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ABSTRACT
As robots tackle increasingly complex tasks, the need for explana-
tions becomes essential for gaining trust and acceptance. Explain-
able robotic systems should not only elucidate failures when they
occur but also predict and preemptively explain potential issues.
This paper compares explanations from Reactive Systems, which
detect and explain failures after they occur, to Proactive Systems,
which predict and explain issues in advance. Our study reveals that
the Proactive System fosters higher perceived intelligence and trust
and its explanations were rated more understandable and timely.
Our findings aim to advance the design of effective robot explana-
tion systems, allowing people to diagnose and provide assistance
for problems that may prevent a robot from finishing its task.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in inter-
action design; • Computer systems organization → Robotics.
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1 INTRODUCTION
As technological advances continue to drive increased autonomy
and performance of robot systems in complex tasks, the need to pro-
vide coherent explanations becomes imperative. This requirement
is particularly critical in shared human-robot workspaces, such as
warehouses and manufacturing facilities, where robots are expected
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to collaborate seamlessly with human counterparts to enhance task
efficiency. In such scenarios, robots must possess the capability to
explain their behavior to human coworkers, be it in response to
system failures or unexpected environmental observations.

The Explainable AI community has made great strides towards
explainable systems [2, 5, 10, 15, 16, 32]. Explainable systems can
use multiple modalities, including visual (e.g., graphics, images, and
plots) [5, 26, 43], motion [26, 27], and natural language (e.g., rules
and numeric responses) [5, 26, 43]. In this work, we investigate
language-based explanations, with the goal of identifying ways to
improve them. As this field develops and grows, it is important to
consider how systems should present information, such as cause
of failure, to people. For example, systems that explain their fail-
ures have improved trust [17, 18, 27, 44, 45], transparency [44],
understandability [11, 40, 41, 44] and team performance [44].

Explanations must adapt to recipients’ roles and experience [38]
and provide sufficient (but not overwhelming) detail for non-experts
to understand and act upon [25], to facilitate prompt assistance
for addressing anomalies that the robot may not autonomously
rectify, to improve human-robot collaboration. Various studies [11,
40, 41] have explored different explanation structures in human-
robot interaction. For instance, causal explanations that combine an
actionwith a reason enhance understandability and desirability [40].
Context-rich explanations, including action history, enable non-
experts to detect and solve errors encountered by a robot [11].
Including the reason for failure in an explanation improves both
understandability and helpfulness [41]. These investigations [11,
40, 41] focus on explanations generated by Reactive Systems [11–
13, 22, 24, 30, 44], which respond to and detect failures after they
occur. Although essential for unforeseeable failures, many failures
can be predicted, prevented, or at least seen as possible.

In contrast, Proactive Systems detect, handle, and explain errors
earlier, potentially enhancing robot safety and efficiency compared
to Reactive Systems. While some Proactive Systems identify tasks
outside a robot’s capability [4, 36] or explain robot behaviors [50],
our focus is on Proactive Systems that are capable of identifying
failures during task execution (e.g., [3, 14]). When a Proactive Sys-
tem determines that a failure will occur, it can use the information
that identified the expected failure in its explanation.

While most user studies have focused on Reactive Systems for
robot failure explanations [11, 40, 41], the timing of error detection
in Proactive Systems along with the depth of information available
can potentially result in better human-robot interactions.
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We use a Behavior Tree representation for the Reactive system.
To facilitate the transition from a Reactive to a Proactive system, we
identify assumptions regarding system capabilities and expected
environmental conditions critical for task completion.

Our work contributes to the existing literature by conducting a
user study to evaluate both Reactive and Proactive error detection
systems. Our analysis shows the efficacy of tracking the status
of assumptions to proactively generate robot failure explanations.
Further, our analysis also offers insights on people’s perception of
the different systems, the understandability of the explanations,
and their perception of the timing of each system’s explanations.

2 SYSTEM DESIGN
2.1 Reactive System using Behavior Trees
Behavior Trees offer a robust framework for robot systems to gen-
erate automated explanations [24]. A Behavior Tree (BT) [7] itself
is a task sequence and execution method that can be used to rep-
resent a robot’s internal states and actions for the execution of
robot tasks. Han et al. [24] proposed using behavior trees to gener-
ate robot explanations. In their work, free-form BTs were framed
into semantic sets: {goal, subgoals, steps, actions} to create shallow
hierarchical explanations and answer follow-up questions when
users ask for details, an explanation method preferred by users [25].
While many BT implementations, including ours, are hand-crafted,
there are also generative implementations that learn a BT [8, 48, 49].

Behavior Trees alone form a Reactive System capable of reacting
to failures by explaining them only after they occur. While the
solution proposed by Han et al. [24] was capable of explaining
what action the robot failed to accomplish, the system did not have
enough information to provide explanations as to why it failed.

Failure of an action can occur due to a number of factors; thus,
understanding why a robot failed is necessary so that human users
can provide required assistance in a timely manner. Consider a
scenario where a human coworker is tasked with supplying the
robot with screws by refilling the screw container as needed. In this
case, the robot’s failure to pick up a screw can potentially happen
due to (1) a screw being too far from the robot’s arm, or (2) the robot
being unable to see the screw. Depending on the cause of failure,
the nature of assistance required will be different for the same
failed action (moving the screw container to a reachable location
vs. making sure the robot’s view is not blocked). Thus, it is easier
for the human to assist the robot if it knows why the robot failed.
In contrast, if the cause of failure is not known, the human might
end up providing incorrect assistance, resulting in more failures,
higher task completion time, and poor team performance.

The underlying causes of task failures often include two key fac-
tors: (1) system capabilities and (2) environmental conditions [6, 21].
While robot systems may not consistently foresee system glitches
and environmental anomalies, they frequently establish assump-
tions concerning their capabilities and anticipated environmental
states. These sets of assumptions and biases, whether deliberate or
inadvertent, intricately embed themselves within a robot’s decision-
making algorithms, thus dictating its performance [20].

Returning to the screw scenario, the robot’s motion planner,
which calculates a path to approach and grasp the screw, depends on
an assumption that the screw’s location, as determined by the vision

system, remains accurate. Alignment between these assumptions
and the actual system and environment state results in predictable
behavior, leading to higher performance. Deviations from these
assumptions lead to unpredictable behavior of robot actions on the
environment, culminating in failures and diminished performance.

2.2 Proactive System via Assumption Checkers
Communicating the cause(s) of predicted task failures is an impor-
tant aspect of explaining a robot’s behavior. As described above,
tracking and communicating any assumption violations in the al-
gorithm inputs (i.e., expected system and environment state) and
their expected outputs gives insight into the robot’s awareness of
its limits for completing a task successfully. Additionally, these
assumptions can be used to estimate system performance [6, 21]
and take corrective actions [51], allowing a robot to identify and
respond to errors earlier, resulting in a Proactive System.

In this work, we identify various task-related assumptions and
encode them into BT representations of a robot’s tasks. We leverage
the status of these assumptions to predict and track failures and
generate explanations. To track the status of the above-mentioned
assumptions, we implement monitors and encode them as a part
of the behavior tree. We refer to these monitors as Assumption
Checkers (ACs), which are used to continuously track whether
assumptions hold during task execution.

Specifically, we introduced a new Assumption Checker node
type and implemented a number of nodes in the behavior tree that
represents a mobile manipulation kitting task (see Figure 1). With
this system, the robot can identify any violations in the expected
system and environment state, and can predictably communicate
the cause of an anticipated action failure by actively tracking these
violations and ensuring that they hold before executing the action.
For example, Figure 1 shows the detect screw subtree of the behavior
tree with ACs. While the ACs were manually inserted into the
behavior tree in this system, we plan to use machine learning to
identify the AC and task relationship in our next iteration.

3 HYPOTHESES
Proactive Systems can identify and respond to errors earlier than Re-
active Systems, as they make decisions based on information, which
can then also be used to explain why the robot cannot complete its
task. With this extra information, we hypothesize that robots can
communicate what went wrong with higher quality explanations,
which will result in people having a better understanding of the
system and higher ratings of their perception of the system.

In our previously proposed study plans [29], we outlined a set of
hypotheses. Since then we have revised our study design, grouped
our original hypotheses, and removed H4 Informativeness and H5
Communication Time, as we did not manipulate these metrics.

Hypothesis 1 (Human Perception): The Proactive System will be
perceived better than the Reactive System, where human perception
is measured by their perceived intelligence and trustworthiness.

This hypothesis combines our original H1 Perceived Intelligence
and H2 Trustworthiness as sub-hypotheses to form a single hypoth-
esis regarding the human perception of the system. We hypothesize
that the human perception of the Proactive System will be rated
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Figure 1: The “detect screw” subtree with Assumption
Checker nodes (green labels) and Action nodes (white labels).
The root RetryUntilSuccessful node (Node 1) retries the sub-
tree up to three times if a failure or assumption violation
occurs. The ReactiveSequenceNode (Node 2) asynchronously
runs all actions (Nodes 4, 5, and 8) while continuously check-
ing the assumption, “check updated head3DCamera” (Node
3). Node 7 checks a pre-condition assumption while Nodes
6, 9, 10, and 11 check post-condition assumptions for their
corresponding Action node.

higher than the other conditions as we believe that the two sub-
hypothesis will be rated higher as described below.

Hypothesis 1a (Perceived Intelligence):We hypothesize that
the human perception of the robot’s intelligence will be rated higher
for the Proactive System as the Reactive System simply states the
failure, while the Proactive explanation shows that the robot system
not only has information that it failed, but also has information as
to why it failed. We hypothesize that this additional information
will result in people perceiving the Proactive System as having a
higher level of intelligence.

Hypothesis 1b (Trustworthiness): We also anticipate that the
human perception of the robot’s trustworthiness will be higher for
the Proactive System as the system is capable of providing more
details regarding its failure. Expressing failures [17, 27], providing
detailed explanations [18, 44, 45], and proactively explaining behav-
ior [50] have been found to increase the trustworthiness of robot
systems, we expect the same to hold for explaining failures.

Hypothesis 2 (Explanation Quality): The Proactive System’s
explanations will result in higher explanation quality compared
to the Reactive System’s explanations, where explanation quality
is defined by understandability and timing of explanations. This
hypothesis combines our original H3: Understandability and H6:
Temporal Quality to form a single hypothesis regarding the expla-
nation quality of the systems’ explanations.

We hypothesize that the explanation quality of the Proactive
System’s explanations will be rated higher than the other conditions
as we believe that they will be more understandable and have better
timing as described below.

Hypothesis 2a (Understandability):We hypothesize that the
Proactive explanations will result in higher understandability com-
pared to the Reactive explanations. This is supported by Malle [31,
p. 69], who stated that with causal knowledge and an improved
understanding “people can simulate counterfactual as well as fu-
ture events under a variety of possible circumstances”. Additionally,
Das et al. [11] found that explanations consisting of the context
of failure and action history enabled non-experts to identify and
provide solutions to errors encountered by a robot system.

Hypothesis 2b (Explanation Timing):We believe the timing
of explanations will be rated better for the Proactive System as in
the Reactive System, the robot does not have any indication that
it failed the task until an action node fails. Therefore it cannot
communicate the failure as soon as an assumption is violated. Thus,
the Reactive Systemwill explain its failure after executing all actions
that it can before failing, whereas in the Proactive System, the robot
communicates the anomaly and takes the appropriate next action
as soon as it notices an assumption violation.

4 METHODS
4.1 Participants and Power Analysis
To evaluate our systems, we developed amixed online user study. To
determine our sample size, we ran an a priori power analysis using
G*Power 3.1.9.7 [19]: Goodness-of-fit test. The parameters used in
this analysis include: Degree of Freedom = 2, a large effect size w
of 0.5, 𝛼 error probability = 0.05, Power (1 - 𝛽 error probability) =
0.95. The power analysis determined that we need 62 participants
for each of the three conditions, totaling 186 participants.

We recruited N = 224 participants through Prolific. Participants
were selected from a standard sample across all available countries
and pre-screened to be fluent in English and to have a 100% approval
rate across more than 100 but fewer than 10,000 prior submissions.
We recruited a total of 38 extra participants to account for people
who may have failed attention check questions. A total of 37 par-
ticipants failed attention check questions, and were excluded from
our study. The last extra participant was excluded so that we met
exactly 186 participants as our power analysis suggested.

Out of the 186 included participants, 128 identified as male,
56 as female, and 2 as non-binary. The participants were aged
from 20 to 73 (𝑀 = 34.79, 𝑆𝐷 = 10.72). Participants were asked
to rate their agreement on a seven point Likert-type item, rang-
ing from “Strongly Disagree” (1) to “Strongly Agree” (7): “I am
experienced with robots”; 55 rated higher than neutral agreement
(𝑀 = 3.37, 𝑆𝐷 = 1.57). This study was approved by the Institutional
Review Board of the institution of the first author.

4.2 Scenario and Task
In this study, we used a Fetch mobile manipulator robot [47] with a
7 degree-of-freedom arm and an RGBD camera. The scenario was
of a manufacturing company producing kits for gearboxes using a
combination of people and newly introduced robots (Figure 2). A
worker (the experimenter) sorted gearbox parts and filled up part
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Figure 2: The FetchIt! challenge arena [1]. The robot is ini-
tially positioned in the middle, then navigates to the screw
station to pick a screw from the green bin, and finally places
the screw in the blue caddy on the caddy station.

of a caddy to create a kit of gearbox parts. The robot completed the
kit by driving around, picking up, and placing a screw into a caddy.

Participants were tasked with observing the robot to evaluate
its performance. To assess the robot’s capability to complete the
task and communicate any deviations from expected behavior, the
experimenter played the role of a challenger, imitating potential
real-world failures by manipulating the environment (e.g., moving
the screw bin while the robot was in the process of picking up a
screw). In each scenario, the experimenter and robot begin working
on their respective tasks in the shared workspace. The robot then
provided an explanation when an assumption was violated in the
Proactive System, or when a failure occurred in the Reactive System.

4.3 Conditions
The study was a mixed 3 (System Type: Base, Reactive (R), Proactive
(P)) × 3 (Failure Type: Screw Bin Empty, Screw Bin Moved, Caddy
Out of Reach) design; nine videos of the robot interacting with a
person were made reflecting the 9 possible combinations of system
type × failure type. Across the three videos watched by an indi-
vidual participant, they experienced all three explanation and all
three failure types, one of each per video; each participant had a
randomly assigned configuration. The ordering of the scenarios
was counterbalanced to reduce ordering effects.

The Fetch robot was running a BT implementation of the task
in each system condition with small differences as outlined be-
low. Each system was capable of detecting failures and generating
explanations of the failure.

Base (No Explanation): The Base condition utilized the BT
to identify when the robot had failed to complete an action. This
condition was designed to indicate that a failure had occurred, but
did not provide any additional information as the condition served
as baseline to compare explanation systems.

Reactive (R): The Reactive condition used the same BT imple-
mentation as in the Base. As in the Base condition, this condition

Table 1: Explanation templates used for each condition.

Condition Explanation Template
Base I could not complete my task.
Reactive I could not [failed sub goal node name] because

I was not able to [failed action node name].
Proactive [Assumption checker description] so I will not be

able to [failed sub goal node name].

only reacted to failures after they had occurred. It differed from the
Base as it generated explanations which provided context regarding
the robot’s failed subgoal and utilized the action which failed as
the reason for failure, similar to the work by Han et al. [24].

Proactive (P):The Proactive System combined the BT implemen-
tation in the Base System with ACs. This combination enabled the
system to identify when a failure was likely to occur, and enabled
the system to generate explanations and react prior to executing an
action that would likely fail. This condition could identify why the
systemwould not be able to complete the task using the information
provided by the ACs. With this information the system generated
an explanation indicating that it was not be able to complete the
subgoal due to the reason determined from the ACs.

To generate explanations, each system used the templates shown
in Table 1. The templates for the Reactive and Proactive Systems
utilized a subgoal name along with a reason for the failure, which
aligns with the suggestions from previous studies on robot expla-
nations [11, 40, 41]. We used templated explanations to enable the
system to be robust and generate explanations for various failures,
without having to hand-craft explanations for every situation that
could occur. As we used templated explanations, the node names
inserted into our templates did not always grammatically fit, for
example “I could not [pick screw] because I was not able to [detect
screw]”. This could potentially be resolved using Natural Language
Processing (NLP) frameworks like spaCy [42] to analyze and correct
syntax or using generative explanations. We plan to use large lan-
guage models to compare our templated explanations to generative
explanations in future iterations of this system.

4.4 Procedure
Once the participants for our study were selected through Prolific,
they were redirected to our Qualtrics survey. Next, each partici-
pant filled out an informed consent form and answered a set of
demographics questions. To ensure that the audio was enabled and
working, each participant was provided an audio clip of a phrase,
then required to select the correct phrase from a list before con-
tinuing. Participants then reviewed the description of the scenario,
robot capabilities, and a labeled image of the arena to understand
what was going on in the videos. Next, participants watched three
videos according to their randomly assigned condition.

At the end of every video, they were asked to respond to a set
of questions to assess their experience with the robot. First, the
participants were asked a simple attention check question, such as
what color was the screw bin, to make sure that the participant was
legitimate and paying attention. Then the participants answered a
set of end-of-video questions to be discussed in Section 4.5. Finally,
after completing all three scenarios, participants were asked to



Reactive or Proactive? How Robots Should Explain Failures HRI ’24, March 11–14, 2024, Boulder, CO, USA

indicate which system they preferred. We estimated that this study
would take 30 minutes; the median completion time was 25 minutes.
Participants received USD $7.50 at an hourly rate of $15 through
Prolific as a compensation for their time and effort.

4.5 Measures
4.5.1 Perceived Intelligence. To measure the perceived intelli-
gence of each system, we used a modified perceived intelligence
scale based on the scale proposed by Warner and Sugarman [46].
This modified version of the scale asks participants to rate their
agreement that “The robot was knowledgeable”, “The robot was
competent”, “The robot was responsible”, and “The robot was sen-
sible.” Participants responded on 7-point response scaling from
“Strongly Disagree” (1) to “Strongly Agree” (7) after each of the
three videos that they watched. Internal consistency was measured
for each administration of the scale and they ranged from Cron-
bach’s 𝛼 = 0.82 to 0.88. The responses to each element of the scale
were averaged to create a perceived intelligence score.

4.5.2 Trustworthiness. To evaluate the perceived trustworthi-
ness of each system, we asked participants to complete a Muir
Trust Scale [34] after watching each of the three videos. This scale
measures performance-based trust through four constructs: pre-
dictability, reliability, competence, and overall trust. Participants
responded on 7-point response scaling from “Strongly Disagree”
(1) to “Strongly Agree” (7). Internal consistency was measured for
each administration of the scale and they ranged from Cronbach’s
𝛼 = 0.79 to 0.88. The responses to each element of the scale were
averaged to create a perceived trustworthiness score.

4.5.3 Understandability. To evaluate the understandability of
explanations, we asked a multiple choice question about what par-
ticipants believed was the cause of failure: “Please select the option
that best matches what failures or errors you observed in the video.”

Participants were also asked two 7-point responses scaling from
“Strongly Disagree” (1) to “Strongly Agree” (7): “The robot’s expla-
nation changed my initial understanding of the robot’s failure” and
“The robot’s explanation helped me understand its failure.” This
was aimed to evaluate whether the explanation enhanced their un-
derstanding as participants could have also used their observations
when identifying the cause of failure.

Finally, to gather more insight on the participants’ responses, we
asked participants to rate their confidence, from “Very Unsure” (1)
to “Very Confident” (7), with their response to the multiple choice
item regarding the cause of failure. This question was designed
to help us identify if participants guessed regarding the cause of
failure, or if they believed that they understood. When designing
explanation systems, it is also important that they are clear so
that people can confidently identify how to resolve issues rather
than leaving it up to guessing. While we did not originally have a
hypothesis regarding the participant’s confidence in their responses,
we would expect participants’ confidence to be higher in both the
Proactive and Reactive conditions as they provide some level of
causal information leaving less up for interpretation.

4.5.4 Explanation Timing. Participants were asked to respond
to two 7-point responses scaling from “Strongly Disagree” (1) to

“Strongly Agree” (7) regarding explanation timing: “When some-
thing went wrong, the robot explained so at an appropriate time.”
and “The robot should have explained that something went wrong
sooner”. These inverses were used to ensure a reliable measure. We
report the medians of these two individual questions.

4.5.5 Preference. As a supplemental analysis, we investigated
which explanation participants preferred. To do so, we asked the
following multiple choice question: “In the three videos that you
watched, each had the robot giving a different explanation. Which
did you prefer?” The answers that participants could select from
consisted of the three different explanations in the same order that
they saw them based on their randomly assigned conditions. We
also provided a fourth option “Other” which allowed participants
to respond in a free response format.

5 RESULTS
5.1 H1 (Human Perception)

Figure 3: Intelligence (a) and trust (b) scales’ Mean and SE.

5.1.1 H1a (Intelligence). First, since Likert responses are non-
parametric data, we performed a Kruskal-Wallis test to assess the
statistical significance of intelligence scores among different expla-
nation types, yielding a significant result of (𝜒2 (2) = 56.47, 𝑝 <

0.0001). Subsequently, post-hoc Dunn tests were conducted with
Holm-Bonferroni correction for pairwise comparisons. Notably,
we identified significant differences in the comparisons between
the P and R conditions (𝑝 < 0.001) and the P and Base conditions
(𝑝 < 0.0001). The P condition (𝑀 = 4.55, 𝑆𝐷 = 1.21) exhibited
higher perceived intelligence scores when compared to both R
(𝑀 = 4.12, 𝑆𝐷 = 1.25) and the Base condition (𝑀 = 3.57, 𝑆𝐷 =

1.28). Furthermore, the R condition displayed significantly higher
(𝑝 < 0.001) perceived intelligence scores in comparison to the Base.
Means scores for each system condition can be found in Figure 3a.

5.1.2 H1b (Trustworthiness). To evaluate the perceived trust-
worthiness of the system between each explanation type, we pre-
formed a Kruskall-Wallis test, which was significant (𝜒2 (2) =

38.22, 𝑝 < 0.0001). To investigate pairwise comparisons we con-
ducted post-hoc Dunn tests with Holm-Bonferroni correction. We
found significant differences between the P and R condition (𝑝 =

0.003), P and Base condition (𝑝 < 0.0001), and R and Base condition
(𝑝 = 0.003). The P condition (𝑀 = 4.47, 𝑆𝐷 = 1.04) was signifi-
cantly more trustworthy compared to the R (𝑀 = 4.08, 𝑆𝐷 = 1.18)
and Base (𝑀 = 3.66, 𝑆𝐷 = 1.25) conditions. The R condition also
was significantly more trustworthy compared to the base condition.
Means scores for each system condition can be found in Figure 3b.
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5.2 H2 (Explanation Quality)
5.2.1 H2a (Understandability). To examine understandability,
we evaluated the multiple choice question on the cause of failure.
A distribution of the responses can be seen in the confusion matrix
in Figure 4. First, we performed chi-squared goodness of fit tests and
found that the distribution of our responses were not equivalent
to random choice (𝑝 < 0.0001) for each condition. For each failure
condition we then ran Fisher’s exact test for count data and found
a significant relationship in all three failure conditions, Screw Bin
Empty: (𝑝 < 0.0001), Screw Bin Moved: (𝑝 < 0.0001), Caddy Out
Of Reach: (𝑝 < 0.0001). With these significant relationships, we
then followed up with post-hoc pairwise nominal independence
tests using Fisher’s exact test and false discovery rate correction to
analyze the pairwise relationships within each failure condition.

After investigating these pairwise relationships, we wanted to
further investigate commonly chosen incorrect responses to un-
derstand how participants misunderstood the cause of the robot’s
failure between system type conditions. To do so we created a
confusion matrix for each failure condition (See Figure 4).

For the Screw Bin Empty scenario, we found significant differ-
ences between the Base and R conditions (𝑝 < 0.0001), Base and P
condition (𝑝 < 0.0001), and the R and P conditions (𝑝 = 0.0134).
As highlighted in blue in the first column of Figure 4, the true cause
of the failure was “There were no screws in the bin on the table”.
In the Base condition, the most selected answer was “Not Sure” at
25.81% followed by 24.19% with the correct cause of failure. In the
R condition, the most selected answer was “The robot could not
detect the screws that were in the screw bin” at 52.46%, then 37.70%
with the correct response. In the P condition, 63.49% of responses
were correct, and the most confused answer was “The robot could
not detect the screws that were in the screw bin” at 26.98%.

As we see from the responses, a popular incorrect choice (Base:
4.84%; R: 52.46%, P: 26.98%) was “The robot could not detect the
screws that were in the screw bin”. This response shows that the
participants partially understood the cause of failure. Only in the
P condition did the correct response receive the most number of
selections, showing that for this failure type people understood this
explanation type more than the others.

In the Screw Bin Moved scenario, we found significant differences
between the Base and P conditions (𝑝 < 0.0001) and the R and P
conditions (𝑝 < 0.001), but there was not a significant difference
between the R and Base conditions in this scenario. The confusion
matrix for this condition can be seen in Figure 4 mid-right.

In this failure condition, the most selected response for every
explanation type was correct, “The screw bin was moved while the
robot was looking for screws”. In the Base condition, 59.38% chose
the correct response, the second most common selection was “The
robot could not detect the caddy that was on the table” at 12.5%. For
the R condition, 57.14% of participants selected the correct response,
with 11.11% selecting “The robot could not reach the screws because
they were too far away.” In the P condition, 72.88% of participants
chose the correct response, with a tie for second at 8.47% selecting
“The robot could not detect the screws that were in the screw bin”
and “The caddy was moved while the robot was looking for it”.

As noted earlier, there were not significant differences between
the Base and R conditions, but we found significant differences

between the P and both the Base and R conditions. More people in
the P condition selected the correct response showing that, for this
failure type, people understood the P explanation type more.

In the Caddy Out Of Reach scenario, significant differences were
observed between the Base and P conditions (𝑝 < 0.0001), the R and
P conditions (𝑝 < 0.001), and the Base and R conditions (𝑝 = 0.0476).
The confusion matrix is shown in Figure 4. The true cause of failure
in this condition was “The robot could not place a screw in the
caddy because the caddy was too far away”.

In the Base condition, 40% chose “The robot could not detect
the caddy that was on the table” as the most selected response,
with only 33.33% selecting the correct response. In the R condition,
38.71% chose the correct response, while 24.19% selected “The robot
could not detect the caddy that was on the table”. In contrast, the P
condition showed the highest understanding, with 81.25% selecting
the correct response and only 9.38% choosing “The robot could not
detect the caddy that was on the table”. Notably, the most common
incorrect response was “The robot could not detect the caddy that
was on the table”. Those who selected this response recognized
that the caddy was involved in the failure but did not grasp that
though the robot had detected the caddy, it couldn’t reach it. The
distribution of responses show that a larger proportion in the P
condition answered correctly, reinforcing the better understanding
of the P explanation type over the others for this type of failure.

Influence on Understanding: Participants’ understandings of
the cause of the robot’s failure may be influenced by visual ob-
servations. For example, a participant could potentially observe
that the caddy was out of the robot’s reach while observing the
robot. To isolate the impact that the explanation had on their un-
derstanding we first analyze the responses to “The robot’s explana-
tion changed my initial understanding of the robot’s failure.” First,
we preformed a Kruskall-Wallis test, which revealed a statistical
significance (𝜒2 (2) = 135.13, 𝑝 < 0.0001). Next, we investigated
pairwise comparisons by conducting post-hoc Dunn tests with
Holm-Bonferroni correction. There were significant differences
between the Base and R conditions (𝑝 < 0.0001), Base and P con-
dition (𝑝 < 0.0001), and the R and P (𝑝 = 0.0015) conditions. A
distribution of responses to this question can be seen in Figure 5a.
The P condition resulted in the largest influence on understanding
(𝑀 = 4.53, 𝑆𝐷 = 1.82, 𝑀𝑑𝑛 = 5), followed by R (𝑀 = 3.87, 𝑆𝐷 =

1.80, 𝑀𝑑𝑛 = 4), and Base (𝑀 = 2.28, 𝑆𝐷 = 1.45, 𝑀𝑑𝑛 = 2).
While we strive for explanations to have a positive influence on

a person’s understanding, they may also have a negative influence
if they are confusing. To further investigate the direction of the
influence, we analyze the responses to the question “The robot’s
explanation helped me understand its failure.” To evaluate this we
first preformed a Kruskall-Wallis test (𝜒2 (2) = 236.95, 𝑝 < 0.0001)
and followed it up with post-hoc Dunn tests with Holm-Bonferroni
correction for pairwise comparisons. There were significant differ-
ences between the Base and R conditions (𝑝 < 0.0001), Base and
P condition (𝑝 < 0.0001), and the R and P (𝑝 < 0.0001) conditions.
The explanation condition that was rated as the most helpful was
the P condition (𝑀 = 5.91, 𝑆𝐷 = 1.12, 𝑀𝑑𝑛 = 6), followed by R (𝑀 =

4.85, 𝑆𝐷 = 1.77, 𝑀𝑑𝑛 = 5), and Base (𝑀 = 2.41, 𝑆𝐷 = 1.76, 𝑀𝑑𝑛 = 2).
A distribution of responses to this question is in Figure 5b.
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Figure 4: Confusion matrix for each failure condition across explanation types. The row corresponding to the ground truth
choice is outlined in bold and highlighted with the corresponding color for each failure condition. The percentage of responses
is indicated in each cell, or is blank for no responses. The bold percentage number in each explanation column indicates the
most selected response. The cells are filled from grey (low number of responses) to purple (high number of responses).

Ultimately, participants rated that the P explanation condition
helped them understand the failure better, and also caused the
largest change in their understanding of the robot’s failure.

Confidence: To measure the participants’ confidence in their se-
lection of the cause of failure, we first preformed a Kruskall-Wallis
test, revealing a statistical significance (𝜒2 (2) = 23.28, 𝑝 < 0.0001).
Then we investigate pairwise comparisons by conducting post-hoc
Dunn tests with Holm-Bonferroni correction. There were signif-
icant differences between the Base and R conditions (𝑝 = 0.011),
Base and P condition (𝑝 < 0.0001), and the R and P (𝑝 = 0.041)
conditions. The P condition resulted in the most confidence (𝑀 =

6.00, 𝑆𝐷 = 1.12, 𝑀𝑑𝑛 = 6), R resulted in the second most confidence
(𝑀 = 5.72, 𝑆𝐷 = 1.31, 𝑀𝑑𝑛 = 6), and finally the Base condition
resulted in the lowest confidence (𝑀 = 5.21, 𝑆𝐷 = 1.68, 𝑀𝑑𝑛 = 6).
Figure 5c. shows the distribution of responses to this question.

5.2.2 H2b (Explanation Timing). The participants’ perceptions
of the timing of the explanations were measured using two ques-
tions. We first analyzed the responses to the question “When some-
thing went wrong, the robot explained so at an appropriate time.”
We first preformed a Kruskall-Wallis test, revealing a statistical
significance (𝜒2 (2) = 89.71, 𝑝 < 0.0001), and conducted post-hoc
Dunn tests with Holm-Bonferroni correction. We found significant
differences between the P and R conditions (𝑝 < 0.0001), P and Base
conditions (𝑝 < 0.0001), and R and Base conditions (𝑝 = 0.0048).
The P condition (𝑀 = 5.52, 𝑆𝐷 = 1.41, 𝑀𝑑𝑛 = 6) had significantly
higher ratings compared to the R (𝑀 = 4.35, 𝑆𝐷 = 1.71, 𝑀𝑑𝑛 = 5)
and Base (𝑀 = 3.76, 𝑆𝐷 = 1.87, 𝑀𝑑𝑛 = 4) conditions. The R con-
dition also had significantly higher ratings compared to the Base
condition. A distribution of the responses can be seen in Figure 5d.

We then investigated the second question “The robot should
have explained that something went wrong sooner”. We performed
a Kruskall-Wallis test, revealing a statistical significance (𝜒2 (2) =
41.409, 𝑝 < 0.0001) and post-hoc Dunn tests with Holm-Bonferroni

correction to test for pairwise comparisons. There were signifi-
cant differences between the P and R conditions (𝑝 < 0.0001) and
between P and Base condition (𝑝 < 0.0001). The differences be-
tween R and Base for this question were not significant. The P
condition (𝑀 = 3.741, 𝑆𝐷 = 1.89, 𝑀𝑑𝑛 = 4) had significantly lower
ratings, where lower is better, compared to the R (𝑀 = 4.91, 𝑆𝐷 =

1.76, 𝑀𝑑𝑛 = 5) and Base (𝑀 = 4.71, 𝑆𝐷 = 1.65, 𝑀𝑑𝑛 = 5) condition.
Figure 5e. shows the distribution of responses to this question.

Ultimately, participants rated that the Proactive condition had
better timing compared to the Reactive and Base conditions.

5.3 Preference
To evaluate the participants’ preference between the explanation
types, we first performed a Chi-Square analysis 𝑋 2 (3, 𝑁 = 186) =
213.74, 𝑝 < 0.0001). We then followed this up with a pairwise
binomial test with Holm-Bonferroni correction to test the pairwise
comparisons. There were significant differences between the Base
and R conditions (𝑝 < 0.0001), Base and P condition (𝑝 < 0.0001),
and the R and P (𝑝 < 0.0001). The most preferred explanation
type was P (𝑁 = 127), followed by R (𝑁 = 49), and lastly the Base
condition (𝑁 = 7). A total of 3 participants selected “Other”. Two
of these participants indicated that they preferred a mix between
the R and P condition. The third stated that they “would prefer an
explanation that sounded gramatically [sic] correct”.

6 DISCUSSIONS AND CONCLUSION
In our online study, we evaluated a Proactive and Reactive error
explanation system. Based on our results, we propose the following
recommendations and opportunities for future work.

6.1 Improving System Adoption
Increasing system adoption is essential to effectively utilize robots
in a sharedworkspace, such as amanufacturing line. Increased adop-
tion of robots has been attributed to higher perceived intelligence
and trust [33]. Trust has also been found to influence reliance [28]
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Figure 5: The distribution of responses to the influence on
understanding (a,b) understanding confidence (c), and ex-
planation timing (d,e). Percentages indicate the percent of
participants who responded below neutral (left), neutral (cen-
ter), and above neutral (right).

and increase use [35] of robots. Proactive Systemswere seen asmore
intelligent (Section 5.1.1) and trustworthy (Section 5.1.2), therefore,
we recommend that Proactive Systems be used to increase adoption.

6.2 Diagnosing Failures
As more robot systems are deployed in manufacturing, personal
assistance, delivery, stores, and other aspects of our daily life, expert
technicians will likely not be around to supervise a robot all day.
Thus, people who may not have much experience with robots may
encounter these systems when they need assistance. Providing clear
explanations enables novices to better understand and diagnose
robot failures [11]. Our Proactive System’s explanations, which
communicated why the robot likely would not be able to complete
its task, were more understandable (Section 5.2.1) than our Reactive
System’s, which communicated what failed, but not why it failed.
The Proactive System’s explanations had a larger impact on par-
ticipants’ overall understanding of the robot’s failure and led to

higher levels of confidence in their understanding. Participants also
preferred the explanations from our Proactive Systems (Section 5.3).
Therefore we recommend that systems are designed to identify and
communicate reasons why they fail when something goes wrong,
improving people’s ability to confidently diagnose the failure.

6.3 Trade-offs for Timely Explanations
Timing of explanations is important when diagnosing robot failures.
Participants ultimately preferred the earlier explanations from the
Proactive System (Section 5.2.2).

Participants’ responses to the timing questions for the Reactive
and Base explanations were not expected to be different as they
generate explanations at the same time. Surprisingly, we observed
significant differences in the appropriateness of the explanation
timing between the Reactive and Base conditions in response to the
first question: “When something went wrong, the robot explained
so at an appropriate time”. One participant’s explanation for their
response in the Base condition offers insight as to why this might
be: “It took it quite a while of standing still to inform us that it
wasn’t able to complete its task without giving any explanation”.
This suggests that people might anticipate low detail responses to
be quicker compared to more detailed ones. This trade-off between
the level of information provided by a robot and the timing of
response warrants further investigation in future work.

Several participants noted another trade-off between explanation
timing and the robot’s need to troubleshoot prior to asking for help,
which is summarized nicely by one participant’s response referring
to the Proactive System: “While there was a lag, I think it makes
sense if the robot is trying to troubleshoot or recalibrate for itself
to see if there’s a way to complete their mission before reporting”.
This trade-off may also be influenced by the length or quality of
explanations, as discussed above and remains an open discussion
that should be further investigated in future work.

6.4 Applications to Other Domains
While we evaluated our systems using an assembly line scenario,
several other subfields could benefit from Proactive Systems.

Human-in-the-loop robot teleoperation can benefit from the ro-
bot being able to predict when an operator’s commands would
likely not succeed and then explain why to an operator, improv-
ing the team’s overall efficiency. Explanations can also potentially
improve the operator’s understanding of the robot’s limitations, a
barrier for novice user teleoperation [37].

Social robots could also benefit. When social robots fail, a per-
son’s trust in the system often degrades [23, 39], however, systems
can justify their failure to compensate for this loss of trust when
consequences are not severe [9]. Thus, by deploying social robots
with Proactive error detection and explanation systems, we would
expect systems to similarly maintain their trust levels during low
consequence failures. Additionally, the robot would be capable of
preemptively attempting to get help or resolving issues before it
fails, resulting in more timely explanations as we saw in our study.
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