MASD (k = 0.6, M = 3, n = 2).

is essentially random in this game. On the other hand, if initial aspirations are high

enough (i.e., above the pareto boundary) and if learning rates are slow enough, then

the S-Algorithm learns to play pareto efficient solutions with high probability in the

MASD (in self play). Additionally, if initial aspirations and learning rates are similar

among the agents, then the pareto efficient solution that is most likely to be played

is the Nash bargaining solution (the solution corresponding to the event in which all

agents allocate all of their resources to the group goal).

Central to multiagent learning theory is the idea of security, or bounded loss [60].

Such is the concept behind the minimax value, etc. In the MASD, Stimpson et

al. showed that the S-Algorithm also learns to play the minimax solution (defect, or

contribute all resources to the individual goal) with high probability (dependent on

λ) when associating with defecting agents. We note, however, that this result does

not apply to games in which the minimax solution is a mixed strategy.

3.4 The S-Algorithm in General-Sum Matrix Games (Theoretical Re-

sults)

The works of Karandikar et al. and Stimpson et al. show in two different (yet

related) contexts that aspiration-based satisficing learning results (in self play) in

the agents learning to play a pareto efficient solution (with high probability). These

results raise several questions. Does the S-Algorithm learn to play ε-pareto efficient

solutions in all general-sum matrix games? If so, what conditions bring about this

result? If not so, in what set of games does this result hold?

We answer these questions in this section. Before doing so, however, we analyze

the untrembled process P in greater detail.
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3.4.1 The Untrembled Process and Critical Events in General-Sum Games

Since the S-Algorithm has converged (learned) once it plays a mutually satisficing

solution, it is essential that we have an understanding of the probability that mutually

satisficing solutions will be played. That is, we must understand Pr(a) for all a ∈
S(αt), where Pr(a) denotes the probability that the solution a will be played (given

the current state of the process P). When all agents act randomly, then Pr(a) = 1
|A|

for all a. However, the S-Algorithm dictates that an agent act randomly only when it

is not satisfied. Since it is common that at least one of the agents in the game will be

satisfied (albeit temporarily), Pr(a) is unknown in an unknown general-sum matrix

game.

Fortunately, to show that the S-Algorithm can learn to play ε-PE solutions in

general-sum matrix games (with high probability), we need only guarantee for some

continuous subregion of the game’s payoff space that a) only ε-PE solutions are mutu-

ally satisficing and that b) for each τ (a constant) episodes in which joint aspirations

remain in this subregion, there is a positive probability that one such solution will

be played. If we can guarantee that joint aspirations will remain in this subregion

for T ≥ 1 episodes, Lemma 3.1 shows us that T can be made arbitrarily large. This,

in turn, means that the probability that the S-Algorithm will learn to play an ε-PE

solution can be arbitrarily large.

Recall that the untrembled process P is defined over the continuous state space

A× Rn. However, this state space be can partitioned into a finite7 set of contiguous

disjoint subregions by the observation that the probability that an action is selected

at any given moment t is solely dependent on the previous joint action at−1 and each

agent i’s satisficing set Si(α
t−1
i ). Thus, when considering only action probabilities,

the state st of P is given by st = (at−1, S1(α
t−1
1 ), · · · , Sn(αt−1

n )). Thus, W is called a

subregion8 of Rn if, for all i ∈ I, Si(αi) is constant for all α ∈ W . In other words,

a subregion is a subset of Rn in which all of the agents’ satisficing sets are identical

for all joint aspirations vectors in the region. Figure 3.6 demonstrates how satisficing

sets partition Rn in this way for an arbitrary 2-agent game. Each rectangle in the

figure is a separate subregion of Rn.

From each joint aspiration vector α ∈ W (whereW is a subregion of Rn) the same

set of critical events can occur. A critical event is a joint action (of a subset of the

agents) that makes Pr(a) become 0 for at least one a ∈ A for the remainder of the

time that joint aspirations remain in the current subregion. In other words, a critical

event is a joint action that reduces the number of solutions that will be played (for

some period of time).

More formally, consider the example timeline shown in Figure 3.7. In the time-

line, three different events are labeled. At time t0, the joint aspirations α enter the

7Finite if we assume a finite number of actions for each agent.
8Note the specific definition of the term subregion as it is used in this chapter.
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Figure 3.6: The payoff space Rn is partitioned into subregion in which all vectors in
each subregion have a constant satisficing set Si for all i.

Figure 3.7: Timeline of the events surrounding a critical event.

subregion W . At time t, the joint action at(J) is played, where J ⊆ I. At time tk,

the joint aspirations leave the subregion W . Let T−
W be the time interval (t0, t] and

let T+
W the time interval (t, tk] (as shown in the figure).

Definition 3.5. (Critical Event) at(J), where J ⊆ I, is a critical event if, for some

v ∈ A, there exists some ζ ∈ T−
W such that Pr(aζ = v) > 0 and Pr(aτ = v) = 0 for

all τ ∈ T+
W .

We say that a critical event excludes the solution v if there exists some ζ ∈ T−
W

such that Pr(aζ = v) > 0 and Pr(aτ = v) = 0 for all τ ∈ T+
W . Thus, a critical

event is a joint action that excludes at least one solution v ∈ A. If a solution is not

excluded, then it is called a non-excluded solution. Also, we say that critical event k

excludes critical event d if critical event k makes it impossible for critical event d to

be played while aspirations remain in the current subregion.
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Figure 3.8: Timeline of the events surrounding two critical events in the same subre-
gion.

Notice that the definition of a critical event does not discuss the effects of the

critical event after the joint aspirations leave the current subregion. However, the

effects of some critical events continue after joint aspirations have left the current

subregion. If the effects of a critical event are permanent (i.e., the critical event

makes it so that a solution will not be played for all τ > t), then the critical event is

said to be stable. Otherwise, the critical event is said to be unstable.

Multiple critical events can occur while joint aspirations remain in the same sub-

region, although no more than one critical event can occur on any given episode.

Consider the timeline shown in Figure 3.8. In the figure, a critical event first occurs

at time tc, meaning that at least one solution v ∈ A is excluded by the joint ac-

tion taken at time tc until aspirations leave the current subregion. Note that in the

Figure 3.8, the time intervals T−
c and T+

c have replaced T−
W and T+

W in Figure 3.7.

A second critical event occurs at time td. We say that the critical event at time td
refines the critical event at time tc since it excludes at least one additional solution

from being played for the remainder of the time that the joint aspirations remain in

W .

Three types of critical events occur with the S-Algorithm. They are selection

critical events, security critical events, and preclusion critical events. We describe

each type of critical event in the discussions that follow.

Selection Critical Events

Selection critical events are demonstrated by the game example shown in Fig-

ure 3.9. If the joint action (A, a) is played during the time in which joint aspirations

are in the shaded subregion shown in the figure, then both agents will become satis-

fied (since they both receive a payoff at least as great as their aspiration level). Thus,

they will play this joint action in each episode thereafter with probability 1, and the

other three joint actions will not be played thereafter. Observe that any subregion to

the left and down of the shaded subregion also contains this same critical event (but

they may also contain other possible critical events as well).
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a b
A (4, 4) (1, 3)
B (3, 1) (2, 2)

Figure 3.9: Example situation in which a selection critical event can occur. The joint
action (A, a) is a selection critical event when joint aspirations are somewhere in the
shaded subregion.

Formally, a selection critical event is a mutually satisficing solution. If a selection

critical event is ε-PE, then the S-Algorithm has learned to play an ε-PE solution. On

the other hand, if a selection critical event is not ε-PE, the S-Algorithm has learned

to play a non-ε-PE solution. Note that all selection critical events are stable.

Security Critical Events

A second type of critical event, the security critical event, is illustrated by a second

example, which is depicted in Figure 3.10. In this game, if joint aspirations are in

the shaded subregion (or if the row player’s aspiration level is 3 or less), a security

critical event occurs when player 1 (the row player) plays A. Once player 1 plays A, it

will continue to do so from then on (and, thus, the joint actions (B, a) and (B, b) will

have zero probability of being played from then on), while player 2 will play randomly

until its aspiration level falls to 2 (or below). At this point, the joint aspiration vector

will be in the subregion just below the shaded subregion, and a second critical event

(a selection critical event) will eventually refine the first critical event when player 2

plays the action a.

The joint action (B, a) in Figure 3.10 is a selection critical event if it is played when

joint aspirations are in the shaded subregion. If this critical event is played before

the security critical event (in which player 1 plays A), then the security critical event

is excluded. Similarly, once the security critical event (in this case) is played, the

selection critical event (B, a) is excluded.

In the example just given, the security critical event in which player 1 plays A

is stable, meaning that even after the joint aspirations leave the subregion in which

the critical event occurred, the solutions (B, a) and (B, b) continue to be excluded.
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a b
A (3, 2) (3, 1)
B (4, 3) (1, 4)

Figure 3.10: Situation in which a security critical event can occur. When joint aspi-
rations are in the shaded subregion (or anytime player 1’s aspirations are 3 or less),
then a security critical event occurs when player 1 plays A.

a b
A (3.5, 2) (3, 1)
B (4, 3) (1, 4)

Figure 3.11: Situation in which an unstable security critical event can occur.
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However, security critical events can be unstable as well. To see this, consider the

matrix game shown in Figure 3.11. This game is identical to the game shown in

Figure 3.10 except that player 1 receives a payoff of 3.5 rather than 3 when the joint

action (A, b) is played. In this game, the security critical event still occurs when

player 1 plays A when joint aspirations are in the shaded subregion. However, if

aspirations enter a subregion to the right of the shaded subregion (i.e., αt
1 > 3), then

player 1 will become dissatisfied if player 2 plays b. Thus, player 1 would again play

randomly, so the solutions (B, a) and (B, b) would no longer be excluded.

We are now ready to formally define security critical events.

Let rs
i (ai) = mina−i∈A−i

ri(ai, a−i) be the security of action ai to agent i. In

words, agent i will never receive a payoff lower than rs
i (ai) when it plays action ai.

Thus, if the joint aspirations are in a subregion such that αt
i ≤ rs

i (ai), then ai is a

security critical event since, once it is played, agent i will continue to play it until

joint aspirations leave the current subregion. This critical event excludes every entry

in the payoff matrix except for those entries corresponding to (ai, ·).
The definition just given does not consider the case in which a critical event (of

some kind) has already excluded some solutions. In such cases, agent i’s security for

taking action ai might differ from its original value. Let E t be the set of non-excluded

solutions at time t. Then, agent i’s security for taking action ai at time t is

rs
i (ai|E t) = min

a−i∈A−i,(ai,a−i)∈Et
ri(ai, a−i) (3.6)

Thus, ai is a critical event when rs
i (ai|E t) ≥ αt

i. We continue to use the notation

rs
i (ai) to denote the special case in which E t = A. Thus, rs

i (ai) = rs
i (ai|A).

It is possible that any of an agent’s actions can be security critical events (under

certain conditions). However, when E t = A and initial aspirations are set high (as

called for by the S-Algorithm shown in Algorithm 3.2), the first possible security criti-

cal event that each agent can play is its minimax action. Let πP
i = argmaxai∈Ai

rs
i (ai)

be agent i’s minimax action (over the pure strategy space), and let mP
i be agent i’s

minimax value over the pure strategy space given by

mP
i = max

ai∈Ai

rs
i (ai) = max

ai∈Ai

min
a−i∈A−i

ri(ai, a−i) (3.7)

Thus, if agent i’s minimax action is not a security critical event in a given subregion,

then neither are any of its other actions.

We note that, in the case of a critical event, the minimax action and value for each

agent can change (in accordance to the security rs
i (ai|E t) of each action ai ∈ Ai). Thus,

more generally, let πP
i (E t) = argmaxai∈Ai

rt
i(ai|E t) and let mP

i (E t) = rs
i (π

P
i |E t). In

words, the minimax strategy and value (over the pure strategy space) are calculated by

considering only those solutions that are not currently excluded. Note that mP
i (E t) ≥

mP
i .
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a b c
A (0, 3) (3, 0.5) (3, 0)
B (0.5, 3) (4, 4) (1.5, 3)
C (3, 1.5) (3, 1) (1, 3)

Figure 3.12: Situation in which a preclusion critical event can occur. In this case, if
joint aspirations are in the shaded subregion, then a cyclic critical event can occur
which makes it impossible for the joint action (B, b) to be played thereafter.

Preclusion Critical Events

The game shown in Figure 3.12 illustrates a preclusion critical event. When joint

aspirations are in the shaded subregion in this game, then all joint actions except

the joint action (B, b) are preclusion critical events since they make it impossible

for the joint action (B, b) to be played thereafter (while aspiration remain in the

shaded subregion). For example, if the joint action (C, a) is played, then player 1

will continue to play action C until player 2 plays action c, at which point player 2

will be satisfied (receiving a payoff of 3). Thus, player 2 will continue to play c until

player 1 plays action A. At this point, player 1 (who again receives a payoff of 3) will

be satisfied until player 2 plays action a, meaning that player 2 will be satisfied until

player 1 has played action C. This cycle will continue to repeat (at least while the

joint aspirations remain in the shaded subregion). At no time during the cycle can

the action (B, b) ever be played.

The defining property of preclusion critical events is that, after a preclusion critical

event, no agent is satisfied with all non-excluded solutions. This is not true of selection

and security critical events. However, as in the case of all critical events, after a

preclusion critical event, each non-excluded solution does satisfy at least one of the

agents (which is what causes the effective reduction in the size of the payoff matrix).

Let J be any subset of I in which |J | ≥ 2. The agents in J can induce/play a

preclusion critical event if a) there exists a vector of thresholds T prec = (T prec
j , ..., T prec

j−1+|J |)

such that αt
j ≤ T prec

j for all j ∈ J and b) all non-excluded solutions (as a result of the

critical event being played) satisfy at least one agent j ∈ J (i.e., if the critical event

occurs at time t, then for all a ∈ E t+1, rj(a) ≥ T prec
j for some j ∈ J). If these two
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c d
C (1, 3) (3, 2)
D (4, 1) (4, 1)

Table 3.1: Game containing a refinable preclusion critical event.

conditions do not hold, then no preclusion critical event can occur.

Preclusion critical events are classified as either unrefinable or refinable. An unre-

finable preclusion critical event (of which the game shown in Figure 3.12 is an example)

excludes all other critical events for the duration of the time that joint aspirations are

in the current subregion. Thus, all non-excluded solutions (as a result of the critical

event being played) satisfy at least one agent j ∈ J , but not all j ∈ J . As a result,

the play of the agents cycles.

As an example, consider, again, the game depicted in Figure 3.12. In this game,

the thresholds T prec
1 = 3 and T prec

2 = 3 delineate the regions of support for a preclusion

critical event. Thus, when αt
i ≤ 3 for i = 1, 2, then a preclusion critical event can

occur in which the solution (B, b) is excluded. Note that all non-excluded solutions

gives one of the agents (but not both) at least its threshold value.

As in security critical events, the threshold T prec
j can change as the set of non-

excluded solutions (E t) changes. Thus, we denote the threshold as T prec
j (E t) for the

general case.

A refinable preclusion critical event can be refined by a selection or security critical

event while aspirations remain in the current subregion. An example of a refinable

preclusion critical event is given by the matrix game shown in Table 3.1. In this game,

suppose that αt−1 = (3.5, 2.9), and that the joint action played at time t is (C, c).

In this case, player 2 (the column player) would be satisfied, whereas player 1 would

not be. Thus, player 2 would repeat the action c until player 1 played D, which is

a stable security critical event, resulting in player 1 playing D thereafter. Thus, the

preclusion critical event (C, c) excludes the solution (C, d).

Note that in this example, the preclusion critical event (C, c) is only a critical event

because of the security critical event that follows. But this is not true of all refinable

critical events. For example, if aspirations are in the subregion to the left of the

shaded subregion in the game shown in Figure 3.12, then the same preclusion critical

event that was discussed previously (in this game) is a refinable preclusion critical

event since the mutually satisficing solution (B, c) (which is a selection critical event)

can refine the preclusion critical event. Refinable preclusion critical events occur only

when a) there exists at least one solution that is mutually satisficing (i.e., S(α) 6= ∅)
or b) αt

i ≤ mP
i (E t) for some i.

Refinable preclusion critical events are governed by the same kind of thresholds

T prec
j as unrefinable preclusion critical events. For example, in the game shown in
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Table 3.1, T prec
1 = 4 (player 1’s minimax value) and T prec

2 = 3. This example illustrates

the fact that if T prec
j ≤ mP

j for some j, then the preclusion critical event is refinable

by a security critical event. A preclusion critical event is also refinable by a selection

critical event if a non-excluded solution has a payoff that exceeds the threshold of

each agent.

Before proceeding, we present one more important property of preclusion critical

events. We give this property in the form of a lemma.

Lemma 3.2. A preclusion critical event cannot exclude a security critical event.

Proof. The proof follows directly from the defining characteristic of preclusion critical

events. That is, after a preclusion critical event, no agent is satisfied with all non-

excluded solutions. This means that each agent has a positive probability of becoming

dissatisfied (over a constant number of episodes), at which point it will act randomly.

Thus, all of its actions have a positive probability of being played (and, thus, they

cannot be excluded by a preclusion critical event).

We are almost ready to present our main results about the S-Algorithm. Before

doing so, however, we formalize restrictions on initial aspirations.

3.4.2 Assumptions about Initial Aspirations

The first step of the S-Algorithm (shown in Algorithm 3.2) specifies that initial

aspirations α0 should be set high. As this term is somewhat vague, we now make some

clarifications. Perhaps the simplest method for initializing aspiration levels to high

values would be for each player to observe through experimentation (before learning)

the various payoffs it could receive. After each agent completes its observation period,

it could then set its aspiration level (α0
i ) to the highest payoff it has seen (up to that

point).

While this methodology for choosing initial aspirations is practical (assuming the

length of the observation period for each agent is similar), it is overly restrictive.

Instead we impose two restrictions on initial aspirations. First, α0 ∈ P∪P ε
2
, meaning

that initial aspirations will not be below the ε
2
-pareto boundary. Second, since an

agent should not be content with payoffs below its minimax value (over the pure

strategy space) α0
i > mP

i − ε
2

for all i (where mP
i is defined as in Equation 3.7). The

term ε
2

is subtracted from mP
i to ensure that initial joint aspirations can be in P ε

2
).

These two rules define the region P0.

3.4.3 Main Theoretical Results

We are now ready to answer whether (or when) the S-Algorithm learns to play

ε-PE solutions with high probability in self play. We show that the S-Algorithm

does learn to play ε-PE solutions with high probability determined by λ in most
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general-sum matrix games 9 when certain conditions (which we define shortly) are

met.

Let R be the set of subregions of Rn defined by the satisficing sets of the agents.

Let RP ⊆ R be the set of subregions such that if W ∈ RP , then ∀α ∈ W , S(α) 6= ∅
and ∀a ∈ S(α), a ∈ Pε.

10 In words, RP is the set of subregions in which only ε-PE

(pure strategy) solutions can possibly be mutually satisficing and at least one solution

is mutually satisficing.

Note that RP contains (at the least) all subregions that overlap (i.e., share space

with) Pε. Thus, we know that RP is not empty. In many games, RP contains other

subregions as well. For example, in the game staghunt shown in Figure 3.9, RP

contains three additional subregions: (x ∈ (1, 2], y ∈ (2, 3]), (x ∈ (2, 3], y ∈ (1, 2]),

and (x ∈ (2, 3], y ∈ (2, 3]).

However, it is not enough for RP to be non-empty. In order to show that that

the S-Algorithm will converge to ε-PE solutions with probability dependent on λ, we

must show that joint aspirations will enter at least one of the subregions W ∈ RP

in which no critical event (or sequence of critical events) can exclude all mutually

satisficing solutions. If this happens, we say that the conditions of pareto efficiency

have been met.

Let RN ⊆ RP be the set of subregions in which no critical event (or sequence

of critical events) can exclude all mutually satisficing (ε-PE) solutions. Further, for

simplicity, let RN consist only of those subregions of RP that share space with P ε
2
.

We first show that when RN 6= ∅, then it is possible to learn ε-PE solutions with

high probability. We then give circumstances under which RN 6= ∅.

Theorem 3.1. If RN 6= ∅, then there exists a non-empty set of vectors V ∈ P0 such

that if α0 ∈ V, then the S-Algorithm learns (in self play) to play ε-PE solutions with

arbitrarily high probability dependent on λ.

Proof. To show that the S-Algorithm learns to play an ε-PE solution with high prob-

ability, we need only show that, with high probability, a mutually satisficing ε-PE

solution will be played once (since once one of these solutions is played, it will be

played from then on).

LetW be a subregion of RN . Let Ẃ be the interior ofW . Then let V ≡ Ẃ∩P ε
2
.11

Note that V is non-empty since RN (which consists of subregions in RP that share

space with Pε) is assumed non-empty (in the statement of the theorem).

9The phrase most general-sum games does not entirely make sense, since there are an infinite
number of general-sum games. However, each matrix game specifies, for each agent, a preference
ordering over solutions, and there are a finite set of preference orderings over solutions (if we assume
|A| is finite). Thus, we use the phrase most general-sum games to indicate that most sets of preference
orderings specify situations in which the S-Algorithms learns to play pareto efficiency solutions with
probability dependent on λ when certain conditions are met. We note that all the games that have
been studied in the literature (that we are aware of) have such preference orderings.

10Recall that S(α) is the mutually satisficing set for the joint aspirations α.
11V can be (and usually is) larger than Ẃ ∩ P ε

2
, but this suffices for the proof.
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Figure 3.13: Examples showing a subregion that is in RN in games with no preclusion
critical events.

If α0 ∈ V, joint aspirations must remain in W for a non-zero length of time (i.e.,

number of episodes), the length of which is dependent on λ. Let T (λ) denote this

minimum length of time. Since αt ∈ W (where t is one of the T (λ) episodes), there

exists at least one ε-PE solution that is mutually satisficing (S(αt) 6= ∅). Thus,

there exists some positive probability p ∈ (0, 1] that some a ∈ S(αt) will be played

during some constant number of episodes τ (since αt ∈ W ∈ RN). This means that

the probability that some b ∈ S(αt) will not be played over τ episodes is 1 − p,

so the probability that some b ∈ S(αt) will not be played during T (λ) episodes is

q = (1− p)
T (λ)

τ . Since T (λ)→∞ as λ→ 1 (see Lemma 3.1), q → 0 as λ→ 1.

This theorem shows that if RN is non-empty, then there exists initial joint as-

pirations for which the S-Algorithm will converge to an ε-PE solution with high

probability. However, we have not shown when RN is non-empty. In the theorems

that follow, we show that RN is guaranteed to be non-empty in most general-sum

games. However, there exists a small class of games in which RN appears to be

empty12. We now give these results.

The first class of games that we consider is the large set of games that have no

preclusion critical events.

Theorem 3.2. RN 6= ∅ in games that have no preclusion critical events.

Proof. In these games, we must show that there exists a subregion such that neither a

selection critical event nor a security critical event can exclude all mutually satisficing

ε-PE solutions.

12Again, since the number of general-sum matrix games in infinite, the number of games in this
small class of games is also infinite. But there are a finite set of preference orderings over solutions
(if we assume |A| is finite). Thus, we use the term small in this case to indicate that there is only
a small number of sets of preference orderings (for general-sum games) for which RN appears to be
empty.

47



For selection critical events, we note that when initial joint aspirations are in a

subregion in RP , then only ε-PE selection critical events can occur. Thus, selection

critical events cannot exclude all mutually satisficing ε-PE solutions when aspirations

are in any subregion of RP . Thus, if only selection critical events can occur, then

RN ≡ RP , which is non-empty.

We must now show that a security critical event cannot exclude all mutually

satisficing ε-PE solutions in all subregions in RP . In this case, it is sufficient to only

consider each agent’s minimax action πP
i as security critical events. This is because

an agent’s other actions can only be security critical events if its minimax action is

a security critical event (see Section 3.4.1). Thus, we need consider only the security

critical events πP
i (for all i).

If (mP
1 , · · · , mP

n ) ∈ P ε
2
∪ P, then the joint action (πm

1 , · · · , πm
n ) is ε

2
-PE. Since no

security critical event can exclude the solution (πm
1 , · · · , πm

n ) when α = (mP
1 , · · · , mP

n ),

the subregion containing the point (mP
1 , · · · , mP

n ) is in RP . A hypothetical situation

of this kind is shown in Figure 3.13(left). In this example, the shaded subregion is a

subregion in RP .

In contrast, if (mP
1 , · · · , mP

2 ) /∈ P ε
2
∪ P (see Figure 3.13(right)), then there must

be at least one PE solution b ∈ P such that ri(b) > mP
i + ε

2
for all i. Thus, b cannot

be excluded by a security critical event and so the subregion containing the point

(r1(b), · · · , rn(b)) is in RP (as illustrated in the figure).

Thus, there exists a subregion in RP such that no selection or security critical

events can exclude all mutually satisficing (and ε-PE) solutions. Thus, RN 6= ∅, since

these games have no preclusion critical events.

Most general-sum games do not have preclusion critical events, particularly un-

refinable ones. However, for a complete treatment of general-sum matrix games, we

must discuss games in which a preclusion critical event can occur for some set of joint

aspirations α. Games with preclusion critical events have the high-level character-

istics depicted in Figure 3.14(left). In the figure (which is depicted for a two agent

game), the agents’ minimax actions and preclusive thresholds define the (shaded)

region in which no security or preclusion critical events can occur. This region is the

set of points p = (p1, . . . , pn) ∈ Rn such that pi > mP
i for all i and, for all J in which

|J | ≥ 2, pj > T prec
j for some j ∈ J . If any solution a ∈ Pε is in this region, then RN is

non-empty, since the subregion containing the solution a is in RN (the darkly shaded

region in Figure 3.14(right)). We give this result in the form of a theorem.

Theorem 3.3. RN 6= ∅ in games in which there is a preclusion critical event if there

exists a solution a ∈ Pε such that ri(a) > mP
i for all i and rj(a) > T prec

j for some

j ∈ J (for all possible sets J ⊆ I in which |J | ≥ 2).

Proof. LetW be the subregion containing the solution a. Since a ∈ Pε, thenW ∈ RP .

Suppose that α0 ∈ W . Then, a selection critical event cannot exclude a unless it is
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Figure 3.14: (Left) High level characteristics of games with preclusion critical events.
(Right) When a solution a ∈ Pε is in the shaded region, then RN is non-empty, since
the darkly shaded subregion is in RN .

itself ε-PE. Also, a security critical event cannot exclude a since ri(a) > mP
i for all

i. Lastly, a preclusion critical event (of any kind) cannot exclude a since αj > T prec
j

for some j ∈ J for all possible sets of J in which |J | ≥ 2. Thus, W ∈ RN , so RN is

non-empty.

Note that this result also holds when T prec
j < mP

j (although this is not depicted

in Figure 3.14(left)).

When there is no solution in the shaded regions of Figure 3.14(left), then either

a preclusion or security critical event can occur in all subregions of RP . However,

we show that in all 2-agent general-sum matrix games, these critical events cannot

exclude all ε-PE mutually satisficing solutions for all possible initial joint aspiration

vectors. Thus, RN is not empty in any 2-agent matrix game.

Theorem 3.4. RN 6= ∅ in all 2-agent general-sum matrix games.

Proof. If the game has no preclusion critical events, then Theorem 3.2 suffices. Addi-

tionally, if the game has a solution that satisfies the stipulations given in Theorem 3.3,

then the proof of that theorem suffices. Hence, we need only consider games in which

there does not exist a solution that satisfies the stipulations given in Theorem 3.3

(the shaded region of Figure 3.14(left)), but that does contain a preclusion critical

event.

First, we consider unrefinable preclusion critical events. In these games, the points

(T prec
1 , mP

2 ) and (mP
1 , T prec

2 ) are both in Pε, otherwise the conditions stated in The-

orem 3.3 would be satisfied. Additionally, we claim that there must be at least one

solution a ∈ A that weakly dominates the point (T prec
1 , mP

2 ) (i.e., r1(a) ≥ T prec
1 and

r2(a) ≥ mP
2 ) and at least one other solution b ∈ A that weakly dominates the point

(mP
1 , T prec

2 ) (i.e., r1(b) ≥ mP
1 and r2(b) ≥ T prec

2 ).

49



Figure 3.15: The structure of a payoff matrix of 2-agent games with an unrefinable
(possibly) preclusion critical event. In the figure, Ti = T prec

i .

To see this, consider Figure 3.15, which gives the general structure of the payoff

matrix for all 2-player games of this kind13. As in all 2-agent payoff matrices, the

rows in the figure (labeled a1 to a|A1|) give the actions available to the row player

and the columns (labeled b1 through b|A2|) give the actions available to the column

player. Thus, the joint action (a1, b1) gives player 1 (the row player) a payoff less

than T prec
1 (prec is omitted for convenience) and it gives player 2 a payoff greater than

or equal to T prec
2 . Dots in the figure indicate other rows and columns not depicted in

the figure.

As in previous examples that we have given of unrefinable preclusion critical events

(see Figure 3.12), the solutions in the center of the payoff matrix are excluded (as

shown by the big × in Figure 3.15) by a preclusion critical event when αt
j ≤ T prec

j for

all j ∈ J . Thus, once the critical event is played, the agents then cycle through the

solutions on the perimeter of the payoff matrix until another critical event occurs or

one of the agent’s aspiration levels exceeds its preclusive threshold. For example, if

the solution (a|A1|, b1) is played, then player 1 will continue to play the action a|A1|

until player 2 plays b|A2| (since α1 < T1), at which point player 2 will play b|A2| until

player 1 plays a1 (since α2 < T2), etc.

In any event, observe that the preclusion critical event does not exclude at least

one solution that weakly dominates the point (mP
1 , T prec

2 ) (in the case of the figure,

when player 1 plays πP
1 and player 2 plays b1 or b|A2|). The same argument can be

made for the point (T prec
1 , mP

2 ).

13Figure 3.15 gives the general structure of the payoff matrix of these games. Rows and columns
can be shuffled. Additionally, more than two rows and two columns can be involved in the resulting
cycle (caused by the preclusion critical event).
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Thus, all solutions that weakly dominate these points are ε-PE solutions in 2-

player games (unless, again, the payoff matrix satisfies Theorem 3.3, which means that

the proof of that theorem suffices). Also, the subregions containing these solutions

are in RN , provided that no refinable preclusion critical event can exclude all of these

solutions. A refinable preclusion critical event cannot exclude all mutually satisficing

(ε-PE) solutions in these subregions since a) these subregions are in RP (thus, a

non-ε-PE selection critical event cannot refine a preclusion critical event) and b) the

only possible security critical events in these regions are the agents security actions

(mP
i ) (or security critical events that yield nearly the same security to the agent),

which cannot exclude all mutually satisficing solutions for joint aspirations in these

subregions.

We note that setting initial aspirations in these subregions of RN may not be (and

probably is not) in the best interest of at least one of the agents, as other aspiration

levels could give it higher average payoffs. However, if aspirations are placed in these

subregions, the S-Algorithm will learn to player ε-PE solutions in self play with high

probability dependent on λ.

Unfortunately, it appears that the last theorem cannot be extended to (n > 2)-

agent matrix games, since a preclusion critical event (played by a different set of

agents) could theoretically exclude the solutions in the subregions defined in the

proof. Thus, RN can possibly be empty in some small class of games. Thus, in these

games we cannot guarantee that the S-Algorithm will converge with high probability

to ε-PE solutions.

On a positive note, it appears that these games (i.e., games in which we cannot

guarantee that RN is non-empty due to preclusion critical events) are very rare and

uninteresting14, as we know of no game studied in the literature that possesses these

properties. The same can be said of any game with an unrefinable critical event (that

we know of).

Regardless of whether there is a set of initial joint aspirations that causes the S-

Algorithm to learn to play ε-PE solutions with high probability, S-Algorithm agents

are protected by security critical events. Thus, an agent’s average payoffs are likely

bounded from below (in the limit) by the minimax value mP
i . This is because the

agent is likely (if λ is close enough to unity) to play πP
i (a security critical event)

before its aspirations drop far below mP
i . This argument follows from Lemma 3.2,

which says that a preclusion critical event cannot exclude a security critical event.

Recall that Stimpson et al. showed this security property for the specific case of the

MASD [71].

In the next section, we will demonstrate the individual average payoffs obtained

by the S-Algorithm (in self play) in many theoretically important games. Before

14Uninteresting in the sense that an agent is not likely to encounter such games in practical
situations.
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doing so, however, we (briefly) discuss convergence of the S-Algorithm (again, in self

play).

3.4.4 Convergence

Throughout this chapter, we have repeatedly discussed convergence. We now

formally define the term (as we use it) and discuss the convergence of the S-Algorithm

in general-sum games.

Definition 3.6. (Convergence) A learning process has converged if and only if πt
i =

πt+1
i for all t > T , where T is some constant.

The question arises whether or not the S-Algorithm converges in self play in all

general-sum matrix games. While the S-Algorithm does converge with high proba-

bility when aspirations begin in a subregion of RN , it is not guaranteed to converge

when initial aspirations vectors are not in a subregion of RN . Thus, if RN is empty

or agents do not set their aspirations “appropriately,” then the S-Algorithm might

not converge (in self play).

While there are many examples of such games (especially many games with un-

refinable preclusion critical events), we present just one (additional) example. This

game is shown in Figure 3.16. In this game, if joint aspirations are initialized above

the pareto boundary, then aspirations will remain above the pareto boundary (i.e.,

αt ∈ P for all t). Thus, no selection critical event can ever occur. In general, the joint

aspiration vector will remain close to (0.25, 0.25) (with high probability), which is a

point in P.

Observe, however, that if joint aspirations are chosen using the method suggested

in Theorem 3.1, then initial joint aspirations will be in the subregion containing the

point (0, 0). This means that any solution is mutually satisficing (as well as ε-PE).

Thus, the S-Algorithm will converge to an ε-PE solution with probability 1. However,

note that convergence to PE solutions does not entail effective learning (in all cases),

as, in this case, it requires that at least one of the agents receive an average payoff

of 0. In Chapter 5, we present a learning algorithm that is able to alternate between

“winning” and “losing” so that both agents receive an average payoff of 0.5 in this

game.

3.5 The S-Algorithm in General-Sum Matrix Games (Empirical Results)

In the previous section, we showed that the S-Algorithm converges to ε-PE solu-

tions in self play (with high probability) when the conditions of pareto efficiency are

met. We showed that the conditions of pareto efficiency can be met in most general-

sum matrix games. These conditions are easily identifiable when the complete payoff

matrix is known. However, in this chapter, we have assumed that the game matrix
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a b
A (0, 0) (0, 1)
B (1, 0) (0, 0)

Figure 3.16: Example game in which the S-Algorithm does not converge.

is not known (and cannot even be constructed since the payoffs and actions of other

agents are unknown).

That being said, we note that the conditions of pareto efficiency are not difficult

to satisfy in most general-sum games if the agents takes a little time to estimate their

highest possible payoff (rmax
i ). More importantly, the matrix games that have been

studied extensively in the literature are in the class of games in which these conditions

are easily met.

In this section, we present an empirical study of the S-Algorithm in a variety

of theoretically important general-sum matrix games. In doing so, we compare the

S-Algorithm in self play to two other algorithms: WoLF-PHC [9] and Q-learning [76].

Both of these algorithms (like the S-Algorithm) operate under the assumption that

the actions and rewards of other agents (and, thus, the payoff matrix) are unknown.

Unless stated otherwise, the parameter settings for the three algorithms (abbrevi-

ated S-Algorithm, WoLF, and QL respectively) are given in Table 3.2. For the S-

Algorithm, initial aspirations where randomly selected in the region P0 with ε = 015.

Figures 3.17-3.25 show the performance of the algorithms in the prisoners dilemma,

MASD (k = 0.6, n = 3, M = 5), chicken, staghunt, Shapley’s game, tricky game [8],

battle of the sexes, and two other (unnamed) games. For each game, we show the av-

erage performance over time of the algorithms (over 50 trials) and a box and whisker

plot (generated by MATLAB) showing the final (average) payoff distributions. These

box and whisker plots show the median (line in middle of box), the median of the

upper and lower quartiles (top and bottom of box), and extremes of the data (top

and bottom of whiskers). Data points which fall outside of 1.5 multiplied by the

15We acknowledge that the agents do not know how to set their aspirations so that α ∈ P0 when
the payoff matrix is unknown. However, in this empirical study, we assume that the agents do set
their aspirations as such. In the next chapter, we consider the case in which the agents perturb their
aspiration levels, which eliminates the need for this assumption.
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Name Parameter Values

S-Algorithm α0 ∈ P0, λ = 0.99
WoLF-PHC λ = 1/(10 + 0.01κa

s), γ = 0.95,
ε-greedy w/ ε = max(0.2− 0.0006t, 0)

QL γ = 0, λ = 1/(10 + 0.01κa
s),

ε-greedy w/ ε = 0.1

Table 3.2: Learners and their parameter values. κa
s is the number of times that action

a has been played in state s, λ is used for the learning rate to avoid confusion. QL
uses a stateless Q-update.

c d
C 3, 3 0, 5
D 5, 0 1, 1

Figure 3.17: Results from 50 trials of the iterated prisoner’s dilemma.

interquartile range are considered outliers, and are plotted as *’s. Notches in the

boxes represent a robust estimate of the uncertainty about the medians for box-to-

box comparison. Boxes whose notches do not overlap indicate that the medians of

the two groups differ at a 95% confidence level. Tighter distributions are generally

more desirable than distributions that vary widely.

The results as given in the figures are largely self explanatory. However, we

comment on various aspects of each.

3.5.1 Prisoner’s Dilemma

As has been shown by Karandikar et al. and Stimpson et al., the S-Algorithm

learns mutual cooperation in the prisoner’s dilemma (see Figure 3.17). For the pa-

rameters (and initial aspirations) used, the S-Algorithm learned mutual cooperation

in all cases. Both WoLF-PHC and QL learn without exception (in the 50 trials) to al-

ways defect. We note that QL’s payoffs are slightly higher than the mutual defection

payoff since it plays randomly with probability 0.1.
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Figure 3.18: Results from 50 trials of a 3-agent, 6-action MASD (k=0.6). In this
game, mutual cooperation yields a payoff of 1 to each agent and mutual defection
produces a payoff of 0 to each agent.

3.5.2 MASD

We also tested the algorithms on a 3-agent, 6-action MASD (k=0.6) (see Fig-

ure 3.18). Both WoLF-PHC and QL learn to play selfishly (almost always completely

selfishly), while the S-Algorithm generally learns to play cooperatively. Note, how-

ever, that full cooperation does not always result. The large variation in the data is

due to changing selections of α0. Again, we note that Stimpson et al. showed that

the S-Algorithm generally learns mutual cooperation when initial aspirations are high

and similar [70] (and λ is sufficiently high). Additionally, because of the large joint

action space of this game, a higher λ is needed to make mutual cooperation more

likely.

3.5.3 Chicken

Figure 3.19 shows the performance of the three algorithms in the game chicken.

While the S-Algorithm learns without fail to always cooperate, the other two al-

gorithms learn to either cooperate while the other defects, defect while the other

cooperates, or to both cooperate. The result is that the average payoffs received by

the S-Algorithm are significantly higher than those received by the other algorithms.

3.5.4 Staghunt

The performance of the three algorithms in the game staghunt is shown in Fig-

ure 3.20. In this game, the S-Algorithm distances itself from WoLF-PHC and QL,

since its learns mutual cooperation (with one exception). WoLF-PHC and QL learn

the safer (yet less profitable) strategy of defection. We note that QL’s payoff is lower

than WoLF-PHC’s because of its continued exploration.
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c d
C 3, 3 2, 3.5
D 3.5, 2 1, 1

Figure 3.19: Results from 50 trials of the matrix game chicken.

c d
C 4, 4 −5, 3
D 3,−5 2, 2

Figure 3.20: Results from 50 trials of the matrix game staghunt.
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a b c
A 0, 0 0, 1 1, 0
B 1, 0 0, 0 0, 1
C 0, 1 1, 0 0, 0

Figure 3.21: Results from 50 trials of Shapley’s game.

3.5.5 Shapley’s Game

The S-Algorithm does not perform well in Shapley’s game, as shown in Figure 3.21.

While WoLF-PHC and QL play strategies that yield average payoffs close to 0.5,16

the S-Algorithm receives (in self play) an average payoff of 1
3
. This is not because the

S-Algorithm does not play ε-PE solutions. Indeed, all payoffs in Shapley’s game are

ε-PE. Rather, the joint aspirations of the agents never fall below the pareto frontier

(in pure strategy space). Thus, the S-Algorithm’s behavior is essentially random

(the one-shot NE). This behavior arises because the S-Algorithm focuses only on the

current episode.

Note that if aspirations are set as described in Theorem 3.1, the S-Algorithm

would converge. However, one of the agents would necessarily receive a payoff of 0 on

each episode. In order for learning agents to perform effectively in Shapley’s game,

they must learn turn-taking strategies. The algorithm we present in Chapter 5 is able

to do this successfully.

16Game theorists and others have repeatedly used Shapley’s game to show the failure of learning
algorithms to converge to an one-shot NE (see, for example, [33]). Interestingly, learning algorithms
(even those that focus only on the current episode) tend to perform better than they would if they
played the one-shot NE (see Figure 3.21 and [8]).
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a b
A 0, 3 3, 2
B 1, 0 2, 1

Figure 3.22: Results from 50 trials of Tricky Game. The performance of the row
player is shown above and the performance of the column player is shown below.

3.5.6 Tricky Game

In Tricky game the S-Algorithm, again, outperforms the other two algorithms

(see Figure 3.22), both as the row player and as the column player. In each of the

50 trials, the S-Algorithm learned the PE solution in which the row player receives

a payoff of 3 and the column player receives a payoff of 2. The learned behaviors of

both WoLF-PHC and QL vary more widely and typically yield a lower payoff to both

the row and column players. Note that WoLF-PHC plays somewhat cooperatively in

early rounds of the game. However, myopic best response approaches cannot sustain

cooperation in this game. Thus, it eventually learns (as designed) to play the one-shot

NE (which yields a payoff of 1.5 to each agent).
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c d
C 2, 2 4, 3
D 3, 4 1, 1

Figure 3.23: Results from 50 trials for a version of the matrix game Battle of the
Sexes.

3.5.7 Battle of the Sexes

Results for the game Battle of the Sexes are shown in Figure 3.23. The perfor-

mance of all the agents is essentially equivalent. Either the row player receives 4

and the column player 3, or vice versa. Both solutions are PE. Note that, again,

QL’s payoffs are slightly lower since it continues to act randomly with probability

0.1. Since the algorithms focus only on the current episode, they are unable to learn

an alternate (but fairer) PE solution in which the agents alternate between receiving

payoffs of 3 and 4.

3.5.8 Negative Result

In the previous games, the S-Algorithm learns to play PE solutions with high

probability for all initial aspiration vectors in P0.
17 We now present a game in which

many initial aspiration vectors (in P0) lead to the play of a stable security critical

event that excludes all ε-PE solutions. The game is shown in Figure 3.24. This game

has two (pure strategy) PE solutions, both of which occur when player 1 (the row

player) plays B. However, if the row player’s aspiration level drops below 3.5, then a

stable security critical event occurs if the row player plays the action A.

The proof of Theorem 3.1 locates initial joint aspirations under which the S-

Algorithm will converge (with high probability) to a ε-PE solution in this game.

Specifically, if α0 ≈ (4, 3), then the S-Algorithm will converge to the PE solution

(A, a) with high probability. However, the S-Algorithm is not guaranteed to learn

to learn to play an ε-PE solution with high probability for all α0 ∈ P0, since joint

aspirations might not pass through a subregion in RN in this game.

17Again, we note that even in Shapley’s game, the S-Algorithm learns to play PE solutions for all
initial aspiration vectors in P0 even though it does not always converge, as all solutions are weakly
PE. Additionally, its average payoffs are PE.
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The performance of the S-Algorithm (as well as that of WoLF-PHC and QL) in

this game is shown in Figure 3.24. Indeed, in most trials, the security critical event

does occur before a mutually satisficing, PE solution is played, resulting (eventually)

in convergence to the (A, a) solution. It is interesting to note that WoLF-PHC and

QL appear to be even more susceptible than the S-Algorithm to this event, as they

learn similar strategies (and never learn to play the PE solution). We note, that,

as shown in the proof, the S-Algorithm converges with high probability to the PE

solution when initial aspirations are initially set to (3.99, 2.99). This result is shown

in Figure 3.24 as S-Alg (Fixed).

In Figure 3.25, we modify this game so that the security critical event is unstable.

While this does not change the behavior of WoLF-PHC and QL, it does allow the

S-Algorithm to learn to play the PE solution with higher probability. In fact, the

S-Algorithm learns to play (B, b) (with high probability) for most initial aspiration

vectors in this game. However, when the row player has relatively low initial aspiration

levels compared to the column player, the security critical event excludes the PE

solution long enough for convergence to a non-PE solution to become possible.

3.6 Summary, Discussion, and Future Work

In this chapter, we reviewed the satisficing learning algorithms presented by

Karandikar et al. and Stimpson et al. We also analyzed the S-Algorithm (the al-

gorithm presented by Stimpson) in general-sum matrix games. We showed that in

almost all general-sum matrix games (and all 2-agent matrix games), the S-Algorithm

learns (in self play) to play ε-PE solutions with high probability dependent on λ if

the conditions of pareto efficiency are satisfied (see Section 3.4.3). However, since

the payoffs and actions of other agents are not known (and the payoff matrix is not

known), guaranteeing that these conditions are satisfied is impossible. But these

conditions can be easily met when the game matrix is known.

Because it is difficult to determine how to set initial aspirations so that the condi-

tions or pareto efficiency are satisfied in an arbitrary (unknown) game, we presented

an empirical study which demonstrates that these conditions are easily met in a num-

ber of well-studied games. In many of these games, all initial aspiration vectors in

the region P0 allow the conditions of pareto efficiency to be met. We also showed

that even when the conditions or pareto efficiency are not satisfied, the S-Algorithm

still performs as well (in self play) as two other well-studied (and typical) multiagent

learning algorithms.

We emphasize that these results are for self play only. Future work could include

analysis of the S-Algorithm when it associates with other kinds of learners. The S-

Algorithm, however, does not promise to do well when associating with a large class

of learning agents, as the success of the learning algorithm is closely tied to the joint

behavior that emerges as a result of adherence to the satisficing principle [46].

60



a b
A 3.5, 2 3.5, 1
B 1, 4 4, 3

Figure 3.24: Results from 50 trials of the game shown at left. The performance of the
row player is shown above and the performance of the column player is shown below.
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c d
C 3.6, 2 3.5, 1
D 1, 4 4, 3

Figure 3.25: Results from 50 trials of the game shown at left. The performance of the
row player is shown above and the performance of the column player is shown below.
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The solutions the S-Algorithm learned in the large empirical study we presented

in Section 3.5 where relatively fair in the sense that the agents tended to split the high

payoffs (when possible). This result is closely tied to initial aspirations. Additionally,

the S-Algorithm tends to learn the (fair) solutions suggested by Littman [53] when

these solutions are pure strategies. When initial aspiration levels are similar between

the agents, we would expect learned strategies to distribute payoffs more evenly among

the agents then if they varied widely. Other factors also affect fairness, including

learning rates and fallback positions.18 Future work could include in-depth analysis

of how these issues affect fairness and convergence to ε-pareto efficiency.

The S-Algorithm’s fallback strategy (playing randomly when not satisfied) seems

to be a key to the algorithm (which we have not discussed widely in this chapter),

and deserves more study in future work. In games such as the iterated prisoner’s

dilemma, this fallback strategy induces other agents to cooperate since it essentially

becomes a stochastic tit-for-tat [2]. However, in other games, this fallback strategy

is not as effective. In addition to providing a method for issuing threats to defecting

agents [54], a fallback strategy is essential to coordinating cooperation in games of

conflicting interest. The S-Algorithm’s fallback strategy is effective since it searches

the reward space thoroughly. Future work should study alternate fallback strategies.

In this chapter, we focused on non-competitive general-sum games. This is largely

because the focus of the chapter was pareto efficiency. In competitive games, all

solutions are pareto efficient, and, thus, pareto efficiency is not a good metric of

success. The S-Algorithm is not a good choice for an algorithm in competitive games.

This is largely because the minimax solution (an agents security strategy) is a mixed

strategy in many of these games, so the S-Algorithm cannot learn to play it. However,

if the minimax strategy is a pure strategy, then the S-Algorithm can learn (and

does [71]) to play effectively (somewhat) in these games. In Chapter 5, we discuss how

an algorithm related to the S-Algorithm can incorporate security when the minimax

strategy is known.

We also note that, in this chapter, we assumed a deterministic payoff func-

tion. While many multiagent learning algorithms (for example, WoLF-PHC and

Q-learning) are designed to handle the situation in which payoffs are nondeterminis-

tic, the S-Algorithm is not. Again, in Chapter 5, we discuss an algorithm related to

the S-Algorithm that can learn effectively when payoffs are nondeterministic.

18An agent’s fallback position is the value that it guarantees itself when it plays its fallback strategy.
A fallback strategy is the strategy that an agent plays when it is not satisfied.
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Chapter 4

Satisficing Learning with Aspiration Trembles

4.1 Introduction

In the previous chapter we discussed the S-Algorithm (as presented by Stimpson

et al. [70, 71]) in general-sum matrix games. We showed that under certain conditions

(i.e., if the joint aspirations of the agents are guaranteed to remain in certain subre-

gions for a positive number of episodes) the S-Algorithm learns with high probability

to play ε-PE solutions1. Furthermore, we showed that in most general-sum matrix

games (and all 2-agent matrix games) there exists a non-empty set of initial joint

aspiration vectors such that these conditions are met.

Unfortunately, when the payoffs and actions of other agents in an arbitrary ma-

trix game are unknown, the set of initial joint aspirations that satisfy the necessary

conditions (for convergence to ε-PE with high probability) are also unknown. In most

general-sum matrix games, this is not overly problematic since most high initial aspi-

rations satisfy the conditions. However, in a small set of general-sum matrix games,

these conditions are not easily met.

To overcome this difficulty, we extend the S-Algorithm to include periodic per-

turbations in aspiration levels, which we will call aspiration trembles. We call the

new algorithm SAwT (S-Algorithm with Trembles). This extension is in line with

Karandikar’s original aspiration-based satisficing learning algorithm [46]. In this

chapter, we analyze aspiration trembles in repeated general-sum matrix games. In

particular, we show that an agent can learn to tremble its aspirations to improve its

payoffs. We show (empirically) that this learning process results in aspiration trem-

bles that satisfy the conditions of pareto efficiency (if it is beneficial for the agents)

in many games.

In addition to studying how aspiration trembles affect the performance of SAwT

in stationary general-sum matrix games, we also consider the case in which payoff

matrices vary over time. Situations in which payoff matrices change over time include

learning in stochastic games, which we will discuss in Chapter 6. We sketch the

argument that if payoff matrices change slowly enough, then SAwT will play ε-PE

solutions high percentages of the time.

1Recall (see Section 3.4.3) that we refer to the conditions that lead to convergence to ε-PE (with
high probability) as the conditions of pareto efficiency.
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As in the previous chapter, we assume that an agent does not know the payoffs and

actions of the other agents in the game. Thus, an agent does not know its own payoff

matrix. Additionally, unless stated otherwise, we assume that an agent associates

with a copy of itself (i.e., self play).

The structure of this chapter is as follows. In the next section (Section 4.2), we

relate aspiration trembles to traditional exploration methods. We present an overview

of SAwT in Section 4.3, and analyze three naive implementations (i.e., methodologies

for trembling aspirations) of this algorithm. We show that, while these aspiration

trembles do remove the requirement (of the S-Algorithm) that initial aspirations

should be set high, they do not always satisfy the the conditions of pareto efficiency

(although they do in most games). In Section 4.4, we show how a simple learning

algorithm (such as Q-learning) can be used to learn how an agent should tremble

its aspirations to improve its payoffs. In Section 4.5, we sketch the argument that

appropriate implementations of SAwT continue to play ε-PE solutions even when the

payoff matrix changes over time (as long as it does not change too quickly). Finally,

we summarize and discuss these results in the last section.

4.2 Relating Aspiration Trembles to Traditional Exploration Methods

A main issue of standard reinforcement learning is the trade-off between explo-

ration and exploitation [44]. While an agent must exploit the information that it has

learned, it must also continue to explore its environment to guarantee that it learns to

play optimally. In multiagent learning situations, this trade-off between exploration

and exploitation becomes even more delicate [28].

Most traditional reinforcement learning algorithms require that an agent never

cease exploring its environment. For example, Q-estimates in Q-learning [76] converge

to their true Q-values (in stationary environments) only if each state-action pair is

visited infinitely often. Thus, many implementations of the Q-learning algorithm force

the agent to act randomly with a small probability for the duration of the agent’s

existence.

However, despite the importance of exploration methods in reinforcement learn-

ing, simple probabilistic exploration remains the state-of-the art [75]. Most of these

methods fit into the category of ε-greedy methods, in which an agent explores with

some probability, and exploits otherwise. Various implementations of ε-greedy explo-

ration exist, including Boltzmann exploration, etc.

In contrast to traditional learning methods, the S-Algorithm turns exploration on

and off depending on whether the agent is satisfied or not. Thus, in self play, once all

agents are satisfied (i.e., at a satisficing equilibrium [74]), no more exploration takes

place. It is because the S-Algorithm ceases to explore that it can only guarantee

success with high probability. On the flip side, one can argue that the S-Algorithm

is successful at learning ε-PE solutions (in self play) because it stops exploring.
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The S-Algorithm can be extended to explore its environment in two ways. The

first way is to allow the agent to periodically act randomly (i.e., an ε-greedy-like

policy). We call this method action exploration. Action exploration induces a small

perturbation in an agent’s aspirations2 when the random action yields a different

payoff than the agent has been receiving (when it is satisfied). These small trembles

in aspirations can cause additional exploration as changes in aspirations can result in

the agent being satisfied with different outcomes.

The second way in which the S-Algorithm can be extended to more thoroughly

explore its environment is to use aspiration trembles. That is, an agent periodically

trembles its aspirations according to some distribution g(αt
i). This is the method

used by Karandikar et al. [46]. When the distribution g(αt
i) is tightly centered around

αt
i, then this method is essentially identical to action exploration. However, action

exploration is a subset of aspiration trembles (in the case of the S-Algorithm) since

g(αt
i) can also be designed to cause large changes in aspirations.

Both small and large aspiration trembles appear to offer different advantages and

disadvantages. In the next section, we discuss these differences and present several

case studies showing how small and large aspiration trembles affect the performance

of aspiration-based satisficing learning agents.

4.3 The S-Algorithm with Trembles

In this section, we present a basic overview of the S-Algorithm with Trembles

(SAwT). Additionally, we present several naive implementations of SAwT, and show

via several case studies that they eliminate the need to initialize aspirations to high

levels. However, while these naive implementations of SAwT do learn to play ε-PE

solutions in most games, these naive implementations of aspiration trembles are not

guaranteed to satisfy the conditions of pareto efficiency (discussed in the previous

chapter).

4.3.1 Basic Overview

SAwT, as is outlined in Algorithm 4.1, is identical to the S-Algorithm (see Al-

gorithm 3.2) except that a) it does not restrict initial aspirations and b) it trembles

its aspirations with probability η (according to the distribution g(αt
i)) if certain con-

straints are met. These constraints can vary from implementation to implementation.

We offer some reasonable constraints in Section 4.3.1.

Observe that SAwT still differs from Karandikar et al.’s original aspiration-based

satisficing algorithm in two ways. First, SAwT (like the S-Algorithm) does not in-

corporate inertia. Second, Karandikar allows the agents to tremble their aspirations

2The magnitude of aspiration perturbations (per episode) using action exploration is bounded by
λW , where W is the maximum difference between aspirations and payoffs, given by W = max(rmax

i −
αt

i, α
t
i−rmin

i ), where rmax
i and rmin

i are the maximum and minimum payoffs in agent i’s payoff matrix.
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Repeat
(a) Select an action at

i according to the following criteria:

at
i ←

{
at−1

i if (αt−1
i ≤ rt−1

i )
rand(Ai) otherwise

where rand(Ai) denotes a random selection from the set Ai.

(b) Receive reward rt
i and update aspiration level:

if constraints met, then w/ prob η

αt+1
i = g(αt

i)
else

αt+1
i ← λαt

i + (1− λ)rt
i

Algorithm 4.1: The S-Algorithm with Trembles (SAwT) for agent i.

at any time, whereas SAwT places constraints on when an agent can tremble. These

differences are necessary if we are to apply this form of learning to general-sum matrix

games (rather than just the small class of games Karandikar et al. considered).

Below we discuss various methods for deciding when (i.e., what are the constraints)

and how (i.e., what form should g(αt
i) take) an agent should tremble its aspirations.

Constraints on Aspiration Trembles

An infinitely repeated matrix game played by SAwT agents is an infinite sequence

of epochs. An epoch is a set of consecutive episodes beginning and ending with an

aspiration tremble by any of the agents in the game. The behavior of the agents in

each episode can be divided into two phases, or time periods. We refer to the first

time period as the relaxation search. During this phase, each agent searches for a

sustainable satisficing outcome as it relaxes its aspirations toward its average payoffs3.

The relaxation search commences when one of the agents trembles its aspirations and

concludes (for each agent) when the agent’s strategy converges4. The convergence

period follows the relaxation search and ends (as does the epoch) when one of the

agents once again trembles its aspirations. Note that it is possible for an epoch to

not have a convergence period if the agents do not converge before one of the agents

trembles its aspirations. However, this change in epochs may not be discernible to

the agents that do not tremble.

3Agent i’s average payoffs during the relaxation search can be approximated by 1
|A|

∑
a∈A ri(a)

(though this estimate is not completely accurate).
4Note that we have altered the definition of convergence from the previous chapter. In this

chapter, we say that an agent has converged if its strategy will remain unchanged until the end of
the current epoch.
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Since the primary purpose of aspiration trembles is to find a better solution than

the one currently being played, we contend that an agent should not tremble its aspi-

rations during the relaxation search unless it has cause to believe that the relaxation

search will not end, or that it will not end satisfactorily. Thus, all aspiration trembles

should occur during the convergence period of an epoch unless, again, an agent has

reason to believe that the epoch will not have a convergence period or, if it does, the

convergence period will not be profitable.

This means that a SAwT agent must determine two things. First, an agent must

be able to determine when the relaxation phase of an epoch has concluded (i.e., play

has converged). Second, prior to the convergence of the relaxation search, it must

identify whether or not play is likely to converge to a profitable (for it) solution.

SAwT can conclude with some (hopefully high) probability that the relaxation

search concluded at time T if two conditions have held for all t ∈ [T, T + T c), where

T c is a positive constant. The first condition is that the agent has been satisfied for

all t ∈ [T, T + T c). The second condition is that rt
i = rT

i for all t ∈ [T, T + T c)5. We

note that T c controls how certain an agent is that play has actually converged. If T c

is too small, then an agent may conclude prematurely that play has converged.

To summarize, SAwT concludes that the relaxation search for a given epoch has

concluded at time T if

∀t ∈ [T, T + T c), rt
i ≥ αt

i and rt
i = rT

i (4.1)

We now turn to the issue of determining whether or not play is likely to converge to

a profitable solution (in a given epoch). Relaxation searches that result in profitable

payoffs during the convergence period are usually shorter than those that do not.

This is because aspirations tend to move toward average payoffs during the relaxation

search. Thus, the longer the relaxation search, the more likely (in general) an agent is

to be content with average payoffs. Additionally, a long relaxation search may be the

result of a preclusion critical event that prohibits convergence (to profitable solutions).

For these reasons, an agent should consider trembling if the relaxation search has not

concluded in a reasonable number of episodes (which we denote T r(λ)). Note that

T r(λ) is dependent on λ since aspirations change more slowly for high values of λ

than for smaller values.

We now discuss how to determine T r(λ). Let T0 be the time at which the agent

believes the current epoch began. Assuming that play has not converged, agent i’s

aspiration level at time t is (from the aspiration updated equation) approximately

αt
i ≈ λt−T0αT0

i + (1− λt−T0)r̄i (4.2)

5In the event of an unstable security critical event, a SAwT agent’s strategy may have converged
even though an action continues to yield different (yet satisficing) payoffs. However, we do not
concern ourselves with this situation since making this assumption does not hinder the performance
of the agent. Note also that this observation assumes a deterministic payoff function (which the
S-Algorithm also assumes).
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where r̄i is agent i’s average payoff. Thus, λt−T0 approximates the distance the current

aspirations are between αT0
i and r̄i. Thus, the longer the relaxation search lasts (i.e.,

the bigger t− T0 gets), the closer agent i’s average aspirations will be to its average

payoff r̄i and the less its aspirations will be like αT0
i .

Let θ ∈ (0, 1) be a threshold on how far (i.e., percentage) that an agent will allow

its aspirations to change before it determines that the relaxation search is not likely

to end profitably. Then, the number of episodes that a relaxation search should last

before an agent considers trembling is given by solving for T r(λ) in the equation

λT r(λ) = θ, which yields

T r(λ) =
log θ

log λ
(4.3)

Thus, when t− T0 > T r(λ), an agent should consider trembling its aspirations. Note

that the closer θ is to 0, the more likely the relaxation search will not converge to a

profitable solution (if at all), since aspirations will get closer to average payoffs.

When probabilistic methods for determining aspiration trembles are used, typi-

cally only one agent will tremble at a given time. However, in most cases, this is all

that is necessary to trigger a relaxation search, as all agents can become dissatisfied

when just one agent changes its aspiration level (assuming the agents are satisfied

prior to the tremble). If aspirations are trembled to a large degree (in the upward

direction), then the trembling agent (i.e., the agent that trembles) will have an ad-

vantage in many games over the other agents since it will be more selective (i.e.,

satisfied with less outcomes) than the other agents. Knowing this, all agents have an

incentive (in many games) to tremble their aspirations higher and more frequently

than necessary,6 which will result in lower average payoffs to all the agents.

One way of circumventing this problem is for all agents to tremble their aspirations

at the same time (approximately). SAwT agents can do this without explicitly com-

municating if trembles occur during the convergence period. If an aspiration tremble

occurs in the convergence period, then all the other agents’ payoffs will usually change

suddenly, at which point each agent should tremble its aspirations.

We call such aspiration trembles coordinated trembles. Coordinated trembles can

be viewed as trigger strategies7 which can be used to create profitable rNEs, and are

the basis for the proof of the folk theorem [35].

The Tremble Distribution g(αt
i)

Karandikar et al. [46] allowed aspirations to be trembled to any real number in

a compact interval Λ, where Λ contained all feasible payoffs. This keeps aspirations

6We note that agents can obtain similar effects by lowering their learning rates (i.e., increasing
λ).

7A trigger strategy is a strategy that switches suddenly (usually with the intent to punish another
agent) when another agent does not play as expected.
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from wandering too far from the payoffs of the game. While maintaining this restric-

tion, we desire to understand how several issues related to aspiration trembles affect

the performance of SAwT. These issues include coordinated verses non-coordinated

trembles as well as the magnitude of trembles (i.e., large trembles verses small trem-

bles).

Both small and large trembles appear to offer different advantages. Specifically,

small trembles will generally result in shorter relaxation searches. This seems to

be desirable since the agents’ average payoffs received during the relaxation search

are usually lower than those received during the convergence period. On the flip

side, large trembles in the upward direction usually give an agent a better chance of

receiving a high payoff when strategies converge.

While Karandikar et al. allowed aspiration trembles in either direction (up or

down), we consider only trembles in the upward direction in this section. This re-

striction seems reasonable if agents only tremble when satisfied, since downward trem-

bles will have no affect on the immediate behavior of the agents [37]. However, we

note that downward trembles may be desirable when agents coordinate trembles. We

consider the possibility of downward trembles in the next section.

4.3.2 Case Studies

Based on the previous discussions, we designed three naive implementations of

SAwT. We call these implementations SAwST (S-Algorithm with Small Trembles),

SAwLT (S-Algorithm with Large Trembles), and SAwCT (S-Algorithm with Coordinated

Trembles). After presenting the details of the implementations, we will compare them

in several matrix games.

Since the algorithms differ only in their specifications of step (b) of Algorithm 4.1,

we only present each algorithm’s specific implementation of this step.

SAwST. SAwST is given in Algorithm 4.2. In SAwST, an agent perturbs its

current aspirations with probability η if it a) determines that the relaxation search

has completed (the first condition of the if statement) or if it b) believes that the

relaxation search will not result in convergence to a profitable solution (the second

condition of the if statement). The perturbation ξ is a real number randomly selected

from the interval [0, 0.00001].

SAwLT. SAwLT is shown in Algorithm 4.3. In SAwLT, an agent trembles its

aspirations under the same conditions as in SAwST. The difference is that SAwLT

trembles its aspiration level to the highest payoff it has seen up to that point (denoted

by rmax
i ) plus, a small positive margin ε.

SAwCT. SAwCT, shown in Algorithm 4.4, is identical to SAwLT except that it

also trembles (with probability 1) when it believes that another agent has trembled

(i.e., it uses coordinated trembles). SAwCT determines that another agent has trem-

bled its aspirations if rt
i 6= rt−1

i and rt−1
i = rj

i , for all j ∈ [t− T c, t− 1) (i.e., the else
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(b) Receive reward rt
i and update aspiration level:

if
(
∀υ ∈ (t− T c, t], rυ

i ≥ αυ
i and rυ

i = rt
i

)
or (t− T0 > T r(λ)) then w/ prob η

αt+1
i = αt

i + ξ
else

αt+1
i ← λαt

i + (1− λ)rt
i

Algorithm 4.2: Aspiration update rule for the S-Algorithm with Small Trembles
(SAwST) for agent i. ξ is randomly selected from the interval [0, 0.00001]. T c is
a constant defined in the arguments surrounding Equation (4.1), T0 is the time at
which an agent believes the current epoch began, and T r(λ) is given by Equation (4.3).

(b) Receive reward rt
i and update aspiration level:

if
(
∀υ ∈ (t− T c, t], rυ

i ≥ αυ
i and rυ

i = rt
i

)
or (t− T0 > T r(λ)) then w/ prob η

αt+1
i = rmax

i + ε
else

αt+1
i ← λαt

i + (1− λ)rt
i

Algorithm 4.3: Aspiration update rule for the S-Algorithm with Large Trembles
(SAwLT) for agent i. ε is a small positive constant. T c is a constant defined in
the arguments surrounding Equation (4.1), T0 is the time at which an agent believes
the current epoch began, and T r(λ) is given by Equation (4.3).

if statement of Algorithm 4.4).

For each implementation, the tremble rate η was initially set to 0.01 and then

decreased slowly over time using

η = 0.01( τ+200
200 ) (4.4)

where τ is the current epoch (estimated by the number of times the agent has trembled

its own aspirations).

Each agent’s initial aspiration level was randomly selected from the set of reals in

the interval [5,−5]. Also, unless specified otherwise, λ = 0.99, θ = 0.1, and T c = 20.

We compare these three implementations in five matrix games. These games are

chicken, staghunt, MASD (k = 0.6, n = 3, M = 5), and two other matrix games that

have stable security and preclusion critical events. For each game we show (as in the

previous chapter) the average payoffs of the agents over time (average of 50 trials) as

well as a box and whiskers plot of the average payoffs of the agents in the last 0.1%

of the episodes.
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(b) Receive reward rt
i and update aspiration level:

if
(
∀υ ∈ (t− T c, t], rυ

i ≥ αυ
i and rυ

i = rt
i

)
or (t− T0 > T r(λ)) then w/ prob η

αt+1
i = rmax

i + ε

else if rt
i 6= rt−1

i and rt−1
i = rj

i , ∀j ∈ [t− T c, t− 1)
αt+1

i = rmax
i + ε

else
αt+1

i ← λαt
i + (1− λ)rt

i

Algorithm 4.4: Aspiration update rule for the S-Algorithm with Coordinated Trem-
bles (SAwCT) for agent i. T c is a constant defined in the arguments surrounding
Equation (4.1), T0 is the time at which an agent believes the current epoch began,
and T r(λ) is given by Equation (4.3).

Chicken

Results for the game chicken are shown in Figure 4.1. Each of the three SAwT

implementations learn to play the PE solution (C, c) in this game, yielding a payoff of

3 to each agent. Notice that the average reward also converges to 3 despite the cost

incurred by relaxation searches, even for large aspiration trembles. This is because

the probability of aspiration trembles (η) decreases over time.

Staghunt

As in the matrix game chicken, the three SAwT agents also learn to play coop-

eratively in staghunt (see Figure 4.2). However, it takes much longer for SAwST

(small trembles) to converge to mutual cooperation. This is because small aspiration

trembles make it less probable for both agents to become dissatisfied with mutual

defection (i.e., (D, d)) at the same time (which is required for the agents to overcome

the security critical event of playing D and d). Thus, it takes longer for them to learn

to play the more profitable solution (C, c).

MASD

The performance of the agents in a 3× 6 MASD (k = 0.6) is shown in Figure 4.3.

Results are shown for a slower learning rate (λ = 0.999). In this game, small aspira-

tion trembles (SAwST) are just as effective as large coordinated trembles (SAwCT).

However, large non-coordinated trembles result in lower average performance. This

is not because SAwLT does not learn to play PE solutions. Rather, it is a result of

the agent learning PE solutions with lower average payoffs, as one of the agents (the

trembling agent) typically receives a higher payoff than the non-trembling agents.
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c d
C 3, 3 2, 3.5
D 3.5, 2 1, 1

Figure 4.1: Results from 50 trials of the matrix game chicken.

c d
C 4, 4 −5, 3
D 3,−5 2, 2

Figure 4.2: Results from 50 trials of the matrix game staghunt.
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Figure 4.3: Results from 50 trials of a 3-agent, 6-action MASD (k=0.6). The results
are shown for λ = 0.999.

This result is in line with Stimpson et al.’s observation that aspirations should be

similar in the MASD.

A Game with a Stable Security Critical Event

Figure 4.4 (left) shows a matrix game with a stable security critical event (when

player 1 plays A) when player 1’s aspiration level is less than or equal to 3.5. The S-

Algorithm (as we saw in the previous chapter; see Figure 3.24) converges to the pareto

dominated solution (A, a) in this game for most initial aspiration vectors. However, if

α0 ≈ (4, 3), then the S-Algorithm converges with high probability to the PE solution

(B, b), resulting in a higher payoff to both agents.

Figure 4.4 (right) shows that naive implementations of SAwT still converge to

the pareto dominated solution (A, a) much of the time, particularly in the case of

SAwST (small trembles). However, large aspiration trembles do increase the average

performance of the agents (slightly). Figure 4.4 (right) also shows the performance

of SAwT-Fixed, which is identical to SAwCT except that the agents always tremble

their aspirations to the point (3.99, 2.99). Such trembles result in convergence to the

PE solution (B, b).

A Game with a Preclusion Critical Event

We now analyze SAwT in a game with a preclusion critical event. A similar

version of this game was discussed in the previous chapter (see Figure 3.12). Once

again, SAwST is outperformed by the algorithms that use larger trembles. However,

there appears to be little difference between SAwCT and SAwLT. This is because any

aspiration tremble to a region in which one of the agents has a payoff greater than 3

satisfies the conditions of pareto efficiency.
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a b
A 3.5, 2 3.5, 1
B 1, 4 4, 3

Figure 4.4: Results from 50 trials of the game shown at left. The performance of the
row player is shown above and the performance of the column player is shown below.
SAwT-Fixed is a SAwT agent that always trembles (using coordinated trembles) to
the point (3.99, 2.99).
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a b c
A 0, 3 3, 0.5 3, 0
B 0.5, 3 3.3, 3.3 1.5, 3
C 3, 1.5 3, 1 1, 3

Figure 4.5: Results from 50 trials of the game shown at left.

4.3.3 Discussion

In each of the games discussed in this section, each implementation of SAwT

performs (after learning) as well or better than the S-Algorithm (with the exception

of SAwST in the game shown in Figure 4.5). Thus, aspiration trembles (particularly

large ones) eliminate the need for the satisficing learners to set their initial aspiration

levels to high values.

In several of the games we analyzed in this section, large aspiration trembles

tend to lead to better overall performance than do small aspiration trembles (see

Figures 4.4 and 4.5). There are several reasons for this. First, in many games, large

aspiration trembles allow the agents to tremble their aspirations to locations in the

payoff space that satisfy the conditions of pareto efficiency discussed in the previous

chapter. Small aspiration trembles do not do as good of a job of overcoming critical

events that exclude mutually satisficing ε-PE solutions. Second, although smaller

aspiration trembles usually result in shorter relaxation searches, this advantage is

negated as the probability of aspiration trembles becomes infrequent (i.e., as η → 0).

In most games we studied in this section, coordinating trembles does not increase

the average payoffs of the agents. However, in the case of large aspiration trembles,

coordinating trembles does have a significant impact on the performance of the agents

in the MASD. This is because non-trembling agents eventually become satisfied with

lower payoffs when one of the agents becomes more selective (due to a large aspiration
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tremble). This results in lower average payoffs to the agents.

Unfortunately, naive aspiration trembles (at least those we presented) do not

satisfy the conditions of pareto efficiency in all games (see, for example, Figure 4.4).

As a result, the agents receive lower average payoffs (at least in these games) than

they otherwise might. In the next section, we show how agents can use a simple

learning algorithm to learn how to tremble their aspirations so as to improve their

average payoffs. We show (empirically) that this algorithm allows agents to learn

to tremble aspirations so that they satisfy the conditions of pareto efficiency (when

doing so is profitable).

4.4 Using Trembles to Learn Initial Aspirations

In the previous section, we considered trembling aspirations to the highest ob-

served payoff or perturbing aspirations slightly in the upward direction. In this

section, we consider trembling aspirations to a set of fixed locations in the payoff

space. Trembling aspirations in this way allows an agent to learn how specific initial

aspiration levels (of a given epoch) affect future payoffs.

4.4.1 Background and Notation

At the beginning of an epoch, each agent trembles its aspiration level to one

of Zi + 1 values, where Zi is some positive integer. Let Ci denote agent i’s set of

tremble values (aspiration levels to which agent i considers trembling its aspirations).

Agent i’s maximum tremble value (denoted cZi
i ∈ Ci) is cmax

i = rmax
i + ε

2
where rmax

i

is agent i’s highest observed payoff. Its minimum tremble value (denoted c0
i ∈ Ci

is cmin
i = mP

i − ε
2
, where mP

i (as in the previous chapter; see Equation (3.7)) is its

minimax value (over the pure strategy space) given by

mP
i = max

ai∈Ai

min
a−i∈A−i

ri(ai, a−i) (4.5)

Note that mP
i is unknown to agent i since it does not know its payoff matrix. However,

agent i can calculate an upper bound of mP
i (which must converge to the true value

over time if all the agents sometimes act randomly) using observations of the minimum

payoff produced by each of its actions.

Let ∆i be the distance between each tremble value, given by

∆i =
cmax
i − cmin

i

Zi

=
rmax
i −mP

i + ε

Z
(4.6)

Then, each tremble value ck
i ∈ Ci of agent i is given be

ck
i = mP

i −
ε

2
+ k∆i (4.7)

We consider the case in which agents coordinate aspiration trembles (as in SAwCT;

see Algorithm 4.4). Using this method, the initial joint aspirations of each epoch are
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Figure 4.6: Joint tremble values (marked with o’s) for an arbitrary 2-agent matrix
game for Z = 3, ε = 0.3, mP

1 = 2.5, mP
2 = 2.3, rmax

1 = 3.5, rmax
2 = 4.

in the region P0 (the region of possible initial aspiration vectors defined in the pre-

vious chapter). Let C = C1 × · · · × Cn be the set of joint tremble values8. Figure 4.6

shows the set of joint tremble values for an arbitrary 2-agent matrix game. The o’s in

the figure mark the joint tremble values of the agents when Zi = 3 (for both agents).

A SAwT agent should learn to tremble its aspirations to maximize its own con-

vergence payoffs. In most games, joint tremble values that satisfy the conditions of

pareto efficiency (if the agents tremble their aspirations to this point) are most likely

to satisfy this requirement. Thus, the question arises of how large Zi should be (for

each agent i) to guarantee that at least one joint tremble value will satisfy the condi-

tions of pareto efficiency. If one such joint tremble value exists, then the agents can

learn to tremble their aspirations to this point in order to maximize their convergence

payoffs.

In most games, Zi need not be large as most joint tremble values in P0 satisfy

the conditions of pareto efficiency. In others, Zi must be chosen more judiciously. In

others still, it appears that there is no possible joint tremble value that satisfies the

conditions of pareto efficiency (see the previous chapter). We now present a claim

that places a bound on how high Zi must be to guarantee that at least one joint

tremble value will satisfy the conditions of pareto efficiency in most games.

Claim 4.1. If Zi ≥ 1 +
cmax
i −cmin

i

ε
for each agent i, then at least one c ∈ C satisfies

the conditions of pareto efficiency if the game being played has one of the following

characteristics:

(a) The game has no preclusion critical events.

(b) The game is a 2-agent game.

8Note that C is only approximately the set of initial joint aspirations of each epoch since the
agents do not all tremble on the same episode when trembles are coordinated.
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(c) ∃a ∈ Pε such that ∀i ri(a) > mP
i and ∀J ⊆ I (|J | ≥ 2), ∃j ∈ J rj(a) > T prec

j + ε.

In each of these cases (Cases (a)–(c)), if Zi = 1 +
cZ
i −c0i

ε
for each agent i, then a

joint tremble value must be in a subregion defined in the proofs of the theorems of

the previous chapter. The subregion for Case (a) is given in the proof of Theorem 3.2,

the subregion for Case (b) is given in the proof of Theorem 3.3, and the subregion

for Case (c) is given in the proof of Theorem 3.4.

4.4.2 Learning Tremble Actions

Each agent i seeks to learn which of its tremble values gives it the highest average

payoff once play converges (if it does, indeed, converge). We call this payoff the

convergence payoff. Formally, let ci(τ) denote agent i’s selected tremble value in the

τ th epoch and let c(τ) = (c1(τ), · · · , cn(τ)) be the joint tremble value (of the n agents)

in the τ th epoch. The joint tremble value c(τ) determines the convergence payoffs

that the agents will likely receive in epoch τ . We denote this payoff uτ
i for agent i.

For practical purposes, let uτ
i = α

T τ
end

i , where T τ
end is the last episode of epoch τ .

The convergence payoff uτ
i is a sample taken from a distribution over the real

numbers. Let this distribution be denoted Ui(c(τ)). Then, the tuple (I, C,U) (where

U = {U1, · · · ,Un} and I, as before, is the set of n agents playing the game) is a matrix

game, which we will call the tremble matrix game.

In contrast to the matrix games we have studied so far, tremble matrix games have

nondeterministic payoff functions. Because of this, the S-Algorithm is not a good

choice for learning this game. Thus, we must select an alternate learning algorithm.

Fortunately, empirical evidence strongly suggests that the tremble matrix games does

not take on the form of all general-sum matrix games, as (it appears) each agent

has a tremble value (or set of tremble values) that dominates the other tremble

values (i.e., regardless of how the other agents choose to tremble their aspirations).

Additionally, it does not appear that off-dominant solutions can lead to higher payoffs

than dominant solutions (such as cooperation in the prisoner’s dilemma). Thus, a

simple single-agent learning algorithm appears to be sufficient to learn in these games.

In this chapter, we explore the effectiveness of a stateless Q-learning [76] agent to

learn the tremble matrix game. We now describe our implementation (which we call

SAwT-Q).

Updating Q-values

SAwT-Q keeps track of two different Q-estimates for each tremble value ci ∈
Ci: Qτ

i (ci|down) and Qτ
i (ci|up). Qτ

i (ci|down) is the estimate of the agent’s average

convergence payoff (at epoch τ) when it trembles its aspirations downward to the

tremble value ci, while Qτ
i (ci|up) is the estimate of the agent’s average convergence

payoff when it trembles its aspirations upward to the tremble value ci.
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At the end of each epoch, one Q-update is made. Let T0 be the time at which the

current epoch began. Then, if αT0
i ≥ ci(τ) (i.e., the agent trembled downward), then

Qτ
i (ci|down) is updated using

Qτ+1
i (ci(τ)|down) = (1− ρ)Qτ

i (ci(τ)|down) + ρuτ
i (4.8)

Otherwise, Qτ
i (ci|up) is updated using

Qτ+1
i (ci(τ)|up) = (1− ρ)Qτ

i (ci(τ)|up) + ρuτ
i (4.9)

where ρ is the learning rate. For all results presented in this chapter, we used ρ =

max(0.01, 1
κ(ci(τ))

), where κ(ci(τ)) is the number of times that the agent has trembled

its aspirations to the tremble value ci(τ).9

Selecting Actions

We use an ε-greedy policy. That is, on epoch τ , the tremble value with the highest

Q-estimate is selected with probability 1− ε. Otherwise (i.e., with probability ε), the

tremble value is selected randomly. More formally,

cτ
i ←

{
maxci∈Ci

Qτ
i (ci) with probability 1− ε

rand(Ci) with probability ε
(4.10)

where rand(Ci) is a random selection from the set Ci and Qτ
i (ci) is given by

Qτ
i (ci) =

{
Qτ

i (ci|down) if αt
i ≥ ci

Qτ
i (ci|up) if αt

i < ci
(4.11)

When the agent acts according to its Q-estimates, then ηi is decreased over time

using

ηi = 0.01

(
1.0+ τ

200Zi

)
(4.12)

where τ is the current epoch. However, when an agent explores its environment,

lower tremble payoffs often result. To avoid receiving these payoffs for too long, we

set η = 0.01 in these epochs (when the tremble value is chosen randomly). This way,

SAwT gets the best of both worlds: it is able to explore its environment (as it is

still able to observe its convergence payoff), but it is also able to exploit what it has

learned for longer periods of time than when it explores.

As before, unless stated otherwise, λ = 0.99, θ = 0.1 (for Equation (4.3)), and

T c = 20 (see Equation (4.1)). Also, Zi = 6 for all i and ε = ηi (as given in Equa-

tion (4.12)).

The resulting algorithm (SAwT-Q) is a blend of the SAwT and Q-learning. SAwT

(in its original unmodified form) is used to learn to play satisficing equilibrium [74]

(or mutually satisficing solutions). Q-learning is used to learn how an agent can

maximize the effect of trembling (by learning how tremble values affect the long-term

performance of the agent).

9We distinguish between up and down trembles when computing κ(ci(τ)).
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4.4.3 Results

We now present a case study showing (empirically) how SAwT-Q performs in a

number of games. We compare the performance of SAwT-Q with two other agents

in each game. First, we compare SAwT-Q’s performance to SAwRT, an SAwT agent

that randomly selects a tremble value from the set Ci. Second, we compare SAwT-Q’s

performance to an agent that deterministically trembles its aspirations to locations

that produce high convergence payoffs (SAwCT in most games). Both of these agents

are designed to tremble their aspirations with the same frequency as SAwT-Q (i.e.,

they tremble their aspirations with probability ηi as given in Equation (4.12)).

Chicken

All initial aspiration vectors in P0 lead to convergence to an ε-PE solution in the

matrix game chicken. However, we show the performance of SAwT-Q in this game

to show that it learns to tremble its aspirations so that it converges to the mutually

satisficing solution (C, c), which is the highest average payoff an agent can expect

to receive in self play. Figure 4.7 shows that the performance of SAwT-Q is nearly

identical to that of SAwCT. Notice, however, that SAwRT plays cooperatively (and

does so very quickly) in this game (in most cases) despite the fact that it trembles its

aspirations randomly. This is because most aspiration trembles to the tremble values

in Ci tend to be in the downward direction. Since such trembles often have no affect

on the behavior of SAwT agents (since the agents remain satisfied), SAwRT does not

have as many aspiration relaxation searches (which can be costly). Thus, its average

performance is higher than that of SAwT-Q and SAwCT until η becomes small.

MASD

The results for the 3×6 MASD (shown in Figure 4.8) are uneventful, yet interesting

nonetheless. First, notice that the eventual performance of all the agents is nearly

identical. However, SAwRT outperforms the other two agents initially. Again, this is

due to aspiration trembles in the downward direction which do not result in behavior

changes in the agents. Notice also that the performance of SAwT-Q is identical to

that of SAwCT, since SAwT-Q agents learn to tremble using the tremble value cmax
i

(in most instances).

A Game with a Stable Security Critical Event

In the previous two examples, learning how to tremble aspirations does not appear

to increase the performance of the agents to a significant degree. However, SAwT-Q

often outperforms naive implementations of SAwT in games in which the conditions

of pareto efficiency are not easily satisfied. To see this, consider Figure 4.9, which

shows a game with a stable security critical event. Recall from the previous section
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c d
C 3, 3 2, 3.5
D 3.5, 2 1, 1

Figure 4.7: Results from 50 trials of the matrix game chicken.

Figure 4.8: Results from 50 trials of a 3-agent, 6-action MASD (k=0.6). For these
results λ = 0.995.
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that naive implementations of SAwT do not tremble their aspirations to satisfy the

conditions of pareto efficiency (see Figure 4.4) in this game. As a result, they learn

to play pareto-dominated solutions, which results in inferior average payoffs to the

agents (in this game). However, SAwT-Q does learn to tremble its aspirations to

satisfy these conditions. Thus, it learns to play the PE solution (B, b) in this game.

As SAwT-Q learns, its performance becomes similar to that of SAwT-Fixed, which

always trembles its aspirations to the value (3.99, 2.99). Notice that random aspiration

trembles to the tremble values in Ci do not produce this result.

A Game with a Preclusion Critical Event

Figure 4.10 shows a 3× 3 matrix game with a preclusion critical event when the

aspiration levels of both agents are 3 or less. In this game, SAwT-Q learns to tremble

its aspirations so that it avoids this preclusion critical event as well as maximize its

payoffs. It learns to tremble its aspirations as does SAwCT. Thus, its performance

becomes similar to that of SAwCT. Notice, again, that random trembles do not

produce these same performance levels. However, SAwRT’s performance is not bad

in this game since, again, many of its trembles are in the downward direction when

its aspiration levels are high.

4.5 SAwT in Changing Environments

In both this chapter and the previous chapter, we have assumed a stationary

payoff matrix. However, in many situations (such as multi-state stochastic games,

which we discuss in Chapter 6), the payoff matrix is non-stationary.

The S-Algorithm is not likely to perform well in games with a non-stationary

payoff matrix. One of the main reasons that it will not perform well is that it uses a

relaxation search (starting at a high value) to find a profitable solution that all agents

can agree on (are satisfied with). However, the relaxation search considers only the

current payoffs. Thus, once payoffs change (particularly in the upward direction),

aspirations will no longer be high (with respect to the payoffs of the game). Thus, any

subsequent relaxation searches (initiated by the agents becoming dissatisfied because

of changing payoffs) have no guarantees of converging to a profitable strategy with

high probability.

However, (large) aspiration trembles allow a satisficing agent to begin relaxation

searches at high values at the beginning of most epochs. Thus, SAwT will continue to

learn to play ε-PE solutions as long as the payoff matrix does not change too quickly.

The speed at which the payoff matrix can change to maintain this result is dependent

on the parameters λ (which controls the length of the relaxation search) and η. As

λ gets bigger and as η gets smaller, the environment must necessarily change slower

if SAwT is to play ε-PE solutions most of the time. Note, however, that decreasing

λ and increasing η results in the agent playing ε-PE solutions less frequently when
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a b
A 3.5, 2 3.5, 1
B 1, 4 4, 3

Figure 4.9: Results from 50 trials of the game shown at left. The performance of
the row player is shown above and the performance of the column player is shown
below. The SAwT implementation SAwT-Fixed is an agent that always trembles to
the point (3.99, 2.99).
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a b c
A 0, 3 3, 0.5 3, 0
B 0.5, 3 3.3, 3.3 1.5, 3
C 3, 1.5 3, 1 1, 3

Figure 4.10: Results from 50 trials of the game shown at left. A learning rate of
λ = 0.995 was used.

the payoff matrix is stationary since a lower λ means less likely convergence to ε-PE

solutions and a higher η means a shorter convergence period. Thus, simply decreasing

λ or increasing η to adapt to a changing payoff matrix will not typically lead to better

performance

We note that the ability to adapt to changing payoff matrices is not a common

attribute of multiagent learning algorithms (to date), although there are some excep-

tions (see, for example, [15]). Algorithms that depend on learned models (particularly

those that are learned slowly) have a difficult time adapting to changing payoffs. Of-

ten these algorithms can never overcome the biases created by prior learning. One

example of this is fictitious play [33] which learns different strategies depending on

the agent’s prior beliefs about their associates. When a payoff matrix changes over

time, strategies learned under prior matrix configurations can result in permanent

biases, which can result in undesirable behavior.

With the exception of the models of rmax
i and mP

i (modeling which could be

easily implemented for changing payoff matrices), naive implementations of SAwT

do not use models to govern behavior. Thus, a slowly changing payoff matrix does

not alter how it learns, as SAwT essentially restarts the learning process anew each

time it trembles its aspirations (particularly in the case of large aspiration trembles).

We note, however, that SAwT-Q learns a model that is not likely to adapt quickly

enough to changing payoff matrices, especially when η decreases over time.
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While SAwT promises to be effective under some changing conditions, it is limited

by its minimal knowledge assumptions. We show in Chapter 6 how an algorithm sim-

ilar to SAwT (presented in Chapter 5) can be extended to perform well in stochastic

games. This algorithm requires knowledge of the actions of the other agents in the

game so that an agent can observe its own payoff matrix.

4.6 Summary, Discussion, and Future Work

In this chapter, we extended the S-Algorithm to include aspiration trembles. The

resulting algorithm SAwT has a number of desirable properties. First, SAwT removes

the restriction that initial aspirations be made high. Second, SAwT agents can learn

to tremble aspirations so that the resulting joint aspirations satisfy the conditions of

pareto efficiency in many games. This results in higher average payoffs to the agents

(see, for example, Figures 4.9 and 4.10).

Also, SAwT shows promise for continuing to play ε-PE solutions even in games in

which the payoff matrix changes slowly over time. This result lays the foundation for

learning restarts, which are used by a similar algorithm that we present in Chapters

5 and 6.

Future work could include a more in-depth analysis of tremble matrix games. In

this chapter, we assumed that single agent Q-learners can learn this game effectively.

In the games we analyzed, this algorithm performed effectively. However, it is possible

that Q-learning will not be able to learn the tremble matrix game effectively in some

games.
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Chapter 5

Learning to Compete, Compromise, and Cooperate in Re-

peated General-Sum Matrix Games Using Reinforcement Learn-

ing

5.1 Introduction

In the previous chapter, we assumed that an agent did not know the actions and

payoffs of other agents in the environment. While this is a reasonable knowledge

restriction for many important domains, many other domains allow an agent to view

the actions taken by other agents in the environment. Thus, in this chapter, we

assume that an agent can view the actions of all agents in the environment and its

own payoffs, but not the payoff of other agents. Thus, agent i knows Ri, but not Rj,

for all j 6= i.

Even with knowledge of the actions of the other agents, learning successfully

in repeated general-sum matrix games is a difficult problem. To see this, consider

Figure 5.1. Figure 5.1(a) shows R1, the payoff matrix for the row player. This payoff

matrix, however, does little to tell the row agent how to play since R1 does nothing

to indicate the kind of game the agent is playing. For example, Figure 5.1(b)–(d)

give examples of three different kinds of games which the agent could be playing; (b)

shows a competitive game, (c) shows a fully cooperative game, and (d) shows a game

of conflicting interest.

Although knowing one’s own payoff matrix does not indicate the kind of game

a b
a 1 -2
b -3 4

a b
a 1, -1 -2, 2
b -3, 3 4, -4

a b
a 1, 1 -2, -2
b -3, -3 4, 4

a b
a 1, 4 -2, -3
b -3, -2 4, 1

(a) (b) (c) (d)

Figure 5.1: Example showing how knowledge of one’s own payoff matrix Ri does not
indicate the kind of game an agent is playing. (a) Shows player 1’s payoff matrix R1,
and (b)–(d) show three possible games the agent could be playing (given this payoff
matrix).
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an agent is playing, knowing the actions of other agents does provide valuable infor-

mation. First, when an agent knows its own payoff matrix Ri, it can calculate its

minimax value over the mixed strategy space1. The minimax value can serve as a

lower bound on the average payoff that an agent should expect to receive. Second, the

agents can use the previous ω joint actions as a signal that can be used to coordinate

profitable compromises. Third, knowing the payoff matrix allows an agent to learn

successfully in stochastic environments.

The first and second advantages just listed provide the foundation for (at least)

two desirable properties of learning agents. First, an agent should never learn to play a

strategy that produces expected payoffs lower than its minimax value. This property

is particularly relevant in competitive games. Second, an agent should learn to make

and accept compromises that increase its average payoffs. Thus, in cooperative games

and in games of conflicting interest, an agent should learn to influence its associates

so that its own payoffs are significantly greater than its minimax value. Though these

two properties are simple and fundamental, no learning algorithm in the literature is

known to possess them both (simultaneously) in general-sum games without knowing

the payoffs of other agents (until preliminary results of this chapter appeared in [20]).

In this chapter, we present a reinforcement learning algorithm (called M-Qubed)

that provably satisfies the first property in all general-sum matrix games (regardless

of the associate) and empirically displays (in self play) the second property in a wide

range of general-sum games.

5.2 Related Work

In this chapter, we present minimum criteria (in the form of two properties) that

multiagent learning algorithms should satisfy (at the least) in repeated general-sum

matrix games. Other minimum criteria have been suggested in the literature. One

such set of criterion, given by Bowling and Veloso in [9], is that an agent’s strategy

should a) necessarily converge and b) converge to a best-response when associates’

strategies converge. Bowling and Veloso presented an algorithm that provably satisfies

this criteria in repeated 2 × 2 matrix games [9]. Conitzer and Sandholm gave an

algorithm in [18] that provably satisfies this criteria in all repeated general-sum matrix

games.

Another criterion used for evaluating multiagent learning algorithms is no-regret,

or universal consistency [31, 33, 8]. If one of the experts used by a no-regret algorithm

is the agent’s minimax strategy, then no-regret learning guarantees that an agent will

not learn to play a strategy that yields an average payoff below its minimax value.

As we mentioned in Chapter 2, no-regret algorithms do not consider how an agent’s

1Note that in the previous chapter we used the minimax value mP
i calculated over the pure

strategy space. The minimax value over the mixed strategy space (mi) provides the agent with
much more security in many games.
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actions affect the future actions of associates. As a result, algorithms designed to

meet this criteria learn myopic strategies in many theoretically important repeated

games.

Yet another set of criterion for multiagent learning algorithms is given by Powers

and Shoham [63, 62]2. In these works, they propose three criteria that are similar in

nature to the two criteria we advocate in this chapter (as well as in [20]). Powers et

al.’s criteria are more specific (and less general) but tighter then the criteria presented

herein.

The reinforcement learning algorithm we present in this chapter is an independent

action learner [16], but it uses the previous joint actions of the agents as state. This

idea was first used in Q-learning by Sandholm and Crites [66]. Additionally, it has

been advocated by Moody [57] and used effectively in [20, 6] (among other places).

This work relies heavily on work done in reinforcement learning, which we reviewed

briefly in Chapter 2. Thorough reviews of reinforcement learning can be found in [44,

75].

5.3 Terminology

In this section, we give some definitions and notation that we use in this chapter.

We note that the terminology and notation presented in the section differs in some

significant points from the terminology and notation used in the previous chapters.

Let S denote the set of states in the game and let Ai denote the set of actions that

agent/player i may select in each state s ∈ S. Let at = (at
1, a

t
2, . . . , a

t
n), where at

i ∈ Ai,

be the joint action taken by the n agents on episode t, and let A = A1 × · · · ×An be

the set of possible joint actions.

A strategy (or policy) for agent i is a probability distribution πi(·) over its action

set Ai. Let πi(S) denote a strategy over all states s ∈ S and let πi(s) (or πi) denote

a strategy in a single state s. A strategy may be a pure strategy (the agent selects

an action deterministically) or a mixed strategy (otherwise). A joint strategy played

by n agents is denoted by π = (π1, . . . , πn). Also, let a−i and π−i refer to the joint

action and strategy of all agents except agent i.

Central to game theory is the matrix game, which is defined by a set of matrices

R = {R1, . . . , Rn}. Let Ri(a) be player i’s payoff distribution when the joint action

a ∈ A is played, and let µi(a) be the expected payoff to player i when the joint action

a is played (i.e., µi(a) = E[Ri(a)], E[·] denotes an expected value). Also, let µi(π) be

the expected payoff to player i, when the joint strategy π is played, and let µi(πi, π−i)

be the expected payoff to player i when it plays πi and when the the other agents

play the joint strategy π−i. Let µmax
i = maxa∈A µi(a) and µmin

i = mina∈A µi(a)

2In [62], Powers and Shoham give a slightly more in-depth review of past standards (i.e., minimum
criteria) for multiagent learning that have been used in the literature. Our discussion of past
minimum criteria follows their review closely.
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Each matrix game has certain game theoretic values. The minimax value for agent

i (denoted mi) is

mi = max
πi

min
a−i

µi(πi, a−i) (5.1)

The minimax strategy for agent i (denoted πm
i ) is

πm
i = argmax

πi

min
a−i

µi(πi, a−i) (5.2)

A one-shot NE is a joint strategy π such that no agent can unilaterally change its

strategy without lowering its expected payoff in the current episode. Nash [60] showed

that every n-player matrix game has at least one one-shot NE. An NE of the repeated

game (rNE) is a joint strategy π(S) over all states s ∈ S, such that no agent can

unilaterally change its strategy in any (reachable) state s ∈ S without lowering its

expected average payoff over time. Every one-shot NE is an rNE.

We assume that an agent can observe its own payoffs as well as the actions taken

by all agents. Thus, an agent can observe its own payoff matrix Ri. This being the

case, we assume in this chapter that a) an agent knows its payoff matrix Ri (or at

least µi(a) for all a ∈ A) prior to the beginning of play (and, therefore, can calculate

its minimax value mi and minimax strategy πm
i using linear programming) and b)

Ri(a) is stationary for all a ∈ A.

5.4 Minimum Criteria

As we mentioned in the introduction of this dissertation, the folk theorem [35]

implies that, in many games, there exist rNEs that yield higher payoffs to all agents

than do one-shot NEs. Thus, the one-shot NE should not be chosen as the goal

of learning agents. Rather, in repeated games between successful learning agents, a

successful agent should learn to play profitable rNEs. However, it is not clear which

rNE an agent should learn to play. Additionally, in games between learning agents,

it is difficult for a learner to determine if it is playing its portion of an rNE. Because

of this, we seek to design an agent that learns to play strategies that yield average

payoffs that correspond to an rNE, preferably an rNE with a high payoff. Thus, a

learner should possess (at the least) the following two properties.

Property 5.1. (Security Property) An agent should not learn to play strategies that

produce average expected payoffs below its minimax value mi.

An agent can easily satisfy this property by playing πm
i (the minimax strategy)

regardless of what its associates do. However, such a strategy may be “irrational,”

since mi (the minimax value) may be much lower than the payoffs that an agent

can realistically expect. On the other hand, mi is the highest expected payoff that

any agent can guarantee itself without some form of cooperation or compromise from
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its associate(s). Thus, a successful agent must learn (if possible) to influence its

associate(s) to be cooperative. This brings us to the second property, which we

define next (after introducing the necessary terminology).

Let Ωt
i(π

t
−i(S)) = {πi(S) : µi(πi(S), πt

−i(S)) > mi} and let ∆−i(S) = {π−i(S) :

Ωi(π−i(S)) 6= ∅}. That is, Ωt
i(π

t
−i(S)) is the set of all strategies for agent i (at

time t) that will give it an expected payoff greater than its minimax value given

the other agents’ strategies πt
−i(S); and ∆−i(S) is the set of the agent’s associates’

strategies for which Ωt
i is not empty. Also, let ϕT

i = (a0
i , a

1
i , . . . a

T
i ) be an action

sequence through time T for agent i, where at
i is agent i’s action at time t. Let

Φi = {ϕT
i : ∀t ≥ T , πt

−i(S) ∈ ∆−i(S) if, ∀τ ∈ [T, t), πτ
i (S) ∈ Ωτ

i (π
τ
−i(S))}. That is,

Φi is the set of action sequences that agent i may take that lead to it receiving an

expected payoff greater than its minimax value from time T onward (provided that

it continues to play appropriately).

Property 5.2. (Compromise/Cooperate Property) This property has two parts: in-

fluence and compromise.
• Influence. If Φi 6= ∅, then an agent should play ϕi ∈ Φi prior to time T and

πt
i(S) ∈ Ωt

i(π
t
−i(S)) thereafter.

• Compromise. An agent can be influenced in non-competitive games (see Sec-

tion 2.5).

We refer to this property as the compromise/cooperate (C/C) property because an

agent must offer and accept compromises to possess it. In words, influence says that

if an agent can influence its associate(s) to play cooperatively, it will. Compromise

says that an agent can be induced to cooperate/compromise.

It has been shown in [27] that an agent without omniscience cannot possess the

C/C property when associating with all associates. However, a successful learning

algorithm should possess this property when associating with a large class of agents.

In this chapter, we focus on the C/C property in self play only.

Note that the definition of the C/C property means that an algorithm satisfies

this property when µi(πi(S), π−i(S)) = mi + ε, where ε > 0. This is hardly useful

since ε is allowed to be very small, but defining a threshold greater than mi is difficult

for the general case. Ideally, we argue that when intelligent learning agents associate

in repeated games, the learned joint strategies should be pareto efficient. However,

a self-interested agent is not concerned with the payoffs of others (unless the payoffs

of others affect its own future payoffs). Thus, an algorithm could possibly satisfy the

C/C property without learning to play a pareto efficient solution.

To remedy this dilemma, we advocate that the C/C property can be satisfied to

various degrees. For example, suppose in a given game, that both agent A and agent

B satisfy the C/C property in self play. We say that agent A more fully satisfies the

C/C property in this game (in self play) than does agent B if µA(πA(S), π−A(S)) >

µB(πB(S), π−B(S)).
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Learning Algorithm Security Property C/C Property (Self Play)
Q-Learning No No
Fictitious Play [33] No No
minimaxQ [51] Yes No
NashQ [41] No No
FFQ [52] Yes Only in cooperative games
WoLF-PHC [9] No No
Satisficing Learning [71, 24] No In most noncompetitive games
GIGA-WoLF [8] Yes No

Table 5.1: Property characteristics of typical learners in repeated general-sum games.
Note that there are many algorithms that have been studied in the context of learning
to cooperate in small classes of games. We do not list them here to emphasize the
focus on general-sum games as a whole.

While these two properties should be considered simple and basic to the mul-

tiagent learning problem, until preliminary results of this chapter appeared in [20],

no known learning algorithm in the literature was known to possess both of these

properties simultaneously in repeated general-sum matrix games (even in self play)

without having full knowledge of the complete game matrix R3. Table 5.1 gives a

short representative list of algorithms in the literature and indicates which of the two

properties that they possess.

5.5 The M-Qubed Algorithm

In this section, we describe a learning algorithm that (provably) satisfies the secu-

rity property and appears (empirically) to possess the C/C property in self play. We

call this algorithm M-Qubed (Max or Minimax Q-learning = M3-Q = M-Qubed).

Like Q-learning [76], M-Qubed estimates the value of a state-action pair and

selects a strategy using this estimate. We now describe the algorithm.

5.5.1 Q-update

In Q-learning, the quality of a state-action pair Q(s, ai) is estimated by iteratively

updating Q-values using the following equation:

Qt+1
i (s, at

i) = (1− αi)Q
t
i(s, a

t
i) + αi

(
rt
i + γiV

t
i (s′)

)
(5.3)

3Powers and Shoham (in [62]) state a similar set of properties and give an algorithm that possesses
these properties when associating with a certain class of agents. However, their algorithm requires
complete knowledge of R.
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where s is the current state, ai is the action taken at time t, rt
i is the reward receive

at time t, and V t
i (s′) is the estimated value of the next state s′, given by

V t
i (s′) = max

bi

Qt
i(s

′, bi) (5.4)

Watkins showed that the estimate Qt
i(s, ai) approaches the true Q-values as t→∞

in stationary environments provided that each state-action pair is taken infinitely

often and the learning rate αi is decreased appropriately [76]. However, since ma-

trix games between learning agents effectually produce non-stationary environments,

various algorithms have been proposed to make Q-learning appropriate for these sit-

uations. These approaches involve a) estimating the value of a state-joint action pair

(rather than a state-action pair) and b) estimating the value of the next state V t
i (s′)

with a game theoretic value (e.g., [51, 41, 52, 39]).

We note that while matrix games do not have state, agents can benefit from using

the previous w joint actions taken by the agents as state (see [66]), provided that

the actions of all agents can be observed (which we assume). Let H(ωi) be the set

of all histories of joint actions of length ωi. Then, in matrix games, S = H(ωi) and

s = ht(ωi) ∈ H(ωi), where ht(ωi) = (at−ωi , · · · , at−1).

An additional observation about Q-updates in matrix games in which the payoff

matrix is stationary is that the expected reward µi(a
t) can be used in place of the

reward rt
i . This is because rt

i is a sample taken from the distribution Ri(a
t). While

this substitution really does nothing in theory, it does in practice provide added

stability (and can increase the speed of learning) when Ri(a) has high variance.

These observations can be used to transform Equation (5.3) to

Qt+1
i (ht(ωi), a

t
i) = (1− αi)Qt(h

t(ωi), a
t
i) + αi

[
µi(a

t) + γiV
t
i (ht+1(ωi))

]
(5.5)

M-Qubed estimates the value of the next state V t
i (ht+1(ωi)) using

V t
i (ht+1(ωi)) =

∑
bi

πt
i(h

t+1(ωi), bi)Q
t
i(h

t+1(ωi), bi) (5.6)

where πt
i(h

t+1(ωi), bi) is the probability that the agent believes it will play action bi

in state ht+1(ωi).
4 Note that M-Qubed’s estimated value of the next state given in

Equation (5.6) is equivalent to the one used in Q-learning (see Equation (5.4)) if

πt
i(h

t+1(ωi)) = argmaxbi
Qt

i(h
t+1(ωi), bi).

5.5.2 Selecting a Strategy

A Q-learner always (unless exploring) takes the action corresponding to its high-

est Q-value in the current state. However, in repeated matrix games, an agent’s best

4Equation (5.6) makes M-Qubed’s Q-update similar to the on-policy learning method called
Sarsa [75].
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strategy might not be a pure strategy. The trick is to know when to play a pure

strategy and when to play a mixed strategy. We advocate that agents should act

predictably (pure strategies) in games of compromise and cooperation, but unpre-

dictably (mixed strategies) in competitive games (if πm
i is a mixed strategy). Since it

is frequently unknown a priori whether a game is competitive or whether associates

will be inclined to cooperate, a successful learning algorithm must determine whether

to act predictably or unpredictably.

In this subsection, we state two strategy rules for determining whether M-Qubed

should play predictably or unpredictably. Since each strategy rule is advantageous

for a different set of circumstances, we present a third strategy rule that mixes the

two rules in a desirable fashion.

In the first strategy rule, M-Qubed determines whether it should play predictably

or unpredictably by comparing its highest Q-value in the current state (maxai
Qt

i(h
t(ωi), ai))

with the discounted sum of mi (
∑∞

t=0 γi
tmi = mi

1−γi
). When maxai

Qt
i(h

t(ωi), ai) >
mi

1−γi
, M-Qubed plays predictably. Otherwise, it plays the minimax strategy πm

i .

Thus, M-Qubed’s strategy in state ht(ωi) is

π∗i (h
t(ωi))←

{
argmaxai

Qt
i(h

t(ωi), ai) if maxai
Qt

i(h
t(ωi), ai) > mi

1−γi

πm
i otherwise

(5.7)

We call this strategy rule Strategy Rule 1. Unfortunately, an agent may be exploited

when using this strategy rule since its Q-values might not reflect its actual payoffs

when the environment is made non-stationary by the changing strategies of associates.

A second strategy rule (called Strategy Rule 2) for determining whether to play pre-

dictably or unpredictably is to compare the agent’s average payoff µt
i = 1

t

∑t
j=1 µi(a

j)

with mi. This gives

π∗i (h
t(ωi))←

{
argmaxai

Qt
i(h

tωi, ai) if
µt

i

1−γi
> mi

1−γi

πm
i otherwise

(5.8)

While safe, µt
i reacts too slowly. Thus, an agent using this strategy rule might a) con-

tinue to play πm
i when a more profitable strategy can be learned otherwise or b) be

slow to play πm
i when it is being temporarily exploited.

Strategy Rule 1 allows an agent to explore possible improvements (C/C), while

Strategy Rule 2 provides an agent with security. A balance may be obtained by

learning which of the two techniques is more successful. Let βt
i be the probability

that M-Qubed uses Strategy Rule 2 at time t, and let 1− βt
i be the probability that

it uses Strategy Rule 1. Thus,

π∗i (h
t(ωi))←

{
Strategy Rule 2 with probability βt

Strategy Rule 1 with probability 1− βt
(5.9)

We call this strategy rule Strategy Rule 3.
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Figure 5.2: M-Qubed sets in is Q-values high initially (left) and randomizes its strat-
egy with a small probability (ηi) when it has not visited the state containing the
highest global Q-value recently (right).

βt
i is determined using the intermediate variable β́t

i . Initially, M-Qubed optimisti-

cally sets β́0
i = 0, then updates it using

β́t+1
i ←

{
β́t

i + λ(rt
i −mi) Strategy Rule 2

β́t
i − λ(rt

i −mi) Strategy Rule 1
(5.10)

where λ is some constant. In words, β́t
i determines which rule is more successful by

increasing (toward Strategy Rule 2) if Strategy Rule 2 yields payoffs greater than mi

or if Strategy Rule 1 yields payoffs lower than mi, and decreasing (toward Strategy

Rule 1) otherwise. βt
i is β́t

i constrained to the interval [0, 1], or

βt
i = min(1, max(0, β́t

i)) (5.11)

5.5.3 Adding Exploration

Q-learners typically explore their environment using ε-greedy or Boltzmann ex-

ploration. In repeated matrix games, an alternate exploration method is to set initial

value estimates optimistically (as suggested in [72]) and let the learning process dic-

tate exploration. M-Qubed does this by initializing each Q-value to its highest pos-

sible expected discounted reward,
µmax

i

1−γi
(see Figure 5.2(left)). In this way, an agent

uses a relaxation search to find a strategy that yields an expected discounted reward

at least as high as its highest Q-value.

M-Qubed also randomizes its strategy with some small probability ηi if it perceives

that its current strategy π∗i keeps it in a local maximum. For example, consider the
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hypothetical Q-values shown in Figure 5.2(right). In the figure, the highest global Q-

value is in state s∗. However, only the rightmost states have been visited “recently,”

none of which have Q-values as high as does s∗. Thus, M-Qubed randomizes its

strategy with probability ηi in hopes of entering state s∗5.

M-Qubed guesses that its current strategy keeps it in a local maximum if none

of the states which it has visited in the previous w = (
∏

i |Ai|)ωi (the number of

states in the game) episodes of the game have Q-values close to the highest Q-

value in state s∗. More formally, let Qmax
i = maxai∈Ai

Qt
i(s

∗, ai) and let H t−1
t−w =

{ht−w(ωi), · · · , ht−1(ωi)}. Then, M-Qubed’s current strategy keeps it in a local maxi-

mum if Qmax
i > maxh∈Ht−1

t−w,ai∈Ai
Qt

i(h, ai)+ε, where ε is some small positive constant.

Thus,

πt
i(h

t(ωi), ai)←
{

π∗i (ht(ωi), ai), if Qmax
i ≤ maxh∈Ht−1

t−w,ai∈Ai
Qt

i(h, ai) + ε

(1− ηi)π∗i (ht(ωi), ai) + ηi
1

|Ai| , otherwise
(5.12)

where π∗i (h
t(ωi), ai) is obtained from Equation (5.9) (unless stated otherwise). ηi is

slowly decayed to 0 as t→∞.

Because M-Qubed can cease to explore, it can learn strategies that are not as

desirable as it otherwise might have learned. However, we will show in the next

section that continuing to explore in repeated games can be more costly than ceasing

exploration.

5.6 Results

In this section, we prove that M-Qubed (summarized in Algorithm 5.1) satisfies

the security property and show that it displays the C/C property in a wide range

of games (in self play). Unless stated otherwise, the algorithms use the parameter

values shown in Table 5.2.

5.6.1 Security Property

Before giving the main theorem, we give two lemmas related to the random walk

of β́t
i since its behavior relates closely to the performance of M-Qubed. The first

lemma shows that the interval (0, 1) is a reflecting boundary for β́t
i when M-Qubed

is being exploited (it reflects β́t
i upward). The second lemma states a property of

reflected random walks.

Changes in β́t
i are related to the losses of agent i. Let lti = (mi − rt

i) be agent i’s

loss at time t. Then, β́t
i is updated using (adapted from Equation (5.10))

β́t+1
i ←

{
β́t

i − λlti Strategy Rule 2

β́t
i + λlti Strategy Rule 1

(5.13)

5Note, again, that s∗ is simply the previous ωi joint actions taken by the agents prior to the
current time t. We use the term s∗, rather than ht(ωi)∗ for notational simplicity.
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1) αi, ηi ∈ [0, 1], β́i = βi = 0.

2) Initialize πt
i(h

t(ωi), ai)← 1
|Ai| , Q(ht(ωi), ai)← µmax

i

1−γi

3) t← 1

4) Repeat,
a) Take action ai according to πt

i(h
t(ωi))

b) Observe reward rt
i and joint action at:

i) Update πt
i(h

t(ωi)) using Equation (5.12)
ii) Update Qt

i(h
t(ωi), ai) using Equations (5.5) and (5.6)

iii) Update β́i, βi using Equation (5.10)
c) t← t + 1

Algorithm 5.1: The M-Qubed algorithm for player i.

Name Type Parameter details

M-Qubed M-Qubed αi = 0.1, γi = 0.95, ωi = 1, ε =
0.005(µmax

i −µmin
i )

1−γi

ηi = 0.04
(

20000
20000+t

)
, λ = 0.01αi

µmax
i −µmin

i

QL Q-learner αi = 1/(10 + 0.01κai
s ), γi = 0.95,

ε-greedy w/ ε = max(0.2− 0.0006t, 0)
rQL Q-learner αi = 1/(10 + 0.01κai

s ), γi = 0.95,
ε-greedy w/ ε = 0.1

WoLF WoLF-PHC Same as QL, but with
δw = 1/(10.0 + κai

s ), δl = 4δw

Table 5.2: Learners and their parameter values. κai
s is the number of times that action

ai has been played in state s.

Thus, when the agent receives a payoff less than its minimax value, β́t
i moves away

from the strategy rule that was played during that episode. Recall that the closer

β́t
i gets to 0 (or below) the more likely the agent is to play Strategy Rule 1, and the

closer β́t
i gets to 1 (or above) the more likely the agent is to play Strategy Rule 2.

Let Lt
i =

∑t−1
j=0 lji be agent i’s accumulated loss prior to time t, and let [τ, ρ] be

an interval such that β́t
i ∈ (0, 1) for all t ∈ [τ, ρ]. Also, we say that agent i is being

exploited if µt
i < mi.

Lemma 5.1. E[β́ρ
i − β́τ

i ] > 0 if M-Qubed is being exploited during time t ∈ [τ, ρ].

Proof. Let ξ1 be the subset t ∈ [τ, ρ] in which M-Qubed uses Strategy Rule 1, and let

ξ2 be the subset t ∈ [τ, ρ] in which it uses Strategy Rule 2. Then M-Qubed’s expected
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loss during the time interval [τ, ρ] is

E[Lρ
i − Lτ

i ] =

ρ∑
t=τ

E[lti] =
∑
t∈ξ1

E[lti] +
∑
t∈ξ2

E[lti] (5.14)

When µt
i ≤ mi, then

∑
t∈ξ2

E[lti] ≤ 0 since M-Qubed plays πm
i .6 That is, when agent i

is being exploited, its expected loss when it uses Strategy Rule 2 is non-positive since

it uses its minimax strategy. Thus, agent i’s expected loss (when it is being exploited)

is bounded by its expected losses during the times in which it plays Strategy Rule 1.

Formally, agent i’s expected loss is bounded (using Equation (5.14)) by E[Lρ
i −Lτ

i ] ≤∑
t∈ξ1

E[lti]. Thus, M-Qubed can only have positive loss if
∑

t∈ξ1
E[lti] > 0 when

β́t
i ∈ (0, 1). Since β́t

i increases whenever M-Qubed has positive loss while playing

Strategy Rule 1, if E[Lρ
i − Lτ

i ] > 0, then E[β́ρ
i − β́τ

i ] > 0. Thus, if M-Qubed is

exploited, then E[β́ρ
i − β́τ

i ] > 0 when β́t
i ∈ (0, 1) for all t ∈ [τ, ρ].

Let W be a random walk in which the mean increases (i.e., E[Wt+1−Wt] ≥ 0) for

all Wt provided that it encounters no boundaries. Let there be a reflecting boundary

such that whenever Wt < b, E[Wt+1 −Wt] = d, where d is a positive constant. Also,

let Pr(·) denote a probability.

Lemma 5.2. Pr(Wt < b)→ 0 as t→∞.

Proof. We consider the worst case, which occurs when E[Wt+1 −Wt] = 0 whenever

Wt ≥ b. Since the process must increase (on average) by some positive constant

d when Wt < b, it follows that E[Wt+1 − Wt] = d · Pr(Wt < b) > 0 (for all t).

This must mean that for all t and for all c, Pr(Wt+T < c) < Pr(Wt < c) for

all T > τ , where τ > 0. Thus, we know that f(t) = Pr(Wt < b) decreases as

t→∞. But does Pr(Wt < b) asymptotically approach some value greater than 0 as

t → 0? Suppose that it does. Then limt→∞ Pr(Wt < b) → a, for some a > 0. But,

since the difference between Pr(Wt+1 < b) and Pr(Wt < b) is positively correlated

with E[Wt+1 − Wt], this requires that limt→∞ E[Wt+1 − Wt] → 0. However, since

E[Wt+1−Wt] = d ·a, E[Wt+1−Wt]→ 0 only if a→ 0 (since d is a positive constant).

Thus, Pr(Wt < b)→ 0 as t→∞.

We are now ready for the main theorem.

Theorem 5.1. M-Qubed satisfies the security property (in the limit) in all repeated

general-sum matrix games, regardless of its associate(s).

Proof. We will show that limt→∞ Lt
i/t ≤ 0 in the worst case. Note that this implies

security since limt→∞ µt
i/t ≥ mi when limt→∞ Lt

i/t ≤ 0.

6Since ηi → 0 as t→∞ we can assume ηi = 0.
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The worst case can occur when playing against an omniscient opponent, a seer

agent, that knows everything about M-Qubed including its strategy, but not its actual

actions (a priori).

If Lt
i ≤ 0 for all t ≥ T (i.e., µt

i ≥ mi for all t ≥ T ), then limt→∞ Lt
i/t ≤ 0.

Otherwise, we must address three cases when µt
i < mi (when the agent is being

exploited).

Case 1: β́t
i ≤ 0 for all t ≥ T . Since βt

i = 0 when β́t
i ≤ 0, M-Qubed uses Strategy

Rule 1 with probability 1. Thus, Equation (5.10) assures that β́t
i = β́T

i − λ(LT
i −Lt

i),

so agent i’s loss during t ≥ T is Lt
i − LT

i =
β́t

i−β́T
i

λ
. Since β́t

i ≤ 0, Lt
i − LT

i ≤
−β́T

i

λ
(a

constant), so limt→∞ Lt
i/t ≤ 0.

Case 2: β́t
i ≥ 1 for all t ≥ T . Using similar logic as in case 1 (using Strategy Rule

2 rather than Strategy Rule 1), limt→∞ Lt
i/t ≤ 0.

Case 3: β́t
i ∈ (0, 1) for all t in some arbitrary time interval(s) [τ, ρ]. Lemma 5.1

shows that E[β́ρ
i − β́τ

i ] is proportional to M-Qubed’s losses during the time t ∈ [τ, ρ].

This means two things. First, a seer agent cannot increase M-Qubed’s expected

accumulated loss by more than a constant when β́t
i ∈ (0, 1). Second (in conjunction

with cases 1 and 2), M-Qubed’s expected accumulated loss can increase by no more

than a constant except when β́t
i repeatedly crosses 0 or 1. Each time β́t

i crosses 0

or 1, M-Qubed can experience a small loss (bounded by (mi − µmin
i )). However,

since M-Qubed uses Strategy Rule 1 when β́t
i ≤ 0, β́t

i ≤ 0 is a reflecting boundary.

Since β́t
i also satisfies the preconditions of Lemma 5.2 it follows from Lemma 5.2 that

Pr(β́t
i < 0)→ 0 as t→∞. Thus, β́t

i crosses 0 increasingly less frequently as t→∞.

A similar argument can be made for β́t
i crossing 1 since Lemma 5.1 shows that (0, 1)

is also a reflecting boundary (thus, β́t
i < 1 is a reflecting boundary). Therefore,

limt→∞ Lt
i/t ≤ 0.

Figure 5.3(a) shows the average payoffs of various learners against a seer agent

in the game Matching Pennies, shown in Figure 5.4(a). Since a Q-learner (unless

exploring) plays the action corresponding to its max Q-value, a seer agent exploits

it indefinitely. Also, if M-Qubed uses only Strategy Rule 1 (labeled M-Qubed(1)),

then it may be exploited somewhat. However, if M-Qubed uses Strategy Rules 27

or 3 (labeled M-Qubed(2) and M-Qubed(3), respectively), it learns to play πm
i and,

therefore, cannot be exploited. Figure 5.3(b) shows M-Qubed’s average payoffs in self

play.

5.6.2 Cooperate and Compromise Property

In this subsection, we present empirical results showing that M-Qubed (in self

play) displays the C/C property in many general-sum matrix games. In doing so, we

compare its performance with the self play of other learning agents (see Table 5.2) in

7In Figure 5.3(a), mi is replaced by the function f(t) = min(µmin
i + t(mi−µmin

i )
30000 ,mi).
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(a) (b)

Figure 5.3: (a) Average payoffs over time in the game matching pennies against a seer
agent. Results are an average of 50 trials. Note that for M-Qubed(2), mi is replaced

by the function f(t) = min(µmin
i +

t(mi−µmin
i )

30000
, mi) (see Equation (5.8)). (b) Average

payoffs over time in the game matching pennies in self play. Results are an average
of 50 trials.

a b
a 1, -1 -1, 1
b -1, 1 1, -1

c d
c 3, 3 0, 5
d 5, 0 1, 1

c d
c 3, 3 2, 3.5
d 3.5, 2 1, 1

(a) Matching Pennies (b) Prisoner’s Dilemma (c) Chicken

a b c
a 0, 0 0, 1 1, 0
b 1, 0 0, 0 0, 1
c 0, 1 1, 0 0, 0

c d
c 4, 4 -5, 3
d 3, -5 2, 2

a b
a 0, 3 3, 2
b 1, 0 2, 1

(d) Shapley’s Game (e) Staghunt (f) Tricky Game

Figure 5.4: Various 2-agent matrix games.
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a number of games. We also show that M-Qubed does not always display the C/C

property in some games when associating with other kinds of learners. Additionally,

we compare the M-Qubed algorithm with aspiration-based satisficing learning.

Self Play

We compare the performance (in self play) of four reinforcement learning algo-

rithms shown in Table 5.2 in the following games: the iterated prisoner’s dilemma

(see Figure 5.4(b)), chicken (see Figure 5.4(c)), Shapley’s game (see Figure 5.4(d)),

staghunt (see Figure 5.4(e)), tricky game (see Figure 5.4(f)) [8], and the MASD

(n = 3, k = 0.6) for various values of M (M + 1 = |Ai| for all i) [71].

In comparing the algorithms, we will plot the mean payoffs received by the agents

over time. Also of interested is the distribution of payoffs produced by the strategies

which the agents learn. We show these results by box and whisker plots, generated by

MATLAB. These box and whisker plots show the median (line in middle of box), the

median of the upper and lower quartiles (top and bottom of box), and extremes of the

data (top and bottom of whiskers). Data points which fall outside of 1.5∗IRQ, where

IRQ is the interquartile range, are considered outliers, and are plotted as *’s. Notches

in the boxes represent a robust estimate of the uncertainty about the medians for box-

to-box comparison. Boxes whose notches do not overlap indicate that the medians of

the two groups differ at the 5% significance level. We note that tighter distributions

are generally more desirable than distributions which vary widely.

Prisoner’s Dilemma. Figure 5.5(a) shows the mean payoffs obtained by the agents

over time in the iterated prisoner’s dilemma. The mean is obtained from 50 trials

(thus, 100 samples since there are two agents). M-Qubed almost always learns to

always cooperate, resulting in a payoff of 3 to both agents. The other learners learn

strategies that produce inferior payoffs. Note, however, that QL, which stops explor-

ing, is more successful than rQL, which continues exploring. WoLF-PHC generally

learns to defect since it plays a stochastic (unpredictable) policy while learning.

The box and whiskers plots for the algorithms in the prisoner’s dilemma is shown

in Figure 5.5(b). The figure shows that M-Qubed nearly always learns to always

cooperate, with the exception of 2 of the 50 trials8. In one of the trials the agents

learned to alternate between receiving 5 and 0 points per episode. In the other

trial in which the agents did not learn mutual cooperation, the cycle (c, c) − (c, d)

was played repeatedly. While QL shares the same median payoff with M-Qubed,

its payoff distribution varied much more, and was frequently significantly lower than

this value. Note that the variance of the distribution of rQL’s average payoffs is high

8In one trial, M-Qubed converged to alternating between the solutions (C,D) and (D,C), yielding
an average payoff of 2.5 to each agent. In the other trial in which M-Qubed did not converge to
mutual cooperation, it converged to alternating between the solutions (C,C) and (D,C), yielding
an average payoff of 1.5 to one of the agents and 4 to the other.
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(a) (b)

Figure 5.5: (a) Average payoffs over time for the iterated prisoners dilemma (in self
play). Results are an average of 50 trials. (b) Box and whiskers plots of the final
1,000 episodes (i.e., episodes 99,001–100,000).

due to its continued exploration. Thus, in the iterated prisoner’s dilemma, continued

exploration can be detrimental to an agent’s long-term average payoffs.

Figures 5.6(a) and (b) show the average payoffs to agent 1 when M-Qubed agents

use different values of α and γi. The parameter values of the two agents are shown

along the x and y-axes respectively. Lighter colors indicate that agent 1 received high

payoffs. The figures show that M-Qubed is more successful when using low values of

αi and high values of γi. Also, having a slower learning rate (i.e., smaller αi) than

one’s associate can sometimes result in a significantly higher average payoff.

Chicken. M-Qubed also learns mutual cooperation in chicken, giving it the highest

average payoffs of the learners (see Figure 5.7(a)). Also, M-Qubed’s distribution is

tighter than the other agents (see Figure 5.7(b)). We note also that QL once again

outperforms rQL due to the fact that it stops exploring.

Shapley’s Game. Many learning algorithms do not converge in Shapley’s game [33,

8]. However, M-Qubed does converge to a cooperative solution which yields an average

payoff of 1
2

to each agent (see Figure 5.8(a)). QL learns to play similarly. The other

learners play strategies that yield only slightly lower average payoffs, but do not

typically converge.

Staghunt. While all the other learners typically learn to play the joing action

(d, d) in staghunt, M-Qubed (like the S-Algorithm) learns to play the joint action

(c, c), which results in a significantly higher payoff (see Figure 5.9(a)). Figure 5.9(c)

shows the results of varying α, which again shows that lower values of α are more

successful.

Tricky Game. Figures 5.10(a)-(d) show the performance of both the row and

column players in tricky game. As a row player, M-Qubed outperforms the other
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(a) (b)

Figure 5.6: Average payoffs in the iterated prisoner’s dilemma to player 1 of learned
strategies for M-Qubed in self play when parameter values are varied by the agents
as shown along the axes.

(a) (b)

Figure 5.7: (a) Average payoffs over time for chicken (in self play). Results are an
average of 50 trials. (b) Box and whiskers plots of the final 1,000 episodes (i.e.,
episodes 99,001–100,000).
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(a) (b)

Figure 5.8: (a) Average payoffs over time for Shapley’s game (in self play). Results
are an average of 50 trials. (b) Box and whiskers plots of the final 1,000 episodes (i.e.,
episodes 99,001–100,000).

(a) (b)

(c)

Figure 5.9: (a) Average payoffs over time for the staghunt game (in self play). Results
are an average of 50 trials. (b) Box and whiskers plots of the final 1,000 episodes (i.e.,
episodes 99,001–100,000). (c) Average payoffs to player 1 when α is varied by the
agents.
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(a) (b)

(c) (d)

Figure 5.10: (a) Average payoffs over time to the row player in tricky game (in self
play). Results are an average of 50 trials. (b) Box and whiskers plots of the final
1,000 episodes (i.e., episodes 99,001–100,000). (c) Average payoffs over time to the
column player in tricky game (in self play). Results are an average of 50 trials. (d)
Box and whiskers plots of the final 1,000 episodes (i.e., episodes 99,001–100,000).

agents and QL outperforms rQL. However, QL slightly outperforms M-Qubed (in self

play) as a column player. This is because QL learns to share high payoffs in a slightly

different manner than does M-Qubed. We note, however, that M-Qubed’s average

payoff (row and column) is much higher than is QL’s. Additionally, the variance on

learned payoffs is much smaller for M-Qubed.

MASD. We now move to the MASD, described in [71] and reviewed in Sec-

tion 3.3.2. In this 3 × 3 game (results shown in Figure 5.11), M-Qubed learns (as

does the S-Algorithm) mutual cooperation (i.e., each agent gives all to the group) in

almost all trials, while the performance of the other algorithms is much worse (on

average).

Figure 5.12 shows the average payoffs to M-Qubed (after learning) in MASDs of

3 to 6 actions. As can be seen, M-Qubed scales quite well in this game, (although
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(a) (b)

Figure 5.11: (a) Average payoffs over time in self play of the MASD (m = 2, n = 3,
k = 0.6). Results are an average of 50 trials. (b) Box and whiskers plots of the final
1,000 episodes (i.e., episodes 199,001–200,000).

performance does trail off slightly in games with more actions). Note that M-Qubed

does not need to vary its learning rates to achieve these results. However, the state

space does grow quickly with increasing numbers of actions.

Varying ωi

In all of the previous games we have analyzed, M-Qubed learns to play coopera-

tively (in self play), which leads to higher average payoffs (to all agents) over time.

We now present a game that M-Qubed (as well as the other learners) have a more

difficult time learning. This game is shown in Figure 5.13(left). In this 2 × 2 game,

each agent can guarantee itself no more than a payoff of 0 (its minimax value). How-

ever, both agents can receive an average payoff of 0.5 if they alternate between the

solutions (C, d) and (D, c).

None of the agents learn to play this game effectively (see Figure 5.13)9. However,

once again, M-Qubed outperforms the other agents (on average). In most runs,

one of the M-Qubed agents learns to play the action that can give it a payoff of 1,

while the other agent learns to play randomly, resulting in an average payoff of 0.5

(approximately) to one agent and an average payoff of 0 to the other agent. This can

hardly be consider a compromise.

However, M-Qubed is able to learn to offer and accept the profitable compromise

of alternating between winning and losing if it uses a larger history of joint actions

(i.e., ωi > 1). Figure 5.14 shows that both agents receive an average payoff close to

0.5 (in most cases, but not all) when ω1 = ω2 = 2 and ω1 = ω2 = 3.

9The performance of rQL is not shown as its behavior is similar to that of QL and WoLF-PHC
in this game.
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(a) (b)

Figure 5.12: (a) Plot showing the average payoffs of learned strategies (over 50 trials)
in the MASD (n = 3, k = 0.6) for various values of M . (b) Box and whiskers plots
of learned strategies.

c d
C 0, 0 0, 1
D 1, 0 0, 0

Figure 5.13: Payoffs to the agents in the game shown at left. Although M-Qubed out-
performs the other learning algorithms, its play can hardly be considered cooperative
(or compromising).

c d
C 0, 0 0, 1
D 1, 0 0, 0

Figure 5.14: Payoffs to M-Qubed in self play for varying values of ωi in the game
shown at left. For ωi > 1, M-Qubed agents learn a profitable compromise, as the
agents learn to alternate between winning and losing.
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We note that learning this cooperative solution (alternating between winning and

losing) does not require an agent to consider a history of joint actions greater than

1. However, when ωi = 1, the Q-values of the agents must become aligned so that

the joint action (D, c) is played in the state Dc while the joint action (c, D) is played

in the state Cd. This rarely occurs when ωi = 1 for each agent i. However, when

ωi > 1, there are multiple opportunities for Q-values to become aligned properly. For

example, the joint action (D, c) need only be the solution played by the agents in one

of the following states: Cc-Dc, Cd-Dc, Dc-Dc, or Dd-Dc.

An additional reason for increasing ωi is to allow M-Qubed to learn when associ-

ating with a larger class of agents. For example, when ω1 = 1, M-Qubed will learn

to play optimally when associating with TFT (always cooperates) and Tit-for-2-Tats

(alternates between defecting and cooperating), but not Tit-for-3-Tats (TFT3). This

is because optimal behavior when associating with TFT3 in the iterated prisoner’s

dilemma requires that the joint action (c, d) be played twice, followed by the play of

the joint action (c, c). Thus, when ωi = 1, a solution sequence can include no more

than one of each solution.

Associating with Other Learners

So far, we have shown that M-Qubed possesses the C/C property in many games

in self play. Unfortunately, M-Qubed does not satisfy the C/C property to as great

a degree when associating with other learning agents. We show and discuss the

performance of M-Qubed when associating with WoLF-PHC, QL, and rQL in two

games.

Prisoner’s Dilemma. The performance of M-Qubed when it associates with other

learners in the prisoner’s dilemma is shown in Figure 5.15. As can be seen, M-

Qubed receives average payoffs greater than (and never below) the minimax value in

most trials when associating with these agents. However, it does not reach mutual

cooperation in all trials when associating with any of the agents. We note that M-

Qubed does perform better against rQL and WoLF-PHC than these agents do against

themselves (see Figure 5.5). Also, M-Qubed performs only slightly worse against QL

in this game than QL does against itself.

Staghunt. M-Qubed does not perform as well in the matrix game staghunt as it

did in the iterated prisoners dilemma when it associates with other learning agents.

Its performance is shown in Figure 5.16. When associating with each agent, M-

Qubed learns (as do QL, rQL, and WoLF-PHC in self play; see Figure 5.9) to play

its minimax strategy (which is to defect) in nearly all trials with each agent. This

result is to be expected somewhat, since it is difficult to teach these algorithms to play

cooperatively against such risks, particularly without knowledge of the other agent’s

payoffs. However, it is possible to teach these algorithms to play cooperatively in this

game.
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(a) (b)

Figure 5.15: (a) Average payoffs over time to M-Qubed when it associates with other
learners in the iterated prisoners dilemma. Results are an average of 50 trials. (b)
Box and whiskers plots of the final 1,000 episodes (i.e., episodes 99,001–100,000).

(a) (b)

Figure 5.16: (a) Average payoffs over time M-Qubed when it associates with other
learners in the staghunt game. Results are an average of 50 trials. (b) Box and
whiskers plots of the final 1,000 episodes (i.e., episodes 99,001–100,000).
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5.7 Comparison of M-Qubed and Satisficing Learning

Up to this point in this chapter, we have compared M-Qubed to Q-learning. While

M-Qubed is closely related to Q-learning, it is also similar in nature to aspiration-

based satisficing learning (as discussed in the previous two chapters).

Like the S-Algorithm, M-Qubed uses a relaxation search to find a profitable strat-

egy. However, while the S-Algorithm relaxes a single variable (its aspirations) until a

suitable (mutually satisficing) solution is found, M-Qubed relaxes multiple variables

(one for each state-action pair (h(ωi), ai), or Q-value). The relaxation of each Q-

value is carried out at a different rate dependent on a) the rewards received, b) the

values of subsequent states and c) the frequency with which a state-action pair is

visited/updated. This creates a gradient over the Q-values (see Figure 5.2) which can

be used to perform informed trembles (i.e., acting randomly with probability ηi when

a state with a near maximum global Q-value has not been visited recently).

Like the S-Algorithm, M-Qubed ceases to explore its environment when it becomes

satisfied. M-Qubed is satisfied when its current strategy allows it to periodically

revisit a state with a near-global Q-value. Viewed in this light, M-Qubed is essentially

a satisficing learner.

While M-Qubed and satisficing learning have much in common, M-Qubed has

several advantages over the S-Algorithm since it can observe the actions of other

agents. First, M-Qubed possesses the security property. Second, M-Qubed can learn

when the payoff matrix has non-deterministic payoff functions. Third, M-Qubed is

able to learn to alternate between winning and losing in order to reach a profitable

compromise. This is made manifest in Shapley’s game (see Figures 3.21 and 5.8) and

in the results shown in Figure 5.14.

A fourth advantage of M-Qubed over the S-Algorithm is that M-Qubed is able to

overcome security and preclusion critical events that exclude cooperative behavior.

For example, in the game shown in Figure 5.17 (a game with a security critical event),

M-Qubed usually receives payoffs of 4 (row player and 3 (column player), whereas

the S-Algorithm does not usually perform so well (see Figure 3.24)10. Although this

particular game can be solved when an agent learns to tremble its aspirations (see

Figure 4.9), this is not always the case in some games with preclusion critical events.

Fifth, M-Qubed can learn a best response when associating with static (stochastic)

strategies. For example, in the iterated prisoner’s dilemma, the S-Algorithm cannot

learn to play a best response to an agent that plays c with probability 0.7 and d with

probability c, while M-Qubed does (see Figure 5.18).

10Note in Figure 5.17 that WoLF-PHC, QL, and rQL are even more subject to the security critical
event than is the S-Algorithm.
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a b
A 3.5, 2 3.5, 1
B 1, 4 4, 3

(a) (b)

(c) (d)

Figure 5.17: (a) Average payoffs over time to the row player in the matrix game
shown above (in self play). Results are an average of 50 trials. (b) Box and whiskers
plots of the final 1,000 episodes (i.e., episodes 99,001–100,000). (c) Average payoffs
over time to the column player. Results are an average of 50 trials. (d) Box and
whiskers plots of the final 1,000 episodes (i.e., episodes 99,001-100,000).

Figure 5.18: Average payoffs over time in iterated prisoners dilemma against a static
agent that plays c with probability 0.7 and d with probability 0.3. Results are an
average of 50 trials.
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5.8 Summary and Discussion

We have advocated that learners in repeated games should a) never learn to

receive payoffs below the minimax value of the game and b) have the ability to

cooperate/compromise. No algorithm from the literature is known to satisfy both of

these properties simultaneously without knowledge of the payoffs of other agents. We

presented an algorithm (M-Qubed) that provably satisfies the security property and

displays the C/C property (in self play) in many games. In these games, M-Qubed

learns (without the knowledge of the payoffs of associates) the solutions proposed

in [53], which are pareto efficient. These results support the hypothesis that learning

agents should act predictably in non-competitive games, and unpredictably otherwise.

M-Qubed has a number of weaknesses, one of which is that it can be “bullied”

(see, for example, [54]) by certain agents (though it still gets a payoff as great as

its minimax value)11. Additionally, M-Qubed does not have the C/C property when

associating with many other learners in many games. We believe that future learning

algorithms should use principles such as reputation, teaching, etc. in order to satisfy

the C/C property when associating with a larger class of learners [22, 62].

Another weakness of M-Qubed is that it may not be suited for environments in

which the intended actions of the agents are not guaranteed to be carried out. Under

such circumstances, cooperative behavior is more difficult to achieve since the signals

sent by agents (via actions) are not as clear. We note that extending these algorithms

to perform well in such environments may require explicit communication (such as

the technique used in [67]).

11We note, however, that this “weakness” is present (at best) in all other learning algorithms in
the literature that do not use information about associates’ payoffs.
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Chapter 6

M-Qubed in Repeated General-Sum Stochastic Games

6.1 Introduction

In the previous chapters, we limited our discussions to general-sum matrix games.

Matrix games form the basis of simultaneous move games. However, they cannot

capture “real world” situations in which agents often make and carry out decisions

over a sequence of actions and observations. In this chapter, we move to the more

general case of stochastic games (also called Markov games). These games are more

descriptive than matrix games since they can be designed so that agents can (and

must) make and carry out decisions over a sequence of actions and observations.

Learning in repeated stochastic games is more difficult than in matrix games for

a number of reasons, of which we mention two. First, the state space of stochastic

games is much larger than that of matrix games. Second, the payoffs of the agents

are dependent not only on the strategies used by the agents in the current state, but

also on the strategies employed by the agents in subsequent states of the episode.

In this chapter, we extend the M-Qubed algorithm that we presented in the pre-

vious chapter to infinitely repeated stochastic games. We show (empirically) that

the extended M-Qubed algorithm satisfies the same two properties as it does in in-

finitely repeated matrix games in several important infinitely repeated stochastic

games. Multiagent learning algorithms in the literature do not satisfy these two

properties in many of these games.

We note that the extended M-Qubed algorithm uses several additional free pa-

rameters. Each one of these parameters is added to the algorithm to respond to a

different challenge that arises in stochastic games. While we consider this algorithm a

first of its kind for learning non-myopic strategies in these games, we do not present a

detailed analysis of how changes in the values assigned to these free parameters affect

M-Qubed’s behavior. Rather, we show that M-Qubed demonstrates the security and

compromise/cooperate properties for a set of these parameters.

Given the number of free parameters and the complexity of the algorithm, it is

especially important to show that the algorithm is more than an ad hoc collection

of various rules. In addition to empirically showing that the algorithm possesses

the security and compromise/cooperate properties in self-play in many games when

certain conditions are met, we also establish a consistency property which states that
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the extended algorithm does not change the behavior of M-Qubed (as is presented

in the previous chapter) in matrix games. Furthermore, we show that, in self play,

its performance is comparable or superior to the WoLF-PHC algorithm on a set of

interesting infinitely repeated stochastic games.

The structure of this chapter is as follows. In Section 6.2, we formally define

stochastic games. Related to stochastic games is some important related work that

we have not discussed up to this point. We review some of this work in Section 6.3. In

Section 6.4, we overview how M-Qubed can be extended to learn in stochastic games.

We present the details of the algorithm in Section 6.5. In Section 6.6, we show the

performance of M-Qubed in several important stochastic games. In the final section,

we summarize the chapter and discuss future work.

6.2 Stochastic Games

As in the previous chapters, let I be the set of n agents playing the game. Also,

let Σ be the set of states (or stages) of the stochastic game. A stage is a particular

configuration of physical state that the game can take on. This physical state includes

the status of matter (walls, gates, etc.) as well as the status (location, velocity, etc.)

of the agents playing the game. Let B be the set of possible start (beginning) stages

of each episode (which is usually a singleton) of the game, and let G be the set of goal

(or terminating) stages of the game. The set of actions available to agent i ∈ I in

stage σ ∈ Σ is denoted by Ai(σ). Then, let A(σ) = A1(σ)× · · · ×An(σ) be the set of

joint actions that can be played in stage σ. Let at
i(σ) ∈ Ai(σ) be the action taken by

agent i in stage σ in episode t. Hence, at(σ) = (at
1(σ), · · · , at

n(σ)) is the joint action

taken by the |I| agents in stage σ in episode t.

Let σt
τ ∈ Σ denote the τ th stage of episode t. When a joint action is taken in

stage σt
τ two things happen. First, each agent receives an immediate reward (which

we denote νi(σ
t
τ ) for agent i). νi(σ

t
τ ) is a sample taken from the random variable

Vi(σ
t
τ , a

t(σt
τ )). Second, when a joint action is taken in stage σt

τ , play transitions

to the next stage of the episode (denoted σt
τ+1). This transition is governed by

the probability transition function P (στ |στ−1, a
t). Once a terminal stage is reached

(i.e., σt
τ ∈ G), the agents are automatically transitioned to a beginning state (i.e.,

some stage in B), and a new episode begins. We assume that V(σ, a) and P (σ) are

stationary for all σ ∈ Σ and a ∈ A(σ).

We are now ready to formally define a stochastic game.

Definition 6.1. The tuple (I, Σ, B, G, (A(σ))σ∈Σ, (V(σ, a))σ∈Σ,a∈A(σ), (P (σ))σ∈Σ) is a

stochastic game, where I, Σ, B, G, A(σ), V(σ, a), and P (σ) are defined previously.

Note that, according to this definition, a matrix game is a special kind of stochastic

game. Thus, stochastic games generalize matrix games.
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Figure 6.1: Example stochastic game.

As in the previous chapter, we assume that an agent can observe the actions of

all agents as well as its own payoffs νt
i (σ). Additionally, we assume that agents can

observe the current stage (or state) σ ∈ Σ.

To better understand the terminology given, consider the stochastic game (a coor-

dination game) depicted in Figure 6.1, which is described by Hu and Wellman in [42].

In this game, the two agents begin each episode as indicated in the figure. In each

stage, the players simultaneously move in one of the four compass directions. The

first agent to reach its goal receives a payoff of 100. In the event of a tie, both agents

are rewarded a payoff of 100. Hitting a wall results in a no-op (the player stays put)

and if the two players collide (i.e., both try to enter the same position), then they

both receive an immediate payoff of -1 and no motion occurs.

Let (1, 1) denote the grid position corresponding to the bottom-left hand corner

of the grid (player A’s start position), and let the point (3, 3) denote the the upper-

right hand corner of the grid. The 4-tuple (xA, yA, xB, yB) denotes a stage of the

game, where (xA, yA) and (xB, yB) are the players positions on the board. Then, in

this game, Σ = {{1, 2, 3} × {1, 2, 3} × {1, 2, 3} × {1, 2, 3}}, B = {(1, 1, 3, 1)}, and

G = {(1, 3, i, j), (i, j, 3, 1)}, where i and j can take on the values 1, 2, and 3.

6.3 Related Work

In this section, we review some work related to learning in stochastic games.

First, we briefly review some important elements of reinforcement learning related to

estimating future rewards. Second we review work on learning in stochastic games.

6.3.1 Reinforcement Learning

In matrix games (as we discussed in the previous chapter), an agent is faced with

learning/predicting the sum of future rewards for taking a particular action in the

current episode. To do so, M-Qubed combines the payoff received in the current

episode with the estimated value of the subsequent state (which is based on the

history of joint actions). In this way, M-Qubed is able to learn/predict the rewards

to be received in future episodes.
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In repeated stochastic games, an agent must not only predict the sum of rewards

to be received in future episodes, but it must also predict the sum of future payoffs to

be received within the current episode. To help us solve this problem, we will turn,

once again, to principles of standard reinforcement learning.

There are three elementary solution methods of reinforcement learning. These

methods are: dynamic programming, Monte Carlo methods, and temporal differenc-

ing. The goal of each of these methods is the same: to learn/predict the sum of

future rewards resulting from taking a given action from a given state (or stage).

However, each of the three methods is suited for different situations. Since dynamic

programming requires a model of the state transitions probabilities, and since we are

restricting attention to games where the transitions probabilities are not known, we

turn to the other two methods (Monte Carlo and temporal differencing) for guidance.

We now briefly review these two methods. A more detailed description of each can

be found in [75].

In Monte Carlo methods, the value of taking an action is updated using the

(possibly discounted) sum of rewards received by the agent from the time it takes the

action until the end of the current episode. Then, in a Monte Carlo algorithm, rt
i(σ

t
τ )

is given by

rt
i(σ

t
τ ) =

lt∑
k=τ

γ(k−τ)νt
i (k) (6.1)

where lt is the number of stages played in episode t and γ ∈ (0, 1] is the discount

factor.

Let V t
i (σ, a) be the estimate of the sum of future rewards at episode t when the

action a is taken in stage σ. In Monte Carlo methods, this estimate is given by

V t
i (σ, a) =

1

|T |
∑
j∈T

rj
i (σ) (6.2)

where T is the set of episodes in which the agent took the action a on the first visit to

stage σ and rj
i (σ) is given in Equation 6.1. Note that only the first visit of each stage

is counted in the update. This is known as a first-visit Monte Carlo method [75].

One disadvantage of Monte Carlo methods is that they require that an episode

be completed before updates can be made. In contrast, temporal differencing typi-

cally allows updates to be made much sooner. This is because temporal difference

learning bootstraps. We say that an algorithm bootstraps if it uses estimated values

of subsequent states to predict the sum of future rewards. Q-learning is one example

of a reinforcement learning algorithm that bootstraps, as it uses Q-values in the sub-

sequent state to update the Q-values in the current state. Q-learning and M-Qubed

(as discussed in the previous chapter) are temporal differencing algorithms.

As we mentioned, M-Qubed uses temporal difference learning to learn the future

rewards obtained in subsequent episodes. However, as we will explain in the next
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sections, M-Qubed uses a Monte Carlo method to estimate payoffs across a particular

episode.

6.3.2 Algorithms for Learning in Stochastic Games

Many of the algorithms in the literature that we discussed in previous chapters are

designed for stochastic games. Such algorithms include minimaxQ [51], NashQ [41],

WoLF-PHC [9], friend-or-foe Q-learning [52], and Correlated Q-learning [39]. How-

ever, we note that as these algorithms do not learn profitable solutions in many matrix

games, they perform similarly (if not worse) in stochastic games. We note that each

of these algorithms do not estimate future rewards across episodes. Rather, they

learn based only on payoffs received in the current episode.

6.4 M-Qubed in Stochastic Games: An Overview

The M-Qubed algorithm as described in the previous chapter is not suitable for

stochastic games. In this section, we explain why M-Qubed (as described in the

previous chapter) does not learn effectively in these games. Additionally, we present

an overview of how M-Qubed can be extended to learn effectively in stochastic games.

We leave many of the more formal details until the next section.

6.4.1 The Stage Game

In each stage σ ∈ Σ of a stochastic games, the agents play a stage game. The

stage game is a matrix game defined by the set of players I, the set of joint actions

A(σ), and the set of payoff matrices R(σ) = {R1(σ), · · · , Rn(σ)}. Let Ri(σ, a) be

a random variable giving the distribution of agent i’s future payoffs when the joint

action a is played in stage σ. The mean of this distribution can be estimated using

a temporal differencing method or a Monte Carlo method. We use a Monte Carlo

method for reasons that will become clearer in the next section.

Let rt
i(σ

t
τ ) be the sum of future payoffs to agent i in the τ th stage of episode t.

Thus, rt
i(σ

t
τ ) is a sample of the random variable Ri(σ

t
τ , a

t(σt
τ )). Formally, rt

i(σ
t
τ ) is

given by

rt
i(σ

t
τ ) =

lt∑
j=τ

νt
i (σ

t
j) (6.3)

where lt is the number of stages played in episode t and νt
i (σ

t
j) is the immediate payoff

to agent i in episode t after the joint action at(σt
j) was played in stage σt

j.

In stochastic games, a separate copy of M-Qubed, one for each σ ∈ Σ, is used

to learn the appropriate mapping from stage to action. Although this extension is

obvious and natural, the stage game of a stochastic game has certain qualities that

matrix games do not have. In the rest of this section, we discuss these differences and

show how M-Qubed can be extended to deal with them.
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(a) (b) (c) (d)

Figure 6.2: (a) A simple single-agent grid game. Note how the payoff matrix for
the stage σ2,4 (indicated by the circle) varies according to the agent’s strategy in
subsequent states. (b)-(d) show example policies.

6.4.2 Comparing the Stage Game with Matrix Games

While the stage game is similar in nature to matrix games, the set of payoff

matrices that define the stage game are often non-stationary (though the transition

probabilities are stationary). This is because an agent’s payoff for the current stage

is based on the joint strategies played by the agents in all subsequent stages of the

episode. Since the strategies of the agents changes as they learn, the payoffs for a

given stage change over time. Thus, the payoff matrices that define the stage game

are non-stationary.

To see this, consider the single-agent1 stochastic game depicted in Figure 6.2(a).

In this game, the agent begins each episode in the lower left-hand corner (labeled S)

and attempts to move to the cell in the upper right-hand corner (labeled G). From

each cell, the agent can move in any of the four compass directions (N, S, E, W).

If an action carries the agent into a wall (the black cells) it receives a reward of -1

and remains in the same cell (stage) as it was prior to taking the action. The agent

receives 20 points when it reaches the goal. Additionally, the agent incurs a cost (a

reward of -1) for each move that it takes. Thus, an agent should learn to reach the

goal in as few moves as possible.

To see how changes in the joint strategies used in subsequent states affect Ri(σ),

1We use a single-agent example for simplicity. However, this discussion applies directly to mul-
tiagent scenarios by using joint actions rather than the single agent’s actions.
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consider the situations depicted in Figure 6.2(b)-(d). In the figures, the agent, located

in cell (2,4) (cell (1,1) is the start position S), which is indicated by the circle, must

select an action. Let this stage be denoted σ2,4. Also, let Rt
i(σ2,4) be agent i’s payoff

matrix of stage σ2,4 at episode t, and let µt
i(σ2,4, a) (where a ∈ A(σ2,4)) be the mean

of the distribution Rt
i(σ2,4, a).

In the situation depicted in Figure 6.2(b), the agent employs an optimal policy

(as indicated by the arrows in each cell) in all (possible) subsequent states (assum-

ing a deterministic transition function). These strategies result in the mean payoffs

µ1(σ2,4, a) (for each a ∈ A(σ2,4)) of

N S E W

15 13 15 13

However, if the agent’s policies in subsequent states are as indicated in the situation

depicted in Figure 6.2(c), then the mean payoffs would be2

N S E W

13 ≤ 13 ≤ 13 13

The distributions of the agent’s payoff matrix in stage σ2,4 would be different still

if the agent were to act as indicated in the situation depicted in Figure 6.2(d). In

this situation, the means of the entries of the payoff matrix would be

N S E W

15 ≤ 13 15 13

Thus, as joint strategies in subsequent states change, the payoff distributions of

joint actions that lead to these states can change also. As we mentioned previously,

this violates the stationarity assumption of the previous chapter. Thus, M-Qubed

will behave differently in the stage game of a stochastic game than it will in a matrix

game (with a stationary payoff matrx) unless Ri(σ) becomes stationary (or relatively

stationary) prior to learning.

As demonstrated in the previous example, the payoff matrix of stage games can be

non-stationary in single-agent scenarios as well as in multiagent scenarios. Thus, all

reinforcement learning algorithms must deal with this challenge. However, in single-

agent scenarios, this is not (theoretically) a problem since each state-action pair must

be visited infinitely often (see [75]). Thus, the payoff matrix will eventually become

stationary as policies in each stage σ ∈ Σ converge3.

In contrast, many multiagent scenarios require that an agent should act so as to

influence the future actions of other agents if it is to learn to play desirable solutions.

2For the actions S and E, the policy indicates that the agent would move back and forth forever
between two states. We will define rules for breaking these cycles later in this chapter.

3Note, however, that if an implementation of a reinforcement learning algorithm does not explore
all actions from all states infinitely often, then the non-stationarity of the payoff matrix can become
a problem in single-agent domains as well.
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M-Qubed attempts to influence the future actions of other agents by ceasing explo-

ration once it becomes satisfied4. Thus, if M-Qubed becomes satisfied in a particular

stage before desirable joint strategies are learned in subsequent stages, then M-Qubed

will often learn strategies that produce undesirable payoffs.

6.4.3 Dealing with the Differences

M-Qubed (as described in the previous chapter) cannot learn effectively in stochas-

tic games for two reasons, both of which are caused by the non-stationarity of the

payoff matrices of stage games. We now discuss these two reasons and outline how

M-Qubed can be extended to overcome these challenges. We omit the formal details

until the next section.

The first reason that M-Qubed cannot learn effectively in stochastic games is that

Rt
i(σ, a) (the random variable that governs the distribution of payoffs to agent i at

episode t when the joint action a ∈ A(σ) is played) is unknown and changing. In the

previous chapter, we assumed knowledge of µt
i(σ, a) (the mean of the random variable

Rt
i(σ, a)) for each a ∈ A(σ). However, this assumption is impractical in many stage

games.

Being able to estimate µt
i(σ, a) for all a ∈ A(σ) is important for a number of rea-

sons. First, it allows each agent i to compute an estimate of its minimax value mt
i(σ)

and minimax strategy πm
i (σ; t) at episode t in stage σ. Second, it allows an agent to

know µmax
i (σ) and µmin

i (σ), which are the maximum and minimum mean payoffs to

agent i (at episode t) in stage σ. These values are necessary for setting/updating var-

ious parameters, including initializing Q-values. Third, knowing µt
i(σ, a) is important

for tracking changes (or potential changes) in the agent’s payoff matrix. Changes (as

well as potential changes) in an agent’s payoff matrix can (and should) trigger various

behaviors in M-Qubed to help it to overcome myopia in these games.

Thus, extending M-Qubed to learn the stage game of stochastic games requires an

estimate of µt
i(σ, a) for each a ∈ A(σ). µt

i(σ, a) in stochastic games can be estimated

using samples taken from distributions of Ri(σ, a) over time. In doing so, M-Qubed

must ensure that the environment is sampled sufficiently. Additionally, sampling

Ri(σ, a) effectively requires a good estimate of credibility. Credibility indicates how

likely a sample is to be drawn from the final distribution of Ri(σ, a) (when strategies

have converged in all stages). We describe how M-Qubed does this in Section 6.5.1.

A second challenge for M-Qubed in stochastic games arises from the fact that

M-Qubed stops exploring its environment when it becomes satisfied. Thus, care must

be taken to ensure that changes in the payoff matrix (or at least important parts of it)

4Recall from the last chapter that M-Qubed is satisfied when the strategies of the agents result
in visits to some state (history) s ∈ S∗, where S∗ is the set of states that have nearly maximum
Q-values (for that stage).
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c d
c 1, 1 0, 5
d 5, 0 1, 1

c d
c 3, 3 0, 5
d 5, 0 1, 1

(a) (b)

Figure 6.3: (a) Possible payoff matrix of the stage game at episode T0. (b) Possible
payoff matrix of the same stage game at episode T1 > T0. In (b) a more profitable
compromise is available, but M-Qubed will not learn it if its relaxation search takes
place prior to episode T1.

do not compromise the relaxation search. The relaxation search can be compromised

when an average payoff increases significantly during (or after) the relaxation search.

For example, consider the payoff matrix of a hypothetical stage game shown in

Figure 6.3. Let the payoff matrix shown in Figure 6.3(a) give the payoffs of the stage

game at episode T0, and let the payoffs shown in Figure 6.3(b) be the payoffs of

the same stage game at episode T1 > T0 (note that this stage game is a prisoner’s

dilemma). In the stage game shown at episode T0, a good compromise (and the one

often learned by M-Qubed when ωi > 1) consists of the agents learning to alternate

between the solutions (c, d) and (d, c), which yields an average payoff of 2.5 for each

agent. A more profitable compromise can be reached at episode T1, since the solution

(c, c) yields a payoff of 3 to each agent at this time. However, if the agents stop

exploring prior to episode T1 then the agents may not learn this more profitable

compromise.

Thus, in order to avoid convergence to undesirable (less profitable) solutions in

stochastic games, M-Qubed must be extended so that strategies in (certain) subse-

quent stages converge before it stops exploring in the current stage. Doing so enables

the payoff matrix of a stage to become nearly stationary, or at least stationary in

relevant entries; we call this pseudo-stationarity. In order to achieve this, we require

M-Qubed to restart its learning process in a stage whenever the stage’s payoff ma-

trix violates the pseudo-stationarity property. Additionally, M-Qubed in stochastic

games estimates the potential payoffs of subsequent stages, as these potential payoffs

can indicate when the agent should continue to explore (with some probability η) in

a given stage. We describe these extensions in greater detail in Section 6.5.2.

6.5 M-Qubed in Stochastic Games: Formal Algorithm

In this section, we formally present extensions to M-Qubed to make it suitable

for repeated stochastic games. These extensions take place in two phases. In the

first phase (called the sampling phase), M-Qubed estimates its mean payoffs µt
i(σ, a).

The second phase is the learning phase. In this phase, M-Qubed learns in much the

same way as it did in the previous chapter. However, various techniques must be used

121



in this phase so that M-Qubed does not converge until strategies have converged in

(relevant) subsequent stages.

As these discussions require a heavy use of terms that we have already defined (or

will define), we provide Table 6.1 as a reference for these terms and their definitions.

6.5.1 Using Samples to Estimate Current Average Payoffs

A sample from the random variable Rt
i(σ, a) is obtained in each episode in which

the joint action a is taken in stage σ ∈ Σ. Denote this sample rt
i(σ). In this sub-

section, we describe how µt
i(σ, a) can be estimated from samples of the distribution

Ri(σ, a). First, we discuss the credibility of a sample. Second, we discuss how samples

and credibility can be combined to update µt
i(σ, a). Third, we discuss a criteria for

sampling µt
i(σ) (the mean payoff matrix) sufficiently before learning begins in stage σ.

We say that learning has begun in stage σ when Q-values are initialized to µmax
i (σ).

Credibility

Credibility is an estimate of how likely rt
i(σ) is a sample taken from the final

distribution of Ri(σ, at(σ)) after play has converged in all stages. We say that strate-

gies have converged in stage σ if πt(σ, h(σ, ωi))) = πj(σ, h(σ, ωi)) for all j ≥ T and

all histories h(σ, ωi). This includes exploration. We now describe the way in which

M-Qubed estimates the credibility of the sample rt
i(σ).

Let κt
i(σ) be agent i’s estimate of the credibility of the joint strategy πt(σ), which

determines the joint action played in stage σ of episode t. Thus, κt
i(σ) is an estimate

of the probability that πt(σ) will be the joint strategy played by the agents in stage

σ when the strategies of all agents have converged in this stage. M-Qubed estimates

κt
i(σ) as

κt
i(σ) =

{
1 if πt

i(σ) is reliable
1

|Ai(σ)| otherwise
(6.4)

where reliability is an estimate of whether agent i’s strategy πt
i(σ) has converged

(which we discuss in Section 6.5.3). Thus, when the agent’s strategy appears to have

converged, then the credibility of the joint strategy is 1. Otherwise, the agent is

considered to be exploring, meaning that the joint action has a random chance of

being a sample drawn from the final joint strategy. Thus, κt
i(σ) = 1

|Ai(σ)| in this

situation5.

Notice that Equation (6.4) uses only agent i’s strategy πt
i(σ) in determining re-

liability rather than the joint strategy πt(σ). This is permissible since M-Qubed’s

5In Section 6.5.1, we modify κt
i(σ) (slightly) in the event that strategies do not converge in stage

σ.
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Variable Meaning
t The current episode.
lt The number of stages played in episode t.
σt

τ The τ th stage of episode t.
at(σ) The joint action of the n agents in stage σ of episode t.
at

i(σ) The action taken by agent i in stage σ of episode t.
πt(σ) The joint strategy taken by the agents in stage σ of episode t.

The immediate payoff of agent i in episode t when the joint action
νt

i (σ) at(σ) is played in stage σ. Note that νt
i (σ) is a sample taken

from the distribution Ni(σ, at(σ)).
Ri(σ) Player i’s (time generic) payoff matrix for the stage σ.

Ri(σ, a) The (time generic) payoff random variable to agent i in stage σ for
the joint action a.

Rt
i(σ) Player i’s payoff matrix on episode t for the stage σ.

Rt
i(σ, a) The payoff random variable to agent i on episode t in stage σ for

the joint action a.
The stage payoff for player i on episode t when the joint action a is

rt
i(σ) played in stage σ. rt

i(σ) is a sample taken of the random
variable Rt

i(σ, at(σ)).
µt

i(σ, a) E[Rt
i(σ, a)], where E[·] denotes an expected value.

µt
i(σ) The payoff matrix with entries µt

i(σ, a) for all a ∈ A(σ).
mt

i(σ) Agent i’s estimated minimax value in stage σ at episode t.
πm

i (σ; t) Agent i’s estimated minimax strategy in stage σ at episode t.
ht(σ, ωi) The previous ωi joint actions played in stage σ prior to episode t.

πt
i(σ, ht(σ, ωi)) Agent i’s strategy in stage σ at episode t given the history of joint

actions defined by ht(σ, ωi).
κt

i(σ) Agent i’s estimate of the credibility of the joint strategy πt(σ)
Kt

i (σ) Agent i’s estimate of the credibility of the sample rt
i(σ).

The accumulated credibility to agent i for the joint action a in
Ψt

i(σ, a) stage σ from episode at which the agent begins to sample its
environment through the current episode t.

θI The accumulated credibility needed to sample µt
i(σ, a) sufficiently.

Ωt
i(σ) The set of relevant actions in stage σ at episode t for agent i.

ζt
i (σ) Agent i’s estimate at episode t of the payoffs it will receive in stage σ

when play has converged (in all stages).
εt

i(σ, a) The error tolerance for ε-stationarity for (σ, a) at episode t.
t0i (σ) The episode in which agent i last initialized its Q-values (i.e., began

learning) in stage σ.
M t

i (σ) Agent i’s potential matrix at episode t.
Θt(σ) The set of joint actions a for which M t

i (σ, a) > µt
i(σ, a) + φ.

Θt
i(σ) The set of agent i’s actions corresponding to the joint actions in Θt(σ).

Table 6.1: Various terms and their definitions.
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learned strategies are generally dependent on the strategies of other agents in re-

peated games. Thus, an agent can assume that as its strategies converge, so will the

strategies of other agents. This makes an agent’s own strategies an adequate estimate

of the reliability of the joint strategy currently being played.

The credibility of the sample payoff rt
i(σ

t
τ ) is derived from the credibility of joint

strategies used in the subsequent stages of an episode. Let Kt
i (σ

t
τ ) be agent i’s estimate

of the credibility of the sample rt
i(σ

t
τ ). Then, Kt

i (σ
t
τ ) is given by

Kt
i (σ

t
τ ) =

{
1 if πt

i(σ) is reliable∏lt
j=τ+1 κt

i(σ
t
j) otherwise

(6.5)

Thus, the credibility of a sample is 1 if the agent considers its strategy to be reliable.

Otherwise, it is the product of the credibilities of joint strategies in subsequent stages.

Thus, joint actions that lead to stages with converged policies will produce highly

credible samples. On the other hand, those joint actions that lead to stages in which

policies have not converged will produce less credible samples6.

In addition to assisting in estimating µt
i(σ, a), credibility has a role in updating

Q-values and in determining whether a distribution has been sampled sufficiently (see

Section 6.5.1).

We are now ready to describe how µt
i(σ, a) is estimated.

Using Samples to Estimate Payoffs

After each episode t in which σ ∈ Σ is visited, each agent i can update its estimate

of the mean payoff µt
i(σ, at(σ)) using

µt+1
i (σ, at(σ)) =

(
1− λµ

i (σ, t)Kt
i (σ)

)
µt

i(σ, at(σ)) + λµ
i (σ, t)Kt

i (σ)rt
i(σ) (6.6)

where λµ
i (σ, t) ∈ (0, 1]. Thus, the estimated mean is sequentially updated using a

convex combination of old estimates and new information.

Sampling Sufficiently Prior to Learning

In the previous chapter, we assumed knowledge of µt
i(σ). However, in stochastic

games, µt
i(σ) is not immediately available. Since M-Qubed must initialize its Q-values

to
µmax

i (σ)

1−γi
, it must (at the least) know µmax

i (σ) before it officially begins learning.

This is achieved by estimating µt
i(σ) during an exploration period prior to beginning

learning.

There are two central questions concerning the exploration (or sample) phase.

First, how can an agent determine when it has sufficiently explored (i.e., sampled)

the environment so that it has an accurate estimate of µmax
i (σ)? Second, how should

6We note that [29] attempts a Bayesian approach for estimating the credibility of a sample when
learning using Q-learning.
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an agent act during this exploration period to ensure that the state space is adequately

sampled? We answer these two questions in the following discussion.

First, we define the notion of accumulating credibility. Let T
tq
tk

(σ, a) be the set of

episodes in which the joint action a is taken in stage σ. Then, we say that a joint

action a in state σ accumulates X units of credibility between episode tk and tq (where

tq > tk) if ∑
j∈T

tq
tk

(σ,a)

Kj
i (σ) ≥ X (6.7)

where Kj
i (σ) is the credibility of the sample obtained in stage σ of episode j.

Let Ψt
i(σ, a) be the accumulated credibility to agent i for the joint action a in stage

σ from the episode at which the agent begins to sample its environment through the

current episode t. Thus, the higher the value of Ψt
i(σ, a), the more sure the agent

becomes of its estimate of µt
i(σ, a) (provided that the distribution Ri(σ, a) has not

changed). M-Qubed begins the learning process (i.e., initializes all of its Q-values to
µmax

i (σ)

1−γi
) when Ψt

i(σ, a) ≥ θI for some a ∈ A(σ).

The notion of accumulation of credibility allows us to alter (slightly) how M-

Qubed estimates the credibility of the joint strategy played in the stage σ in episode t

(κt
i(σ)). When a joint strategy does not converge in a stage for long periods of time,

then one might say that the agents’ strategies have become “reliably unreliable” in

this stage. This suggests that κt
i(σ) should be considered more reliable if play has

not converged in this stage while it has accumulated large amounts of credibility. To

reflect this, we change κt
i(σ) (from Equation (6.4)) to be

κt
i(σ) =

{
1 if πt

i(σ) is reliable

min
(
1, 1

|Ai(σ)| +
Ψt

i(σ,a)

C

)
otherwise

(6.8)

where C is a large constant. Note that this equation is identical to Equation (6.4)

except that when the joint strategy appears unreliable, the term
Ψt

i(σ,a)

C
is added to

the random term 1
|Ai(σ)| . If the accumulated credibility Ψt

i(σ, a) is small, then this

change does not affect κt
i(σ) significantly. However, in the event that play does not

converge for long periods of time, this assures that κt
i(σ) will eventually go to 1, which

is necessary to ensure that the payoff matrix is eventually estimated accurately.

The second question, that of how an agent should act while sampling Ri(σ), ties

into the trade-off between exploration and exploitation. Since an agent is mostly

concerned during this time period with determining µmax
i (σ), it should (in order to

learn quickly) sample the actions that appear to produce the highest payoffs more

often than those that appear to produce lower payoffs. At the same time, the agent

must be careful to explore all actions sufficiently so that it does not underestimate

µmax
i (σ).
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In stochastic games, M-Qubed uses a relaxation search to explore the outcomes

of actions in each stage. It does this, as before, by initializing its Q-values to a very

high value, and then learning (i.e., updating Q-values) as it would normally. For

the duration of this sampling period, M-Qubed’s Q-values must remain greater than
µmax

i (σ)

1−γi
to ensure that each stage’s payoff matrix is sampled sufficiently. Otherwise,

M-Qubed might become satisfied with a solution during the sampling period, which

could cause it to cease sampling its environment prematurely.

During the sampling period of a stage (let this stage be σ), Q-values are updated

at the end of each episode that σ is visited as follows:

Qt+1
i (st(σ), at

i) = (1− αt
i(σ))Qt(s

t(σ), at
i) + αt

i(σ)
[
rt
i(σ) + γiV

t
i (st+1(σ))

]
(6.9)

where st(σ) is the ordered pair (σ, ht(σ, ωi)) (where ht(σ, ωi) is the previous ωi joint

actions taken in stage σ), αt
i(σ) = αiK

t
i (σ), and

V t
i (st+1(σ)) =

∑
bi

πt
i(s

t+1(σ), bi)Q
t
i(s

t+1(σ), bi) (6.10)

where πt
i(s

t+1(σ), bi) is the strategy that agent i expects to play in the next episode

that it visits stage σ given the history ht+1(σ, ωi). The differences between this

Q-update and the one used for matrix games (in the previous chapter) are a) the

sample reward rt
i(σ) is used rather than the mean µt

i(σ, at(σ)) and b) the learning

rate is multiplied by the sample’s credibility.

We note that using the sample reward rt
i(σ) and multiplying the learning rate

by the credibility is necessary until µt
i(σ, at(σ)) can be determined with sufficient

confidence, at which point M-Qubed updates its Q-values using

Qt+1
i (st(σ), at

i) = (1− αi)Qt(s
t(σ), at

i) + αi

[
µt

i(σ, at(σ)) + γiV
t
i (st+1(σ))

]
(6.11)

which is identical to the Q-update used in the previous chapter. We begin using

this Q-update equation (rather than the one given in Equation (6.9) when the state-

joint action pair (σ, at(σ)) has accumulated θI units of credibility. Thus, in essence,

Equation (6.9) is the Q-update for the sampling phase and Equation (6.11) is the

Q-update for the learning phase.

Two rules must be followed to ensure that the relaxation search during the explo-

ration period adequately samples the agent’s environment. They are as follows:

• During the sampling period, ωi = 0. This causes the agent to explore the poten-

tial of each action more thoroughly before it accumulates θI units of credibility.

• Only the first visit to a stage in an episode should result in parameter updates.

This means that, in subsequent visits to a stage within an episode, the “optimal”

policy (i.e., the action with the highest Q-value) need not be used. Rather, if

the policy being used in a stage is not reliable, the agent should use a random

policy on subsequent visits so that the episode will eventually terminate.
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6.5.2 Avoiding Premature Convergence

The second challenge of extending M-Qubed to stochastic games is ensuring (in

each stage of the game) that M-Qubed does not converge prematurely. That is,

M-Qubed must not converge in any stage until (relevant) subsequent stages have

converged. Otherwise, M-Qubed is likely to converge to undesirable strategies since

it stops exploring when it becomes satisfied.

When the agent’s strategies have converged in (relevant) subsequent stages of

stage σ, then relevant entries of the payoff matrix of stage σ will be stationary. We

call this kind of payoff matrix pseudo-stationary, a term which we will define formally

in Section 6.5.2.

In addition to the extension presented in the previous subsection, we extend M-

Qubed in two other ways so that strategies in (relevant) subsequent stages converge

before the strategy in the current stage. First, we modify M-Qubed so that it restarts

the learning process in a stage whenever that stage’s payoff matrix violates the prop-

erty of pseudo-stationarity. We describe this extension in Section 6.5.2. Second, we

extend M-Qubed to estimate the potential payoffs of subsequent stages, as these es-

timates of potential payoffs can indicate when the agent should continue to explore

(with some probability) in a given stage. We discuss this extension in Section 6.5.2.

Pseudo-Stationarity

In this chapter, we have discussed the stationarity of payoff matrices. Formally,

we consider the payoff matrix Ri(σ) to be stationary if, for all a ∈ A(σ) and for all

j < t, µj
i (σ, a) − µt

i(σ, a) = 0. We say that Ri(σ) is ε-stationary if, for all a ∈ A(σ)

and for all j < t, |µj
i (σ, a) − µt

i(σ, a)| ≤ ε for some ε > 0. In general, we say that

Ri(σ) is stationary if it is ε-stationary for some small ε.

Since Ri(σ) is often non-stationary in stochastic games until the joint strategies

of all (possible) subsequent stages have converged, it is tempting to delay learning in

each stage σ ∈ Σ until Ri(σ) becomes stationary.7 Unfortunately, this is not possible

(for all σ) since the payoffs of neighboring stages depend upon each other’s converged

strategies.

However, it is possible to ensure that some of the entries of Rt
i(σ) are station-

ary while M-Qubed learns in stage σ. Thus, rather than requiring that |µj
i (σ, a) −

µt
i(σ, a)| ≤ ε for all a ∈ A(σ) and j < t, we can require that |µj

i (σ, a)− µt
i(σ, a)| ≤ ε

for the more relevant joint actions (for all j > t). That is, let Ωt
i(σ) ⊂ A(σ) be the

subset of relevant joint actions in stage σ. Then Rt
i(σ) is pseudo-stationary if, for all

a ∈ Ωt
i(σ) and all t0i (σ) < j ≤ t (where t0i (σ) is the episode at which agent i initialized

its Q-values in σ), |µj
i (σ, a)−µt

i(σ, a)| ≤ εt
i(σ, a), where εt

i(σ, a) is some positive value

(possibly unique to the stage-joint action pair (σ, a)).

7We say that a stage begins learning when it initializes its Q-values to µmax
i (σ)
1−γi

.
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c d
c 1 0
d 5 1

c d
c 3 0
d 5 1

(a) (b)

Figure 6.4: (a) Payoff matrix of agent i of a stage game at episode T0. (b) Payoff
matrix (of agent i) of the same stage game at episode T1 > T0. If the threshold
ζt
i (σ) > 3 for all t ≤ T1, then this payoff matrix is pseudo-stationary.

We must now define relevance. Let ζt
i (σ) be agent i’s estimate (at episode t) of the

average reward that it will receive in stage σ when play has converged in all stages.

A joint strategy a is relevant if µt
i(σ, a) > ζt

i (σ) + εt
i(σ, a). Thus, Ωt

i(σ) is given by

Ωt
i(σ) = {a : µt

i(σ, a) > ζt
i (σ) + εt

i(σ, a)} (6.12)

We describe how ζt
i (σ) and εt

i(σ, a) are determined later in this section.

For an example of pseudo-stationarity, consider Figure 6.4(a), which shows agent

i’s payoff matrix in a particular stage of episode T0. Suppose, after episode T0,

that agent i’s payoff for the solution (c, c) gradually changes over time until at some

episode T1 > T0, its payoff matrix in this stage is as shown in Figure 6.4(b). If agent

i estimates, for all t ≤ T1, that its average reward will be greater than 3 − εt
i(σ, a)

when policies have converged in all stages (i.e., ζt
i (σ) > 3 − εt

i(σ, a) for all t ≤ T1),

then this payoff matrix is pseudo-stationary (at least through episode T1).

We note that the definition of relevance just given is not suitable for instances

in which an agent plays its minimax strategy πm
i (σ; t). When an agent’s current

strategy is πm
i (σ; t), then the agent’s minimax value mt

i(σ) is also relevant. Thus,

in this circumstance, a payoff matrix is not pseudo-stationary if changes in Ri(σ)

increase mt
i(σ) by more than εt

i(σ, a).

When Ri(σ) is pseudo-stationary, M-Qubed is not guaranteed to learn as effec-

tively as it does in matrix games since pseudo-stationarity does not guarantee that

strategies have converged in (relevant) subsequent stages. It only indicates that strate-

gies in (relevant) subsequent stages are currently producing (for agent i) samples from

a nearly stationary distribution. Thus, if M-Qubed converges prematurely (even if

its payoff matrix is currently pseudo-stationary), it can learn behaviors that produce

low payoffs. Thus, we will introduce additional exploration methods shortly.

We note that the extensions of M-Qubed described in Section 6.5.1 (the previ-

ous subsection) do appear to be sufficient for learning in deterministic single-agent

games. To see this, consider Figure 6.5(a), which illustrates a simple single-agent

maze game. This game has identical physics to the world shown in Figure 6.2. The

order in which M-Qubed’s strategies converge in each stage in this game is shown

in Figure 6.5(b). In the figure, darker colors indicate that convergence occurred at
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(a) (b) (c)

Figure 6.5: (a) A simple single-agent grid world game. (b) The order in which the
strategy in the stages converged. Darker shading indicates later convergence times. A
× indicates that convergence never occurred in that stage. (c) The converged policies
when learning began in stage σ1,4 (marked by the O). Arrows indicate converged
policies. These results were generated using θI = 40.

later times. Figure 6.5(c) shows the agent’s converged strategies at the episode that

Q-values were initialized in stage σ1,4 (marked by the O). When the agent takes the

actions N or E (the agent’s optimal policies that it eventually learns) in this stage,

the strategies (indicated by the arrows) in all subsequent stages of the current episode

have converged. Thus, Ri(σ1,4) is pseudo-stationary while it is learning.

However, in multiagent environments as well as single-agent environments in which

the world is non-deterministic, the extensions of Section 6.5.1 are not sufficient (al-

though they do help).

Restarting Learning

As before, let t0i (σ) be the episode at which agent i begins learning in stage σ.

Then, if Rt
i(σ) violates the property of pseudo-stationarity for any t > t0i (σ), then

M-Qubed restarts the learning process in stage σ. Restarting the learning process

includes re-sampling the environment as discussed in Section 6.5.1, meaning that

Ψt
i(σ, a), agent i’s accumulated credibility in stage σ for the joint action a, is set to

0 for each a ∈ A(σ).

The payoff matrix of a stage game is pseudo-stationary when joint strategies in

future stages (at least those reached by relevant8 joint actions) have converged. Thus,

a restart in a stage occurs when joint strategies in these future stages are changing

(and, thus, have not converged). Thus, a learning restart allows joint strategies in

subsequent stages more time to converge before learning is again attempted in stage σ.

The result of this process is that in multiagent and/or nondeterministic environments,

8Recall that relevance in stage σ is dependent on the variable ζt
i (σ). We discuss how ζt

i (σ) is
derived later in this section.
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as in single-agent deterministic worlds, strategies in stages closer to goals typically

converge before strategies in stages further from goals.

A challenge of restarting learning when the payoff matrix of a stage violates the

pseudo-stationarity property occurs when (relevant) payoffs in adjacent stages are

dependent on each other’s strategies. In this case, the two stages might take turns

restarting, and, thus, neither would ever converge. Because of this possibility, εt
i(σ, a)

(which is agent i’s error tolerance at episode t for the mean payoff µt
i(σ, a)) is increased

over time based on a) the number of times that agent i has restarted learning in σ

up to the current episode t and b) the number of times that it restarted learning

when its estimate of converged payoffs was similar to the agent’s current estimate of

converged payoffs (ζt
i (σ)). In this way, the requirements of pseudo-stationarity can

be relaxed over time (if necessary) until the strategies of the agents in both stages

are able to converge.

Formally, let υi be agent i’s initial tolerance for error given by

υi = p0
i

(
µmax

i (σ)− µmin
i (σ)

)
(6.13)

where p0
i ∈ (0, 1) is a constant. Let Di(σ) = (d0, d1, · · · ) be the times at which agent

i has restarted the learning process in stage σ, where dj is the episode of the jth

restart. Also, let ci(σ, ζt
i (σ)) be the number of restarts by agent i in stage σ such that

(µt
i(σ, at(σ) − ζ

dj

i (σ)) < υ|Di(σ)|, where |Di(σ)| is the number of times that agent i

has restarted the learning process in stage σ. Then, εt
i(σ, a) is given by

εt
i(σ, a) = υBci(σ,ζt

i (σ)) (6.14)

where B > 1 is a constant.

Estimating Potential and Adding Policy Trembles

M-Qubed explores its environment largely by initializing its Q-values high and

then relaxing them with experience. Additionally, in matrix games (as we saw in the

previous chapter) M-Qubed trembles its policy with probability ηi if it believes that

another policy has greater potential than its current policy (see Section 5.5.3).

In stochastic games, M-Qubed trembles its policy with an additional probability

ηP
i when it perceives that payoffs obtained by acting in subsequent stages might

improve over time. It does this by constructing a potential matrix M t
i (σ) for each σ ∈

Σ and comparing relevant entries of its potential matrix to the estimated mean payoff

matrix µt
i(σ). M-Qubed guesses that policies in subsequent states might improve

when there exists a joint action a ∈ A(σ) such that M t
i (σ, a) > µt

i(σ, a) + φ (where

φ is a small positive constant) and M t
i (σ, a) > ζt

i (σ) + εt
i(σ, a). In words, M-Qubed

guesses that its policies in subsequent states might improve if there is a solution that

has a potential payoff higher than its actual estimated payoff, and this solution is
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potentially relevant. In such cases, M-Qubed trembles its strategy to play its portion

of one such joint action with probability ηp
i .

More formally, let Θt(σ) be the set of joint actions a ∈ A(σ) for which M t
i (σ, a) >

µt
i(σ, a) + φ and M t

i (σ, a) > ζt
i (σ) + εt

i(σ, a). Let Θt
i(σ) be the set of player i’s actions

corresponding to the joint actions in Θt(σ). That is, Θt
i(σ) is the set of actions

ai ∈ Ai(σ) such that M t
i (σ, (ai, a−i)) > µt

i(σ, (ai, a−i)) + ε for some a−i ∈ A−i(σ).

Then, with probability ηp
i , player i plays action ai ∈ Θt

i(σ) with probability 1
|Θt

i(σ)| ,

where |Θt
i(σ)| is the cardinality of Θt

i(σ). Like ηi, ηp
i should be decayed slowly over

time.

Because of this additional random exploration, if M t
i (σ) adequately (or optimisti-

cally) estimates the potential of subsequent states, its avoids converging prematurely.

Thus, it is better for M t
i (σ, a) to overestimate the potential payoffs of subsequent

states than to underestimate them, although M t
i (σ, a) should approach µt

i(σ, a) (from

above) as t→∞.

The potential matrix M t
i (σ, a) is updated in each episode that a is played in stage

σ using

M t
i (σ, a) =

(
1− λm

i (σ, t)Kt
i (σ)

)
M t−1

i (σ, a) + λm
i (σ, t)Kt

i (σ)
(
νt

i (σ) + ζt
i (σ

t
τ+1)

)
(6.15)

where λm
i (σ, t) ∈ (0, 1] and σt

τ+1 is the subsequent state. Thus, this is a traditional

convex combination form of a sequential estimate.

Recall that ζt
i (σ) is the value for determining relevance in stage σ. Hence, when

ζt
i (σ) is optimistic, M t

i (σ, a) will usually be greater than µt
i(σ, a) (at least until the

joint strategies in subsequent stages converge).

Thus, ζt
i (σ) takes on one of two optimistic values, depending on the state of

the learning process. If maxa∈A(σ) Ψt
i(σ, a) < θI , then ζt

i (σ) = maxa∈A(σ) M t
i (σ, a).

In words, if the stage has not been sufficiently sampled (it is still in the sampling

period), then ζt
i (σ) is the maximum potential payoff in the stage. However, if the

sampling period is completed (and learning has begun), ζt
i (σ) is given by ζt

i (σ) =

maxai∈Ai(σ),h∈Ht−1
t−T (σ) Qt

i(σ, h, ai), where H t−1
t−T (σ) is the set of histories seen in σ in the

previous T episodes that σ has been visited. Note that in most cases, ζt
i (σ) will be

equal to the highest global Q-value in stage σ (if T is big enough). However, this will

not always be the case since a given history of joint actions might be unreachable due

to the strategies used by other agents.

Formally, ζt
i (σ) is given by

ζt
i (σ) =

{
maxa∈A(σ) M t

i (σ, a) if maxa∈A(σ) Ψt
i(σ, a) < θI

maxai∈Ai(σ),h∈Ht−1
t−T (σ) Qt

i(σ, h, ai) otherwise
(6.16)

As we discussed previously, after each episode in which a is played in stage σt
τ , the

potential payoff M t
i (σ

t
τ , a) is updated using the potential estimate of the next stage,

which is ζt
i (σ

t
τ+1). However, when Q-values are re-initialized after learning restarts in
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stage σ (after its sample period), ζt
i (σ) can change suddenly (usually in the upward

direction). As a result, potential payoffs estimated in adjacent stages that were based

(in part) on previous values of ζt
i (σ) can become pessimistic unless they are corrected.

Hence, we must have a method for correcting pessimistic potential payoff esti-

mates. Let Zσ
i (ϑ, a) be the average value of ζt

i (σ) used to update the potential

payoff M t
i (ϑ, a) (where ϑ ∈ Σ) in past episodes and let Υσ

i (ϑ, a) be the percentage

of M t
i (ϑ, a) that has been influenced (by updates using Equation (6.15)) by past es-

timates of ζt
i (σ).9 Then, when Q-values are re-initialized in stage σ, the following

correction is made

M t
i (ϑ, a) = M t

i (ϑ, a) +
(
ζt
i (σ)−Zσ

i (ϑ, a)
)
Υσ

i (ϑ, a) (6.17)

Thus, M t
i (ϑ, a) is changed to reflect the idea that the stage σ always had a potential

of ζt
i (σ). Note that this correction must be made for each (ϑ, a) that the stage σ has

influenced.

We have previously used the term reliability, which estimates whether or not

a strategy has converged in a given stage. We now describe how this estimate is

constructed.

6.5.3 Reliability

Reliability estimates whether a strategy has converged in a given stage σ. M-

Qubed uses two different indicators to determine the reliability of a stage’s current

strategy. They are a) how much credibility has accumulated since a strategy for

any ht(σ, ωi) ∈ H t(σ, ωi) last changed in episode tc and b) whether or not there

exists a joint action a ∈ Ωt
i(σ) such that M t

i (σ, a) > µt
i(σ, a) + ε (i.e., whether

potential estimates reflect actual payoffs). If the stage has accumulated TC units of

credibility since episode tc and there does not exist a joint action a ∈ Ωt
i(σ) such that

M t
i (σ, a) > µt

i(σ, a) + ε, then the strategy in that stage is considered reliable.

6.5.4 Algorithm Summary

We have now formal described how M-Qubed is extended to repeated stochastic

games. In this subsection, we summarize the algorithm. First, we review the exten-

sions discussed in this chapter. Second, we discuss how these extensions do not affect

M-Qubed’s behavior is matrix games. Third, we discuss how these extensions affect

how an agent selects its actions in the stage game. Fourth, we review the parameters

that must be updated (at the end of the episode) in each stage visited in the episode.

9Note that both Zσ
i (ϑ,a) and Υσ

i (ϑ,a) should be updated after each update of M t
i (σ,a).
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Extensions Summary

As described in this section, M-Qubed (as described in the previous chapter)

must be extended in three ways so that it can learn successfully in the stage game of

a stochastic game. We now review these extensions.

First, since an agent’s payoff matrix of a stage of a stochastic game is unknown,

it must be estimated using sample payoffs obtained from acting in the environment.

This can be a difficult task, however, since the payoff matrix can be non-stationary

due to its dependence on joint strategies played in subsequent stages of an episode.

Because of this, M-Qubed associates a measure of credibility to each sample payoff,

which is used to determine how the sample payoff should affect the agent’s mean

payoff estimate. Credibility is also used to determine when the payoff matrix has

been sufficiently sampled so that learning can begin in this stage. These extensions

to M-Qubed were described in Section 6.5.1.

Second, since the payoff matrix of a stage game is non-stationary, various measures

must be taken to ensure that M-Qubed does not stop exploring prematurely. One

method used by M-Qubed to avoid premature convergence is to require that its payoff

matrix be pseudo-stationary while it learns. A pseudo-stationary matrix has certain

(relevant) entries that remain nearly stationary. If the payoff matrix of the stage game

violates the property of pseudo-stationarity any time after learning has begun, then

M-Qubed restarts the learning process in this stage (which begins by re-sampling the

environment). These extensions are given in Section 6.5.2.

The third extension of M-Qubed that we have discussed in this section is also

made to ensure that M-Qubed’s strategy does not converge prematurely in any stage.

This extension involves estimating a potential payoff matrix, which estimates the

potential payoffs that joint actions from a given stage will produce when the strategies

of subsequent stages converge. If entries of the potential payoff matrix exceed the

agents actual estimates (generated by sample payoffs), then M-Qubed explores its

environment with additional probability. In this way, M-Qubed can avoid converging

prematurely to strategies that produce undesirable payoffs.

Matrix Games Revisited

We now discuss how these extensions affect M-Qubed’s behavior in matrix games

(from what we saw in the previous chapter), which are a special class of stochastic

games.

In the previous chapter, we assumed that the agent knew its payoff matrix prior

to learning. However, in this chapter we have assumed that the payoff matrix is

unknown. Thus, M-Qubed must estimate its payoff matrix during an exploration

period prior to learning. However, if M-Qubed samples its payoff matrix sufficiently,

then the other extensions (presented in this chapter) do not change the behavior of

M-Qubed in matrix games (as presented in the previous chapter).
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To see this, consider each extension made to the algorithm. The first extension

which we consider is credibility, which affects how parameters are updated. However,

in matrix games, there are no subsequent states, so the credibility of each sample is

1. Thus, credibility does not affect M-Qubed in matrix games.

Second, we consider how restarts affect M-Qubed. M-Qubed restarts the learn-

ing process whenever its payoff matrix appears to violate the property of pseudo-

stationarity. However, in matrix games, the payoff matrix is stationary, so it is also

pseudo-stationary. Thus, if the environment is sampled sufficiently prior to learning,

then M-Qubed will never restart its learning process in matrix games. Thus, restarts

do not change the behavior of M-Qubed in matrix games.

Lastly, we consider how potential payoff estimates affect the behavior of M-Qubed

in matrix games. Since matrix games do not have subsequent states in an episode, the

potential payoff estimate will be identical to the actual payoff estimates if the payoff

matrix has been sampled sufficiently and if λµ
i (σ, t) = λm

i (σ, t) (see Equations (6.6)

and (6.15)). Since both λµ
i (σ, t) and λm

i (σ, t) should approach zero (or some low

value) as time goes on, this requirement is fulfilled. Thus, this extension does not

affect M-Qubed’s exploration strategies in matrix games.

Hence, this extended version of M-Qubed behaves the same in matrix games as

the algorithm presented in the previous chapter.

The extensions presented in this chapter introduce changes in both the action

selection and parameter update components of the algorithm. We now review these

changes.

Action Selection

M-Qubed determines its strategy in a stage of a stochastic game in the same way

as explained in the previous chapter (see Section 5.5.2), with two exceptions. The

first difference has to do with the treatment of multiple visits to a stage during an

episode. The second difference is the additional exploration introduced by differences

between the potential payoff matrix M t
i (σ) and the actual mean payoff matrix µt

i(σ).

While an agent is learning in stochastic games, its current strategies do not always

result in the agent entering a goal state. Thus, to avoid long cycles in an episode, an

agent acts randomly when it visits a stage for a second (or more) time in an episode.

The exception to this rule is when the agent believes that its policy in a stage is

reliable (see Section 6.5.3), at which time the agent acts according to its current

strategy.

When the potential payoff matrix M t
i (σ) and the actual mean payoff matrix µt

i(σ)

do not agree, M-Qubed explores its environment with higher probability than other-

wise. Otherwise, it selects a strategy according to the rules defined in the previous
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chapter. Thus, M-Qubed in stochastic games selects its strategy in the following way:

πt
i(σ, ht(σ, ωi))→

{
rand(Θt

i(σ)) w/ prob ηP
i when Θt

i(σ) 6= ∅
Equation 5.12 otherwise

(6.18)

where rand(Θt
i(σ)) is a random selection from the set Θt

i(σ) (which is defined formally

in Section 6.5.2).

We note one other exception, which is not reflected in Equation (6.18). This

exception is strategy selection during the exploration (or sampling) period. During

this period, M-Qubed’s actions are determined solely by its Q-values (it does not

explore its environment). Thus, in these cases, πt
i(σ, ht(σ, 0)) is given by

πt
i(σ, ht(σ, 0))→ argmax

ai∈Ai(σ)

Qt
i(σ, ht(σ, 0), ai) (6.19)

Note the use of ωi = 0, which is in accordance with our discussion in Section 6.5.1.

Parameter Updates

At the end of each episode t that stage σ is visited, M-Qubed in stage σ updates

the following parameter values:

• M t+1
i (σ, at(σ)) using Equations (6.15) and (6.17)

• µt+1
i (σ, at(σ)) using Equation (6.6)

• ζt+1
i (σ) using Equation (6.16)

• πt+1
i (σ, ht(σ, ωi)) using Equation (6.18) or Equation (6.19) (depending on whether

or not the sample period is complete)

• Ψ(σ, at+1(σ)) as discussed in Section 6.5.1

• Qt+1
i (σ, ht(σ, ωi), a

t
i(σ)) using Equation (6.11) if Ψt+1

i (σ, at(σ)) ≥ θI or Equa-

tion (6.10) otherwise

• mt+1
i (σ)

• πm
i (σ; t + 1)

• β́t+1
i (σ) and βt+1

i (σ) as in the previous chapter.

We emphasize that these updates only occur for the first visit to each stage in the

episode.
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Name Parameter details

M-Qubed αi = 0.1, γi = 0.95, ωi = 1, θI = 20,
ηi = 0.04

(
20000

20000+t

)
, λ = 0.01αi

µmax
i −µmin

i
,

p0
i = 0.02 (see Equation (6.13)),

B = 1.5 (see Equation (6.14)),

λµ
i (σ, t) = max

(
0.01, 1

Ψ(σ,at(σ))

)
(see Equation (6.6)),

λm
i (σ, t) = max

(
0.01, 1√

Ψ(σ,at(σ))

)
(see Equation (6.15))

WoLF-PHC αi = 1/(10 + 0.001κai
s ), γi = 0.95,

δw = 1/(1000.0 + κ
ai
s

10
), δl = 4δw

Table 6.2: Learners and their parameter values. κai
s is the number of times that action

ai has been played in state s.

6.6 Results

Our extension of M-Qubed to stochastic games requires the use of several addi-

tional free parameters. Each one of these parameters has been designed to deal with

one or more challenges of learning in stochastic games. In this section, we demon-

strate that these parameters can be set so that M-Qubed displays the security and

compromise/cooperate properties (at least in self play) in many stochastic games. We

note that, while the behavior of the algorithm does not seem to change significantly

with small changes in parameter values in most situations, these results might not

hold for all sets of parameter values. However, we do not include a complete analysis

of how these free variables affect the performance of the algorithm.

In this section, we compare the performance of M-Qubed in self play with the

performance of WoLF-PHC in self play in a number of stochastic games. We choose to

compare the performance of M-Qubed to WoLF-PHC since WoLF-PHC demonstrates

typical behavior of multiagent learning algorithms found in the literature in these

games. Unless stated otherwise, all results in this chapter are generated using the

parameter values shown in Table 6.2.

A number of stochastic games have been presented and analyzed in recents years.

These games have similar characteristics to the matrix games we have analyzed in past

chapters. We describe five of these games and compare the performance of M-Qubed

and WoLF-PHC in them.

6.6.1 A Coordination Game

First, we discuss the performance of the algorithms in the coordination game that

we described in Section 6.2 (see Figure 6.1). In this game, both of the agents can

receive the maximum payoff of 100 if they learn to coordinate their actions (to avoid
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(a) (b)

Figure 6.6: Average payoffs over time to the agents (in self play) for the coordination
game depicted in Figure 6.1.
(a) Average payoffs over time to the agents (in self play) for the coordination game
depicted in Figure 6.1. Results are an average of 25 trials. (b) Box and whisker plots
showing the distribution of the agents’ payoffs after 2000000 episodes.

collisions) while moving toward the goal. Both M-Qubed and WoLF-PHC learn to

do so in this game, as shown in Figure 6.6.

6.6.2 Prisoner’s Dilemma

Goodrich et al. presented a multi-stage (stochastic game) version of the prisoner’s

dilemma in [36]. We analyze the performance of M-Qubed and WoLF-PHC in a

smaller version of this game, which is shown in Figure 6.7. In this game, two agents

(labeled A and B) begin on opposites sides (corners) of the world. The world is divided

by a wall containing four different gates which are open to begin each episode. The

goal of each agent is to move to the other side of the world, at which point it receives

a payoff of 10. However, the agent also loses 1 point for every move it takes, so the

agents should try to move to the other side of the world in as few moves as possible.

The “physics” of the world are as follows:

• Agents may move up, down, left, and right.

• Moves into walls or closed gates result in the agent remaining where it was

before the action was taken.

• If one agent moves through gate 1 and the other agent does not, then gates

1, 2, and 3 close (after the defecting agent moves through the gate). This is

demonstrated in the situation shown at the bottom left of Figure 6.7. The result

of this action sequence is that the agent that moves through gate 1 receives a
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Figure 6.7: Stochastic game version of the prisoner’s dilemma.

(a) (b)

Figure 6.8: (a) Average payoffs over time to the agents (in self play) for the prisoner’s
dilemma game depicted in Figure 6.7. Results are an average of 25 trials. (b) Box and
whisker plots showing the distribution of the agents’ payoffs after 1000000 episodes.

138



net payoff of 7, while the other agent receives a net payoff of 1 (assuming the

agents do not waste moves).

• If both agents arrive and attempt to move through gate 1 at the same time,

gates 1 and 2 close (without allowing either of the agents to pass through the

gate). This situation is demonstrated in the situation depicted at the bottom

center of Figure 6.7. Both agents receive a net payoff of 2 in this case.

• If both agents move through gates 2, 3, or 4, then none of the gates close (and,

thus, neither of the agents are denied passage). The situation in which the

agents both move through gate 2 is shown in the bottom right of Figure 6.7 and

results in both agents receiving a net payoff of 5.

Note that the net payoffs just mentioned define a prisoner’s dilemma. Thus,

moving through gate 1 can be considered defection, and moving through gate 2 can

be considered cooperation.

Due to the non-stationarity of the stage game, learning non-myopic solutions

(i.e., learning to offer and accept profitable compromises) in this multi-stage pris-

oner’s dilemma is more difficult than learning non-myopic solutions in the equivalent

prisoner’s dilemma matrix game. Nevertheless, M-Qubed still learns mutual cooper-

ation most of the time, resulting in an net average payoff of nearly 5 to each agent

(in each episode). This result is shown in Figure 6.8. This figure shows the results

of 25 trials, of which M-Qubed learned mutual cooperation 22 times (resulting in a

net average payoff of 5 to both agents). In the first trial that M-Qubed did not learn

mutual cooperation, the agents learned to alternate between the solutions (D, D) and

(C, C), resulting in an average net payoff of 3.5 to both agents. In the second trial

that it did not learn mutual cooperation, the agents learned to alternate between the

solutions (D, C) and (C, C), resulting in average net payoffs of 6 and 3, respectively.

In the last such trial, the M-Qubed agents learned to alternate between the solutions

(D, C) and (C, D), resulting in the average net payoffs of 4 and 310, respectively.

Thus, even in the instances in which M-Qubed did not learn mutual cooperation, it

was able to make and accept compromises that yield average net payoffs greater than

its minimax value (which is 2). Meanwhile, WoLF-PHC learns mutual defection in

self play in all 25 trials, resulting in a net payoff of 2 to each agent.

Note that M-Qubed learns quite slowly in this game. Thus, it receives very low

payoffs for nearly the first 100000 episodes of the game.
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Figure 6.9: Stochastic game version of Shapley’s Game (modified from [19]).

c d
C 0, 0 0, 1
D 1, 0 0, 0

Figure 6.10: Payoff matrix of stage games played in the stochastic version of Shapley’s
game shown in Figure 6.9.

6.6.3 Shapley’s Game

Cook has created a multi-stage version of Shapley’s game [19]. A simplified, but

essentially equivalent, version of this game is depicted in Figure 6.9. In this game, the

two agents (labeled 1 and 2) begin in the left-most column. At each iteration, each

agent can take one of two actions: up or down. An up action moves the agent up

and to the right, while a down action moves the agent down and to the right. When

the agents reach the rightmost column (after four joint actions), payoffs are assigned

based on the episodal actions of the agents, which are determined by the label of

the cell that each agent occupies (R, P, S or no label) at the end of the episode.

Payoffs are assigned as in the game Rock (R) Paper (P) Scissor (S) (except that the

losing agent receives a payoff of 0 rather than a payoff of -1). If an agent moves to

an unlabeled goal state (in the rightmost column), the agent automatically receives

a payoff of 0, and the other agent receives a payoff of 1 if it moves to a labeled goal

state. Otherwise, it also receives a payoff of 0.

While this game models Shapely’s game to some degree, some of its stage games

become identical to the matrix game shown in Figure 6.10, which we studied in the

previous chapter (see Section 5.6.2). Unlike Shapley’s game in which each agent has

a minimax value of 1
3
, each agent has a minimax value of 0 in this game. Thus, in this

10The second agent only received a payoff of 3 since it learned to “waste” a move in each episode.
While this behavior might seem undesirable on the surface, this agent learned that it should do so
to achieve the compromise. As a result, it received a higher average net payoff than its minimax
value of 2.
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(a) (b)

(c)

Figure 6.11: (a) Average payoffs over time to the agents (in self play) for Shapley’s
game depicted in Figure 6.9. Results are an average of 25 trials. (b) Box and whisker
plots showing the distribution of the agents’ payoffs after 1000000 episodes. (c) The
average payoffs to the agent that receives the lowest payoff. In the figures, M-Qubed
(1) indicates M-Qubed agents with ωi = 1 and M-Qubed (2) indicates M-Qubed
agents with ωi = 2.

multi-stage Shapley’s game, an agent can guarantee itself a payoff of no more than

0. However, profitable compromises can be reached in this game (as demonstrated in

Section 5.6.2).

The performance of M-Qubed and WoLF-PHC in this game is shown in Fig-

ure 6.11. M-Qubed with ωi = 1 (labeled M-Qubed(1) in the figure) receives an

average payoff of approximately 0.45 in this game, and WoLF-PHC receives an aver-

age payoff of approximately 0.4. However, in both cases, this is a result of one of the

agents receiving an average payoff close to 1 on most episodes while the other agent

receives an average payoff close to 0 (see Figures 6.11(b) and (c)). Thus, neither of

the algorithms learns to play cooperatively consistently, although M-Qubed (1) does

reach a compromise on some occasions.
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Figure 6.12: Stochastic game version of the game chicken.

However, as we showed in the previous chapter (see Section 5.6.2), if ωi is increased

for each agent i, then M-Qubed usually does learn to compromise so that the agents

alternate between winning and losing in this game. Thus, when ωi = 2 (labeled M-

Qubed (2) in the figure), the average payoff to the M-Qubed (2) agent that receives

the lower payoff is significantly higher (on average) than for M-Qubed (1) and WoLF-

PHC. This result is shown in Figure 6.11(c). In most instances, each of the M-Qubed

(2) agents receives an average payoff near 0.5. This results in a higher average payoff

to both M-Qubed (2) agents (approximately 0.49).

6.6.4 Chicken

Figure 6.12 depicts a stochastic game related to the matrix game chicken. This

game, which has been studied in [9, 52, 39], is similar to the coordination game shown

in Figure 6.1 except that a) the agents share the same goal cell (which they are allowed

to enter simultaneously) and b) a probabilistic barrier is place above each agent’s start

position. This barrier stops half of the agents’ attempts to move upward from their

start states. Thus, it is more profitable (on average) for an agent to move to the

center column before moving upward. However, since both agents cannot occupy the

same cell simultaneously (other than the goal cell), this action risks a collision with

the other agent.

The performance of the agents is shown in Figure 6.13. While M-Qubed learns

slightly faster in this game than WoLF-PHC, both algorithms learn to play the same

solution. That is, one agent learns to move to the center, while the other learns to

test the barrier. This results in a net payoff of 100 to one agent, and 50 to the other

(and a combined average of 75). Since 50 is an agent’s minimax payoff neither of the

agents learns a profitable compromise11 in this game.

One reason that M-Qubed fails to learn to compromise in this game is because

learning restarts make one agent more selective than the other, which results in

unbalanced payoffs. One possible way to overcome this is for the agents to coordinate

11One such profitable compromise is for the agents to alternate between winning (moving to the
center) and losing (testing the barrier).
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(a) (b)

(c)

Figure 6.13: (a) Average payoffs over time to the agents (in self play) for the game
chicken depicted in Figure 6.12. Results are an average of 25 trials. (b) Box and
whisker plots showing the distribution of the agents’ payoffs after 2000000 episodes.
(c) The average payoffs to the agent receiving the higher and lower payoffs respec-
tively.
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Figure 6.14: A modified version of soccer (the original was designed by Littman
in [51]). (Left) the initial board position. (Right) A situation requiring a probabilistic
choice for both agents.

trembles (as with SAwT in Chapter 4). However, coordinating trembles is not easily

done in the case of M-Qubed without explicit communications. We leave this for

future work.

It is possible that M-Qubed is unable to learn to compromise in this game for

some of the same reasons that it is unable to compromise in the stochastic version

of Shapley’s game (see also Section 5.6.2). Thus, increasing ωi for each agent i could

possibly increase M-Qubed’s ability to cooperate. However, doing so makes the state

space very large, which would result in very slow learning. For this reason, we do not

provide this analysis in this disseration. We leave further analysis of the behavior of

M-Qubed in this game to future work.

6.6.5 Soccer

All of the stochastic games that we have discussed so far are either cooperative

games (in the case of the coordination game) or games of conflicting interest (pris-

oner’s dilemma, chicken, and Shapley’s game). We now discuss the performance of

M-Qubed in a competitive stochastic game. This game, shown in Figure 6.14, is a

modified version of the soccer game presented by Littman in [51]. The initial board

position of each episode is depicted in Figure 6.14 (left).

In this game, two players, A and B, occupy distinct squares and can move in any

of the four compass directions or stay in place (stand)12. After both players have

selected their actions, the two moves are executed in random order.

The circle in the figure represents the “ball.” When the player with the ball steps

into the appropriate goal (the left-most cell for player A and right-most cell for player

B), that player scores a point (and the episode ends).

When the player with the ball selects an action that would move it into the cell

occupied by its opponent, possession of the ball changes. Additionally, if an agent

12As we have done for other stochastic games, we eliminated unnecessary actions to increase
learning speed.
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Figure 6.15: Average payoffs to various agents in the game of soccer.

tries to move into the square of a standing agent that has possession of the ball, then

possession changes with probability 0.2.

Figure 6.14 (right) shows a situation in this game in which the agents must learn

to act probabilistically (when associating with intelligent agents) since a deterministic

strategy by either agent in this a situation could easily be exploited.

Figure 6.15 shows the payoffs for a single trial to M-Qubed in self play, WoLF-

PHC in self play, and M-Qubed against WoLF-PHC. While M-Qubed learns extremely

slowly in this game (due to an overuse of learning resets), it does eventually learn to

avoid being exploited in self play and against WoLF-PHC. In fact, M-Qubed eventu-

ally learns to exploit WoLF-PHC somewhat in this game. We, note, however, that

the figure shows that WoLF-PHC can also exploit itself in self play.

6.7 Summary and Discussion

While the stage game of a stochastic game is a matrix game, it is more difficult to

learn than matrix games that we discussed in previous chapters. This is because the

payoff matrix of a stage game is non-stationary due to the changing strategies of the

learning agents in subsequent stages. Thus, the M-Qubed algorithm presented in the

previous chapter is not suitable for learning stage games of stochastic games. In this

chapter, we extended the M-Qubed algorithm to learn strategies in the stage games

of stochastic games. We demonstrated (empirically) the algorithm’s performance in

several imporant stochastic games.

In this chapter, we have shown (empirically) that the extended version of M-Qubed

demonstrates the security property in self play in several important stochastic games.

Additionally, we showed that M-Qubed demonstrates the security property against

WoLF-PHC in the stochastic game of soccer. However, while M-Qubed satisfies the

security property in all matrix games, it does not appear to do so in all stochastic
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games. In games with very large state space and certain probability transition func-

tions, potential payoffs might not propogate from stage to stage fast enough. As a

result, M-Qubed might still converge (because it stops exploring) prematurely to un-

desirable policies in certain stages, resulting in low payoffs. We note, however, that if

M-Qubed does learn the stage payoffs properly (in the correct order), it does satisfy

the security property.

We have also shown that M-Qubed demonstrates the compromise/cooperate prop-

erty in self play in some important stochastic games. In particular, we showed that

M-Qubed satisfies this property in a multi-state prisoner’s dilemma and in a multi-

state version of Shapley’s game. Multiagent learning algorithms in the literature do

not learn to offer and accept profitable compromises in many of these games. In this

chapter, we demonstrated this result for the case of WoLF-PHC, which demonstrates

typical behavior of traditional learning algorithms in these games.

While M-Qubed appears to be the first learning algorithm of its kind to offer and

accept profitable compromises in some theoretically important stochastic games, there

is much potential for future work. First, while each free parameter of the extended

algorithm is used to overcome specific challenges, it would be useful to reduce the

number of free parameters. Second, M-Qubed learns very slowly in many stochastic

games. This is caused by several factors including learning restarts, dependence on

first-visit Monte Carlo methods (which do not effectively use much of the data that

the agent gathers via experience), and small parameter updates (when the credibility

of a sample is low). Additionally, M-Qubed’s state space (like most reinforcement

learning algorithms) grows exponentially with increasing numbers of states, actions,

and agents.
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Chapter 7

Summary and Future Work

7.1 Introduction

In repeated general-sum games, the goal of an agent is to maximize its own pay-

offs over time. However, most existing multiagent learning algorithms found in the

literature learn to play myopically when associating with other learning agents. As

a result, agents employing these algorithms often receive low payoffs in many impor-

tant general-sum games. In this dissertation, we analyzed and developed multiagent

learning algorithms that behave less-myopically in many of these games. Thus, these

algorithms receive higher average payoffs than those found in the literature.

In this chapter, we summarize these results and present future work.

7.2 Summary

In Chapters 3 and 4, we considered the case in which an agent can observe its own

actions and payoffs, but it cannot observe the actions and payoffs of other agents.

The S-Algorithm, developed by Karandikar et al. [46] and Stimpson et al. [71, 70],

is an aspiration-based satisficing learning algorithm for such situations. Stimpson

et al. analyzed this algorithm in a particular multiagent social dilemma, and found

that it converges in this game (in self play) to pareto efficient solutions with high

probability given that certain conditions are satisfied. In Chapter 3, we analyzed the

S-Algorithm in general-sum matrix games, and showed that it converges with high

probability to near pareto efficient solutions (in self play) in most of these games

(and all 2-player matrix games), provided, again, that certain conditions are met. In

Chapter 4, we extended the S-Algorithm to include aspiration trembles. We showed

that this extended algorithm can learn to tremble its aspirations over time to increase

its own long-term payoffs. Additionally, this algorithm (called SAwT) eliminates the

S-Algorithm’s dependence on initial parameter settings (for convergence to pareto

efficient solutions).

We also considered the case in which an agent can, in addition to observing its

own actions and payoffs, observe the actions of other agents. Given such information,

an agent should learn to satisfy two properties. First, an agent should never learn

to play strategies that produce average payoffs less than the minimax value of the

game. Second, in noncompetitive games, an agent should learn to offer and accept
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profitable compromises (when possible) so that it receives average payoffs higher

than its minimax value. We present an algorithm (called M-Qubed) in Chapter 5

that provably satisfies the first property (regardless of its associate) in all general-

sum matrix games, and empirically displays the second property in self play of many

important matrix games. We know of no algorithm in the literature that satisfies

these two properties simultaneously in general-sum games under these knowledge

restrictions.

In Chapter 6, we consider learning in repeated stochastic games. Stochastic games

generalize matrix games and are much more difficult for agents to learn. No algorithm

presented in the literature effectively learns in many of these games. In this chapter,

we extended the M-Qubed algorithm so that it can learn effectively in these games.

We showed (empirically) that M-Qubed possesses these same two properties in some

important general-sum stochastic games. Multiagent learning algorithms from the

literature do not satisfy these two properties in many of these same games.

7.3 Future Work

Although we believe that the contributions of this dissertation are important, they

leave many questions unanswered. In addition to the future work we mentioned at

the end of each chapter, we emphasize two important issues that we have left for

future work.

First, in the main body of this dissertation, we considered only the specific cases

in which a) an agent has full knowledge of its own actions and payoffs (and cannot

observe the actions and payoffs of other agents) and b) an agent has full knowledge of

the actions of other agents as well as its own actions and payoffs. However, practical

applications of multiagent learning involve games in which these variables are only

partially observable. Future work should analyze and develop multiagent learning

algorithms for such situations.

Additionally, none of the algorithm analyzed in the main body of this dissertation

consider the payoffs of other agents. However, evidence shows that people do use the

payoffs of other agents to determine how to behave [12]. In the appendix, we present

a learning algorithm which also uses knowledge of the payoffs of other agents to learn

more effectively. While this work can be considered preliminary, we give empirical

results showing that this algorithm learns effectively when associating with a large

class of learning agents in 2-player matrix games. In contrast, both the S-Algorithm

and M-Qubed struggle to find ways to offer and accept compromises when associating

with other kinds of learning agents in some games.

Second, in this dissertation, we considered only infinitely repeated games between

the same agents. Many practical applications of multiagent learning, however, involve

finitely repeated games between the same agents. This makes the multiagent learning
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problem much more difficult since the speed of learning becomes much more impor-

tant. Additionally, compromises that are profitable in infinitely repeated games may

not be profitable in finitely repeated games. Thus, future work should include the

development of algorithms that learn non-myopic (yet payoff maximizing) solutions

in these games.

Another area of future work is that of multiagent learning in repeated games in

which the same agents do not play all episodes of the game. Some of these situations

have been studied in detail (see, for example, [33]), but it is typically assumed (par-

ticularly if agents are unlikely to meet again) that an agent’s actions do not affect

the subsequent actions of other agents. However, real world situations dictate that

agents can often observe (as onlookers) the actions of future associates. Thus, even

in these situations, it cannot be assumed that an agent’s actions do not influence the

future actions of associates.
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Appendix A

Learning to Teach and Follow in Repeated Games

A.1 Introduction

In the main body of this dissertation, we focused on learning in situations in which

the payoffs of other agents cannot be observed. We now consider the case in which

agents can observe the payoffs of other agents.

Past algorithms designed for repeated games generally fall into one of two cat-

egories. The first category of algorithms, which we will call follower algorithms,

adapt their strategies with the goal of finding a best response to the play of their

associate(s). This approach allows an agent to accept good compromises offered by

associates. However, follower agents are often unable to offer acceptable compromises

to others. Consequently, follower agents often earn low average payoffs over time in

many important games. The second category of algorithms, which we will call teacher

algorithms, seek to “teach” their associate(s) to play acceptable (for the teacher)

strategies. These agents are often capable of offering acceptable compromises, but

are generally unable to accept profitable compromises suggested by others.

In this paper, we present a technique for combining teacher and follower strate-

gies into a single agent/algorithm. We call this algorithm SPaM (Social and Payoff

Maximization). We show that combining follower and teacher attributes as does

SPaM results in an agent receiving high average payoffs over time when associating

with a large variety of learning agents (including self, best-response learners, and,

perhaps, humans) in many important 2-agent matrix games. Prior preliminary re-

search also suggests that SPaM can be implemented effectively in multi-state repeated

games [21].

A.2 Background and Related Work

As we mentioned in the introduction, past work in multiagent learning for repeated

general-sum games can be separated into two categories: follower algorithms and

teacher algorithms. In this section, we review some of this work.

A.2.1 Follower Algorithms

Development of the theory of follower algorithms (or adaptive learners [12]) has

occupied the energy of most research in multiagent learning. Follower approaches
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include fictitious play [33], Q-learning [76, 66, 54], Q-learning variants (e.g., [51, 52]),

policy gradient methods (e.g., [9]), and no-regret algorithms (e.g., [43, 8]).

The goal of follower algorithms is typically to learn a best response to the as-

sumed stationary strategies of other agents. When all agents play a best response to

the strategies of the other agents, the results is a Nash equilibrium (NE). However,

achieving this goal has been challenging. Despite some successes, follower algorithms

have been mostly unsuccessful at learning non-myopic equilibrium in repeated games.

A.2.2 Teacher Algorithms

Follower algorithms frequently have the characteristic of ignoring the payoffs of

other agents in the game. This characteristic is actually necessary in many important

contexts since the payoffs (and actions) of other agents may be completely unknown.

However, in many other contexts, at least some knowledge about the payoffs of other

agents is available. Evidence suggests that humans do use information about the

payoffs of other agents when making decisions [12]. Teacher algorithms use this

information to coax other agents to play differently.

Perhaps the most famous teacher is tit-for-tat (TFT) [2], which was designed

for the iterated prisoner’s dilemma. TFT plays the action played by its associate

in the previous time period. The desired result is that TFT’s associate learns that

cooperation yields higher average payoffs over time than does defection. Thus, TFT

receives higher payoffs than it would otherwise.

The economics literature provides several important teacher algorithms (e.g. [12]).

Some of the earlier work involved reputation formation [47, 56]. These works show

that, in repeated market games, a firm may benefit by establishing a “tough” repu-

tation in early rounds, even though establishing such a reputation may produce low

immediate payoffs.

Additional teacher algorithms (called leader algorithms) were given by Littman

and Stone [54] for 2-player matrix games. These teacher algorithms (called Bully

and Godfather) were each shown to induce desirable behavior from certain kinds

of associates in many games. Using Godfather, Littman and Stone developed an

algorithm (which we will call Godfather++) for calculating a repeated-play NE for

2-player matrix games [53]. We now discuss this algorithm in more detail.

Let player i be the agent in question, and let player −i be its associate1. Let,

Aj(s) be the actions available to player j in state s, and let at
j ∈ Aj(s) be player

j’s action at time t (from state s). The joint-action at = (at
i, a

t
−i) is a vector of the

actions taken by the agents at time t.

Godfather++ calculates a target solution (which may require that the agents al-

ternate between joint-actions) which maximizes the product of the agents’ (positive)

1We prefer the term associate to opponent, since the agents may not be competing.
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advantages2. Let ct
i and ct

−i be the target actions (corresponding to the target solu-

tion) for players i and −i at time t, respectively. As long as at
−i = ct

−i, player i plays

ct+1
i at time t + 1. However, if at

−i 6= ct
−i, then player i punishes player −i for the

next n (calculated from the game matrix) rounds of the game by playing an attack

strategy. This results in player −i receiving an expected reward of no more than its

minimax value each of the n punishment rounds. Thus, an agent’s best response to

Godfather++ is to play ct
−i at each time t.

Godfather++ has some very nice theoretical properties, although it does have

several issues that should be addressed. Some of these issues include the following:

1 The length of the punishment phase of Godfather++ (denoted by the variable

n) may be unnecessarily large (as Littman and Stone acknowledge). Long pun-

ishment phases make it difficult for a learner to determine which of its action

is being punished or rewarded (credit assignment problem). Thus, to increase

teaching effectivness, the punishment phase should be as short as possible. Ad-

ditionally, the majority of learning algorithms in the literature typically only

condition utilities on very recent action histories, meaning that these agents are

unable to “perceive” long punishment phases.

2 Godfather++ does not specify how the agents should coordinate their actions

when the target solution is a sequence of joint-actions. This means that agents

may never play cooperatively in some games.

3 The strategy used by Godfather++ in the punishment phase (i.e., the attack

strategy) does not take into account the agent’s own payoffs. Thus, vengeance

may be overly costly. While this is not extremely problematic (in the limit)

if the associate eventually learns to cooperate, there is no guarantee that the

associate will learn to cooperate.

4 The target solution is not guaranteed to be unique. Thus, the agents may be

unable to coordinate cooperative behavior (particularly in self play). Addition-

ally, a similar (but different) solution may be proposed (and enforced) by an

associate, which the algorithm cannot learn to accept.

5 The algorithm requires complete knowledge of the game matrix, as well as

perfect knowledge of all agents’ actions.

The algorithm we present next addresses points 1-3 (at least in part). We do not

address points 4 and 5.

2The advantages of the agents are the agents’ payoffs minus their minimax value.
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1. S = {ai : T (s, ai) ≥ 0} ∪ {argmaxa T (s, ai)}

2. Select action at
i

at
i =


argmaxai∈S F (s, ai) with probability 1− η
argmaxai

F (s, ai) with probability ρη
random with probability (1− ρ)η

Algorithm A.1: Action selection in SPaM. In the figure, T (·) and F (·) represent
teacher and follower utilities (respectively).

A.3 An Algorithm for Teaching and Following

Littman and Stone [54] concluded that neither teacher nor follower strategies

alone are sufficient for successful multiagent learning. Rather, agents should employ

mixtures of teacher and follower techniques. It is, however, unclear how teacher and

follower strategies can be mixed successfully. One methodology is offered by Powers

and Shoham [63, 62], in which an agent uses a teacher strategy (either Godfather or

Bully) in early rounds of the game. After a deterministic number of iterations, the

algorithm evaluates whether or not the associate is responding to the teacher strategy.

If it is not, the algorithm switches to a follower strategy. However, their approach

does not take into account both teacher and follower strategies simultaneously.

In this paper, we propose a methodology for combining follower and teacher strate-

gies. Although incomplete, the methodology offers a first step towards employing

follower and teacher strategies simultaneously. We call this algorithm SPaM (Social

and Payoff Maximizing).

SPaM learns both a teacher and a follower (payoff maximizing) utility function.

The teacher utility function estimates how well actions induce “good” behavior from

associates. The follower utility function, as always, estimates the actual material

payoffs that an action yields.

Let T (s, ai) and F (s, ai) be (respectively) the teacher and follower utilities for

playing action a from state s. SPaM uses T (s, ai) and F (s, ai) to select its actions

using the constrained maximization technique shown in Algorithm A.1. In words,

S is the set of actions that have non-negative teacher utility (if no action has non-

negative teacher utility, then S contains only the action with the highest teacher

utility). With high probability (i.e., probability 1 − η), SPaM selects the action in

the set S with the highest follower utility. With a small probability (i.e., probability

ρη) SPaM selects the action with the highest follower utility (whether or not it is in

the set S). Otherwise, SPaM explores randomly.
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We now describe how SPaM learns T (s, ai) and F (s, ai) in repeated matrix games3.

A.3.1 Learning a Teacher Utility Function

The goal of a teacher algorithm is to make player −i’s best response desirable for

the teacher. This entails that an associate should be a) rewarded for playing “good”

actions and b) “punished” (if necessary) for deviating from those “good” actions.

For “good” actions to be player −i’s best response, the punishment must exceed the

profit of deviating.

SPaM, like Godfather++, determines that “good” actions contribute to a sequence

of joint-actions that maximize the product of the agents’ (positive) advantages (as

justified by Nash [59])4. Let this sequence of joint-actions, called the target solution,

be denoted by c and let ct = (ct
j, c

t
−j) be the joint-action which c specifies at time

t. Also, let |c| denote the length of the sequence of c. In games in which |c| > 1,

we must determine how agents cycle through the sequence of joint-actions. In our

current implementation, ct = ct−1 if ct−1 is not played at time t − 1. Otherwise, the

current joint-strategy of the target solution updates as in Godfather++5.

SPaM uses the notion of guilt (denoted Gt
j for player j’s guilt at time t) to deter-

mine whether an agent should be rewarded or punished. When Gt
j > 0, then player

j has some level of guilt. When Gt
j ≤ 0, then player j is guiltless. As a rule, a guilty

agent should be punished while a guiltless agent should be rewarded. We describe

how SPaM determines guilt in the discussion that follows.

Let rt
j be the payoff to agent j at time t. Also, let rj(c

t) be the expected payoff

to agent j when the joint-action ct is played, and let rj(c) = 1
|c|

∑
ct∈c rj(c

t) be the

average expected payoff to player j if both agents play the target solution.

Initially, each agent is guiltless (i.e., G0
j = 0). Thereafter, the guilt of each player

j is updated using the tree shown in Figure A.1, which specifies six unique cases

(labeled 1-6). Each of the six cases is represented by a unique path through the tree.

For example, case 1 is the situation in which at
j = ct

j, Gt
j > 0 and at

−j = ct
−j. We now

explain and justify how guilt is updated in each case.

1 The joint-action ct is played when player j is guilty. Since player j is not being

punished (while guilty) in this case, its guilt would normally be maintained.

3In [21], we described how SPaM can be used in two-player repeated multi-state games.
4The maximum possible product of the agents’ (positive) advantages in competitive games is

zero. In 2-player competitive games, a teacher algorithm has nothing to offer. Thus, T (s, a) = 1 for
all pairs (s, a), meaning that the teacher utility function has no effect on the behavior of the agent
(see Algorithm A.1). The rest of this section deals with the case in which the maximum product of
the agents’ advantages is nonzero.

5This implementation is sufficient for all games discussed in this paper, but should be modified
for the general case.
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Figure A.1: Tree showing how player j’s guilt value (Gj) is updated after each round
of the game.

However, in this special case, to avoid the possibility that player j may at-

tribute future punishment to the playing of the target solution, player j’s guilt

is absolved6.

2 When player j is guilty and plays cooperatively, its guilt is updated by Gt+1
j =

Gt
j + rt

j − rj(c). This means that player j’s guilt is reduced if its payoff (rt
j) is

less than rj(c). Note that if rj(c) is at least Gt
j more than rt

j, then player j’s

guilt is absolved.

3 Player j follows the target strategy while guiltless. Thus, it remains guiltless.

4 Player j deviates while guilty. Its guilt is updated as in case 2, except that its

guilt cannot be completely absolved (since it deviated). Thus, its new guilt is

the max of some small value ε > 0 and Gt
j + rt

j − rj(c).

5 Player j deviates when its associate is guilty. In this case, player j is justified

in deviating (so it remains guiltless).

6 Player j deviates when its associate is guiltless. In this case, player j acquires

guilt to the degree that it profits from the deviation (the difference between rt
j

and rj(c), plus some small value ε > 07). Thus, if deviating yields a profit less

than or equal to -ε, an agent remains guiltless.

Note that SPaM measures its own guilt as well as its associate’s guilt. Thus,

SPaM’s associate can hold SPaM accountable in the same way that SPaM holds its

6We note that this rule could possibly (in a small set of games) allow deviating to be a best
response. We leave this to future work.

7ε is added to player j’s guilt to require that player j be punished by more than it gains from
deviating.
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associate accountable. In this way, SPaM can (potentially) teach and follow simulta-

neously.

In short, player j’s guilt is the (positive) profit it has obtained from deviating in

the past. When guilt is positive, the agent has benefited from deviating and should

be punished. Otherwise, the agent should be rewarded (with cooperative actions from

its associate). We now specify how a teacher utility function is constructed from the

guilt values to obtain the desired behavior.

The action selection methodology in Algorithm A.1 requires that teacher actions

have positive utility only if they induce “good” behavior from the associate. Thus, if

action a does not serve to induce player −i to play c−i in the future, then Tt(s, ai) < 0.

If action a does induce player −i to play c−i in the future, then Tt(s, ai) > 0.

In the case in which player i’s associate is guiltless, player i should conform to the

target solution. Thus, in this case, the teacher utility Tt(s, ai) is given by

Tt(s, ai) =

{
1 if (ai = ct

i)

−1 otherwise
(A.1)

In the context of Algorithm A.1, Eq. (A.1) assures that, with at least probability

1− η, SPaM will play ct
i when Gt

−i ≤ 0.

We now turn to the case in which Gt
−i > 0. As we have mentioned, in this case,

player i should punish player −i. Thus, the teacher utility Tt(s, ai) is a function of

how well action a punishes player −i. Thus,

Tt(s, ai) = r−i(c
t)− E[U−i(s, ai|Gt

−i > 0)]− Ep (A.2)

where E[U−i(s, ai|Gt
−i > 0)] is the expected payoff to player −i based on the empirical

distribution of past actions taken by both agents (when player −i is guilty) and Ep

is the expected level of punishment.

We make the following observations about Eq. A.2. First, E[U−i(s, ai|Gt
−i > 0)] is

the value of the teacher utility function that is learned. Second, when the difference

r−i(c
t) − E[U−i(s, ai|Gt

−i > 0)] is greater than Ep, then Tt(s, ai) > 0. Third, when

multiple actions produce satisfactory punishments, SPaM will select the least costly

of those actions (see Algorithm A.1). Therefore, SPaM can lower its own loses while

punishing its associates (see point 3 of the issues discussed in Section A.2).

We discussed in Section A.2 that the punishment phase should be brief (if possi-

ble). The variable Ep (the expected punishment level) dictates the duration of the

punishment phase. For quick punishments, we use

Ep = min(Gt
−i, r−i(c

t)−m−i), (A.3)

where m−i is player −i’s minimax value. We use this value of Ep since a) player −i

need not be punished by more than its guilt value Gt
−i and b) since player −i can

guarantee itself a payoff of m−i by playing its minimax strategy, an agent should not

expect to punish its associate by more than r−i(c
t)−m−i.
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1) Observe the game matrix; compute c
2) Gi = G−i = 0, T (s, ai) = 0, F (s, ai) = 0

3) Repeat,
a) Take action ai according to Algorithm A.1
b) Observe reward r and actions at

i, at
−i:

i) Update Gi and G−i using Figure A.1
ii) Updated U−i(s, ai|G−i > 0)
iii) if G−i ≤ 0

compute T (s, ai) using Eq A.1
else compute T (s, ai) using Eq A.2

iv) Compute F (s, ai)

Algorithm A.2: The complete SPaM algorithm.

A.3.2 Follower Utility Function

The follower algorithm used by SPaM can be any follower algorithm. However, the

weaknesses of the algorithm chosen reflect on the performance of SPaM. In general,

we favor a learning algorithm which learns quickly, thus, we use a variant of fictitious

play [33] (which we call FP). FP varies from standard fictitious play in that it looks

ahead an extra time period (rather than just the current time) in determining the

action that maximize expected payoffs. Additionally, the previous joint-action taken

by the agents is used for state s (as in the teacher utility function).

A.3.3 Algorithm Review

The complete algorithm is sketched in Algorithm A.2. As we mentioned in Sec-

tion A.2, the algorithm empirically exhibits the following desirable characteristics.

First, the length of the punishment phase is minimized provided that E[U−i(s, ai|Gt
−i >

0)] is accurate. As an example, whereas Godfather++ requires 3 rounds of punish-

ment in the game battle of the sexes, SPaM typically requires no rounds of punish-

ment, although one or two rounds of punishment are sometimes necessary. Second,

SPaM is able to successfully coordinate profitable cooperative actions even in non-

deterministic environments. Third, when punishing an associate, SPaM may select

between multiple punishing actions (provided that multiple punishing actions have

been shown to be effective). This allows SPaM to select the action that is most prof-

itable to it. SPaM empirically exhibits these properties while maintaining the other

positive characteristics of Godfather++ (it appears).
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a b
a 3, 3 0, 5
b 5, 0 1, 1

a b
a 4, 4 2, 5
b 5, 2 0, 0

a b
a 0, 3 3, 2
b 1, 0 2, 1

(a) (b) (c)

Figure A.2: Payoff matrices for (a) prisoner’s dilemma, (b) chicken, and (c) tricky
game [8]. Payoffs to the row player are given first, followed by the payoffs to the
column player.

A.4 Results

SPaM performs well when associating with a large variety of agents. We now

present some results.

A.4.1 With Automated Agents

Figure A.3 shows the mean average payoffs when SPaM, FP, and WoLF-PHC [9]

are matched with each other in the three repeated matrix games show in Figure A.2.

In each game, the intended actions of all the agents were executed with probability

0.95 and the opposite action was executed with probability 0.05.

Prisoner’s Dilemma. Figures A.3(a)–(c) show results from the iterated pris-

oner’s dilemma (see Figure A.2a). In this game, the target solution is for each agent

to play a. Although action a is dominated by action b (for both agents), SPaM is able

to teach its associates to play a, resulting in an average payoff per iteration of nearly

3. In this game, SPaM significantly outperforms FP and WoLF-PHC when matched

with each of the three agents.

Chicken. Figures A.3(d)–(f) show results from the game chicken (see Figure A.2b).

In chicken, the target solution is for each agent to play a, despite the fact that each

agent has an incentive to unilaterally deviate. Again, SPaM teaches each of the three

associates to do so, resulting in an average payoff per iteration of nearly 4. Again,

SPaM outperforms FP and WoLF-PHC in this game when playing with each of the

three associates.

Tricky Game. Figures A.3(g)–(l) show results when the agents are matched

with each other in tricky game (see Figure A.2c). In tricky game, the target solution

is for the row player to play a and the column player to play b, which results in

payoffs of 3 and 2 to the row and column players respectively. While the prisoner’s

dilemma and chicken both generally require only a single round of punishment after a

deviation, tricky game frequently requires two rounds of punishment after a deviation.

Since our implementations of both FP and WoLF-PHC encode state s as the previous

joint-action of the agents, none of the agents are able to “perceive” some of SPaM’s
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punishments. However, SPaM still performs better than both WoLF-PHC and FP

when matched with all three associates, both as a row player and a column player.

However, its payoffs are not as high as they otherwise would be had each of the agents

used longer histories for state.

A.4.2 With Humans

Preliminary results suggests that SPaM performs very well when playing some

games with humans [23, 21]. Future work should more thoroughly explore the per-

formance of SPaM when associating with humans in general-sum games.

A.5 Discussion and Future Work

We have described some of our work in progress on combining teaching and follow-

ing strategies using SPaM. While as yet incomplete, results show that SPaM performs

well in many 2-player matrix games when matched with a wide variety of agents, in-

clude itself, follower algorithms, and (in preliminary results not shown here) humans.

Although promising, SPaM suffers from a number of weaknesses. One of these

weaknessses is that it does not perform as well as desired when matched with static

agents, since static agents cannot be “taught.” One possible method for overcoming

this challenge is to increase the parameter η when the associate does not respond to

teaching. However, we have not as yet found a way to do this effectively without

decreasing average payoffs when matched with agents that learn slowly. Additionally,

there remains much progress to be made before these these techniques can be used in

practical environments (i.e., multi-state environments, environments with incomplete

information, and environments with more than two agents).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure A.3: Payoffs given different pairings of artificial agents. The figures plot the
mean (of 50 trials) average payoff per iteration against time. One standard deviation
is shown after 5000 iterations. (g)–(i) show the payoffs to the row player in tricky
game and (j)–(l) show payoffs to the column player. For SPaM, η = 0.1 and ρ = 0.8.
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