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ABSTRACT

TOWARDS DEVELOPING EFFECTIVE HUMAN-ROBOT SYSTEMS

Jacob W. Crandall

Department of Computer Science

Master of Science

There is a rising need for robust human-robot systems. Such systems require that humans

and robots work together efficiently. In order for humans and robots to work together

efficiently, these systems must include both efficient interfaces and robots that can carry

out some tasks autonomously. These two elements of system intelligence are captured in

two notions: interface efficiency and neglect tolerance. In this thesis, we develop metrics for

these two concepts. These metrics can be used to measure and compare the effectiveness

of human-robot systems.

In order to obtain the measures of neglect tolerance and interface efficiency for a human-

robot system, we develop a measurement technology. This measurement technology calls

for a large number of user experiments to be performed. From these experiments, random

processes that measure the neglect tolerance and interface efficiency of a system can be es-

timated nonparametrically. The measurement technology requires the development of two

other related metrics. They are instantaneous robot performance and world complexity,

which we describe in this thesis.

To validate the usefulness of the interface efficiency and neglect tolerance metrics, we

compare three different systems for a certain navigation task. In the task, a human helps

a robot navigate through its world to specified goal positions. A user study involving



40 subjects is used to estimate the interface efficiency and the neglect tolerance of these

systems. The systems are then compared based on these measures.

While the measurement technology described in this thesis requires that a large num-

ber of user experiments be performed, we show that the neglect tolerance and interface

efficiency of a system can be approximated with only a few user experiments. This al-

lows more practical application of the neglect tolerance and interface efficiency metrics

described herein.
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Chapter 1

Introduction

In many applications, it is desirable to allow a human to interact with multiple indepen-

dent robots. These applications include search-and-rescue, exploration, hazardous waste

clean-up, and so on. In such applications, efficient interactions between humans and robots

are necessary for such systems to perform proficiently. Two components that, in part, de-

termine the effectiveness of human-robot systems are the efficiency of the interface between

humans and robots, and the capabilities of the robots’ artificial intelligence. These two

components can be captured in the concepts of interface efficiency and neglect tolerance.

In this thesis, we present a method for measuring the interface efficiency and neglect

tolerance of human-robot systems. In order to do this, we first develop two related metrics.

They are instantaneous robot performance and world complexity. Second, we develop

a measurement technology from which measures of the interface efficiency and neglect

tolerance can be estimated nonparametrically. These measures can be used to assess the

effectiveness of a human-robot system.

1.1 Motivations

Human-robot systems face various challenges. In particular, a gulf exists between humans

and robots that impedes system performance. This is largely because humans do not

understand robots, and robots do not “understand” humans. We will call this a barrier of
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understanding (related closely to the gulfs of evaluation and execution described in [37]).

This so called barrier of understanding can be overcome by identifying the interaction

needs of both humans and robots.

Interaction is largely for the purpose of overcoming and avoiding limits. Both robots

and humans have limits that contribute to the barrier of understanding. For example, a

robot is limited by its hardware and software (artificial intelligence) capabilities. A hu-

man, on the other hand, has, in general, better hardware and uncanny reasoning skills.

However, we have limits in attention, cognition, physical strength, and brain power. Good

combinations of robot and human capabilities can allow problems to be solved more effi-

ciently. Such combinations are more easily obtained when human-robot interactions are

efficient. The metrics of neglect tolerance and interface efficiency can be used to compare

various human-robot systems. They can also serve to identify the strengths and weakness

of these systems.

1.2 Thesis Statement

In this thesis, we will develop the metrics of neglect tolerance and interface efficiency for

use in human-robot systems. We will also present a measurement technology that can

be used to estimate these metrics. Furthermore, we will validate the usefulness of these

metrics. These metrics (a) provide a foundation for evaluating human-robot systems for

performance and operator workload and (b) show how existing human-robot systems can

be improved.

1.3 Thesis Organization

The next chapter of this thesis gives an overview of related work to this thesis. In chapter

3, we provide results from a case study on teleoperation that provides a foundation for this

thesis. In chapter 4, we discuss interface efficiency and neglect tolerance, their metrics, and

other related metrics. Additionally, we describe a measurement technology that can be

2



used to obtain these measures. The rest of the thesis focuses on validating the measurement

technology and the usefulness of the metrics. In chapter 5, we describe and discuss the

human-robot systems we will use for validation. In chapter 6, we discuss the environment

in which we performed a large user study for this validation. In chapter 7, we report a

user study and show how measures of neglect tolerance and interface efficiency for the

human-robot systems discussed in chapter 5 are obtained. In chapter 8, we show how

neglect tolerance and interface effiency for an interaction scheme can be approximated

quickly. Finally, we conclude and discuss future work in chapter 9.
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Chapter 2

Related Literature

An article in IEEE Robotics and Automation Magazine [10] by leaders in the field of

robotics proposed goals for the capabilities of robots in urban search and rescue missions

by the year 2050. The article lists six desired levels of competency that included various

levels of autonomy. Ultimately, efficient human-robot interaction is desired, in which a

robot should be able to carry out many tasks semi-autonomously (some autonomously and

others with the help of the human operator). Past research has explored some important

elements necessary to obtain these levels of competency. A brief summary is included

below.

Human-Centered Robotics. Conway et. al. in [11] presents a taxonomy of human-

machine interaction. The taxonomy includes teleoperation, shared control, traded control

and supervisory control. Of these four, teleoperation has been studied, perhaps, the most.

Sheridan’s work [48], however, is the seminal work in the area. Although useful for many

situations, pure teleoperation is not desireable for many applications because it is not

sufficently tolerant to being neglected by a human operator.

Shared control has become popular in recent years. It has been studied in different

forms. Safeguarding (vetoing actions that endanger the robot) is one form [19, 29]. Another

form of shared control is when the robot combines operator input with its own assesment

of the environment [4, 3, 45].

To avoid undo burden on the operator, traded control has become popular [22]. Point-
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to-point and scripted interactions (used in this thesis) are traded control methods. Chal-

lenges exist, however, in traded control. One of these areas of concern is the transition of

control, both from the human’s perspective and the robot’s perspective [27].

Sheridan’s book [48] contains a good description of supervisory control. A good ex-

ample of supervisory control for autonomous robotics was RALPH (Rapidly Adapting

Lateral Position Handler), a semi-autonomous vehicle [44]. RALPH was able to steer au-

tonomously on large stretches of highway. When RALPH failed, a human took over the

steering of the vehicle. Other examples of supervisory control, among numerous others,

include [1, 51].

Robot Teams. Human-centered robot teams have become a popular study subject.

Much of the work is related to cooperative robotics. Arkin’s group has done a lot of work in

this area. Such work includes the teleoperation of a group of robots by a single input from

an operator [2, 5]. This same idea was used in [26] for telemanipulation. Goldberg’s work

in [21] is related to this idea. However, instead of having one operator control multiple

robots, Goldberg has many operators control one robot. This is important because it

provides a foundation for multiple user/multiple robot interactions.

Many-robot systems have been studied in depth. Work on swarms [15, 20] and for-

mation management (platooning) [16, 31] has been done. Problems for which using many

small, simple, and cheap agents is more efficient than using a few bigger, complex, and

more expensive agents are discussed in [15]. Utah State University recently used this

method in the search and rescue competition at RoboCup 2001 [32].

Cooperative robotics has also been combined with other concepts. Balch and Arkin

combined cooperative robotics with behavior-based robotics [7]. Parker provides a hybrid

approach to distributed cooperation among heterogeneous robots that combines elements

of behavior-based robotics and higher-level reasoning [40]. Such hybrid approaches typify

much of the current development on autonomous robot design [4, 33].

Interface Technologies. Interface technologies are obviously important to human-

robot interactions. Interface assistants have potential in human-robot interactions since
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they can lower the workload of the human user/operator [34]. Additionally, personal user

interfaces [17], gesture recognition [28, 52], emotive computing [8], virtual reality-based

displays [50], and predictive displays [30] can be useful and important to human-robot

interactions. Another use of interfaces is having robots learn from human demonstrations

[36, 49, 53].

Adjustable Autonomy and Mixed Initiatives. A powerful principle for human-

robot systems is the principle of adjustable autonomy. The term adjustable autonomy

captures the notion that the autonomy level of a robot can be changed. This principle

was developed by Dorais et. al in [14], and is being discussed and used extensively in the

literature in various forms [39] and with various kinds of agents [43, 46, 42]. An important

principle related to adjustable autonomy is that of mixed-initiatives [18, 42], which poses

the question of who has control (a human or a robot) in a system at a given moment as

well as who is responsible for initiating control transitions.

Neglect Tolerance and Performance. In this thesis, the idea of neglect tolerance

and interface efficiency curves is introduced and used. These curves are similar to per-

formance resource function curves in [54]. In this work, Wickens cites how performance

on a task can be measured as a function of resources demanded by the task. Addition-

ally, neglect tolerance and interface efficiency curves call to mind attention-operating-

characteristic-plots [41] that cross-plot performance on two independent tasks as a func-

tion of attention spent with each task. Related to these ideas is the concept of operator

workload. Operator workload can be used to measure the effectiveness of human-robot

interactions. Much work on measuring operator workload has been done, but Boer’s work

relating workload and entropy [35] is of particular relevance to this thesis.

Work Impact. We presented preliminary versions of the neglect tolerance and inter-

face efficiency metrics presented in this thesis in [12, 24]. These metrics were used by Scerri

et al. [47] to calculate when an autonomy mode change should be made. They calculated

expected utilities to decide whether an agent or a human should should make decisions or

perform actions. Other places that this work has been cited include [9, 25].

6



Chapter 3

Foundational Work - A Case Study

In this chapter, we present a user study that compares a shared-control teleoperation

method1 with traditional manual-control teleoperation. This experiment was performed

to demonstrate the way that robot control schemes affect human-robot systems. We first

describe the user study, after which we explain criteria and results.

3.1 Experiment Description

The primary task of the user study was for a human to guide a robot via a joystick

through a typical building (we used the top floor of the BYU computer science depart-

ment). The human operator used a joystick to drive a Nomad Superscout II through the

environment using shared-control teleoperation and traditional manual-control teleopera-

tion. Four users were selected from various disciplines. None of these subjects had any

prior experience controlling the robot. In addition to driving the robot around the build-

ing, the users were asked to perform a secondary task (arithmetic problems) that imposed

cognitive load on the subjects.

Conditions of the user study are depicted in Figure 3.1. The subject viewed a two-

digit arithmetic problem and the robot video stream on separate windows of the same

1Described in detail in chapter 5, section 2 of this thesis. The method uses sonar to assist navigation.

The term shared control is used throughout this thesis to refer to this method.
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display. They selected their answers to the arithmetic by clicking on the arithmetic display

via the mouse (operated with the left hand) while controlling the robot via the joystick

with the right hand. The secondary task used in this experiment is difficult because it

requires response-selection attention, occupies working memory, and requires a manual

control output with the non-dominant hand (for most subjects). We used a self-paced

implementation, meaning the operator chose when a new arithmetic problem was presented

(by clicking a button). However, once the arithmetic problem was presented, the operator

had only five seconds to answer it.

Figure 3.1: HRI secondary task experiment.

For each participant, the following steps were followed:

Step 1. The math proficiency level of the participant was determined. Two-digit addition

problems were displayed on the screen along with four multiple choice answers (only

one being the correct answer). The participant was given five seconds to answer

the question. A log of math proficiency was kept. After the participant answered

the question, he or she could proceed to a new problem by clicking on a button.

This proficiency test lasted for two minutes. If the participant could not successfully

8



complete 60% of the problems, the difficulty level was reduced to adding a two-digit

number to a one-digit number.

Step 2. Next, the participant was trained to guide the robot using a particular autonomy

mode. Scheme S was the Shared-control teleoperation scheme, and Scheme D was

a traditional Direct-control teleoperation scheme. In order to not bias results, some

participants were trained and tested on Scheme S first, and others were trained and

tested on Scheme D first. After completing initial training, the participant was asked

to guide the robot through the course as quickly as possible. While doing so, he or

she was told to look out for the safety of the robot. Training was completed when

the subject had successfully guided the robot through the course one time.

Step 3. The participant was again asked to guide the robot through the course. This

time, the participant was also asked to do math problems as he or she controlled

the robot. The participant was instructed to guide the robot through the course as

quickly as possible, and to answer as many math problems in this time as he or she

could, while making sure the robot was safe.

Steps 4–6. The participant repeated steps 2–3 using the other control scheme. That is,

if the participant started with Scheme S, then he or she was next trained and tested

on Scheme D and vice versa.

3.2 Evaluation Criteria and Results

Ideally, the robot would be able to perform at 100% and the average time-off-task (time not

spent on the primary task of driving the robot) would also be 100%. In general, increased

time-off-task means increased neglect of that task. In self-paced tasks, this means that for

a particular level of neglect, a more neglect-tolerant system will have higher performance;

similarly, for a particular level of performance, a more neglect-tolerant system will have

more secondary tasks performed. These results for the two autonomy modes (shared-

control and manual control teleoperation) are shown in Figure 3.2, which shows robot

9



Figure 3.2: A plot of robot effectiveness verses neglect rate. The vertical axis represents

robot performance (as a percentage of maximum effectiveness) and the horizontal axis

represents neglect (in terms of percentage of time-off-task). The x’s represent results from

shared-control, and the o’s from manual-control. The large x and large o represent the

mean values for each scheme.

effectiveness verses neglect for the task performed in the experiment. It is interesting

to note from this graph that, on the navigation task tested, the shared-control system

(represented by the x’s) dominates the direct-control sytem (represented by the o’s) not

only on average across participants (the mean points), but also for each participant.

The relevant measurements for the four subjects are shown in Table 3.1, and are de-

scribed in detail below.

Neglect Rates. Neglect time is the amount of time spent doing other tasks. Thus,

neglect is the time spent solving arithmetic problems2 divided by the total time of the trial

run.

Under the shared-control scheme, the four participants spent an average of 57% of their

time doing math problems (and, therefore, neglecting the robot). In contrast, an average of

2The time spent solving arithmetic problems is assumed to be the total amount of time arithmetic

problems appeared unanswered on the screen.
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Shared-Control Results

Participant A B C D Ave.

% Neglect 51% 67% 46% 63% 57%

% Performance 77% 96% 81% 86% 85%

# per min. 9.5 18.9 8.9 10.6 12.0

% Correct 74% 98% 94% 66% 83%

Entropy 0.56 0.42 0.51 0.35 0.46

Direct-Control Results

Participant A B C D Ave.

% Neglect 36% 31% 22% 62% 38%

% Performance 57% 76% 58% 60% 63%

# per min. 6.4 9.1 3.9 9.8 7.3

% Correct 72% 85% 79% 61% 74%

Entropy 0.72 0.79 0.67 0.63 0.70

Table 3.1: Results for four subjects (A, B, C, and D) in the user study. % Neglect is

how much the robot was neglected (the percent of time the operator spent doing arithmetic

problems), Performance is how efficently the primary task was completed (as a percentage

of maximum possible performance), # per min is how many arithmetic problems were at-

tempted per minute, % Correct is the percentage of attempted arithmetic problems the sub-

ject answered correctly, and Entropy is the joystick steering entropy; lower values indicate

smoother driving. As can be seen, the shared-control system dominates the manual-control

system in every category for each participant on the tested task.
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38% of the subject’s time was spent neglecting the robot under the direct control scheme.

Thus, subjects neglected the robot an average of 50% more using shared-control than

direct-control.

Joystick Steering Entropy. We obtain the joystick steering entropy for each par-

ticipant using the algorithm described in [35]. Entropy ratings range between 0 and 1. A

high entropy rating means that joystick movements are choppy and thus indicates that

the operator is under high workload; lower entropy ratings indicate that the operator has

a lower and more manageable workload.

Under the direct-control system, joystick streering entropy on this task was 0.7, in

contrast to 0.46 under shared-control. On average, the direct control system had an

entropy just over 50% higher than shared-control. Since entropy is a measure of workload,

this indicates that the cognitive workload was substantially higher for direct-control than

shared-control. These results are consistent with the 50% increase in time spent neglecting

the robot, which is important since workload and neglect rates should have a significant

negative correlation.

Primary Task Effectiveness. This is how well the participant did in driving the

robot through the course. To keep things simple and objective, the judgement of how

well a task was performed is established simply by how much time it takes to get the

robot around the building. The distance the robot is required to travel and maximum

robot speed dictates that it take at least 170 seconds to get through the course. We base

performance off this number: Performance = 170
TimeElapsed

× 100.

Under shared-control, subjects performed the task at about 85% on average, whereas

under direct-control they achieved only 63%. Thus, performance levels for the shared-

control system exceeded performance levels of the direct-control system by an average of

about 35% which indicates that, for the given world, the shared-control system was much

easier to use than the direct-control system.

Secondary Task Effectiveness. This is a measurement of how well the participant

performed on the arithmetic problems. Both the number of problems completed per minute

12



and the math proficiency are important. Since each participant’s math abilities differ,

only comparisons between how well a participant performed in different control schemes is

relevant. We submit that participants should perform better on the secondary task when

they have a lower workload imposed by the primary robot control task.

In the experiments, the secondary task results correlate with the results of all the

other recorded data for this experiment. The average arithmetic proficiency on the shared-

control system was 83%, meaning that subjects answered 83% of the questions correct.

By contrast, under direct control, subjects only answered 74% of the questions correct.

Thus, the average arithmetic proficiency of shared-control exceeded direct-control by 9%.

Additionally, the average number of arithmetic problems attempted per minute increased

from 7.3 problems per minute when participants used the direct-control system to 12.0

problems per minutes when participants used the shared-control system. That represents

an increase of about 65%, and indicates that subjects were able to turn attention away

from the priumary task more frequently with shared-control.

Subjective Rating. Each participant was asked to tell which system was better. The

judgement criteria of what is better should be based on a general perception of how the

participant felt they did on each scheme.

In the experiments, the participants in the experiment unanimously indicated that the

shared-control system was better than the manual-control system.

3.3 Case Study Conclusions

From the case study, we conclude that shared-control teleoperation is more tolerant to

neglect than is direct-control teleoperation for the navigation task tested, even though

both used the same joystick input and information presentation. We also conclude that

measures of workload are important in determining which interaction schemes are best.

While the case study was limited in its scope since it involved testing only two different

interaction schemes and was tested on only one simple task, we can reason that varying

human-robot systems changes the way that humans and robots interact. Furthermore,

13



it changes the performance of a system. In the next chapter, we will develop two met-

rics for measuring how changes in human-robot systems change interactions and system

performance.
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Chapter 4

Two Metrics for Human-Robot

Systems

In this chapter, we will begin by formally defining an interaction scheme. Next, we will

discuss neglect tolerance and interface efficiency in human-robot systems, as well as the

related concepts of instantaneous robot performance and world complexity. Then, we will

develop metrics for evaluating neglect tolerance and interface efficiency. Finally, we will

present a measurement technology for estimating these measures.

4.1 Interaction Scheme

The interaction between a human and a robot is diagrammed in Figure 4.1 for a situation

in which a human interacts with a remote robot over a communication network1. In the

figure, there are two loops involving three different agents: the human, the robot, and the

interface between the human and the robot. The top loop involves the human and the

interface. Information about the robot and its environment is delivered from the interface

to the human. The human processes this information and determines a course of action

1When robots are remote from human operators, all information about the world comes to the human

via sensors, but when humans and robots are co-located, humans gain information directly from the

environment as well.
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that he/she believes should be done. This action is communicated to the interface through

a control element. The way in which information is presented to a human (remember

the gulf of evaluation [37]) and the way in which a human communicates to the robots

(remember the gulf of execution [37]) determines the effectiveness of an interface. The

bottom loop involves the robot and the interface. The robot receives input from the

human via the interface. It then combines this input with its artificial intelligence (in this

thesis referred to as its autonomy mode) to act in its world. The robot receives information

about the world through its sensors and forwards it to the interface.

Figure 4.1: The interface loop and autonomy loop for human-robot interaction.

A lesson learned from process autonomation is that designing a system without con-

sideration for human factors frequently fails [6], even when humans are well-trained and

highly motivated. Therefore, attention should be focused on making the interface and

the robot more intelligent in the sense that they support human interactions. Within

this context, we define an interaction scheme as an autonomy mode (bottom loop) of the

robot and an interface (top loop) between human and robot. The interface consists of an

information-presentation element through which a human operator receives information

from a robot and a control element through which the human communicates with the
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robot. The interface (information-presentation and control) or the autonomy mode of the

robot can be manipulated to create new interaction schemes. Changing an interaction

scheme can cause both the frequency and duration of efficient human-robot interactions

to change. These changes in interactions determine, in large measure, the effectiveness of

an interaction scheme.

4.2 Neglect Tolerance

Neglect tolerance is a measure of a robot’s autonomy mode. This term is used to refer to the

way that a robot’s performance changes when it is neglected by humans (i.e., when human

attention is focused elsewhere). As a general trend, as neglect increases, robot performance

decreases. How robot performance decreases depends on the interaction scheme that is

being employed. Figure 4.2 conceptualizes how one might expect neglect to affect robot

performance for different kinds of interaction schemes. In the figure, the performance of

a robot using a teleoperation interaction schemes degrades quickly as the human neglects

the robot. The performance of an autonomous robot2 does not tend to degrade much over

time, although its peak performances usually would not be expected to be as high as a

teleoperated robot.

Figure 4.2: Hypothesized neglect tolerance (time-off-task) for interaction schemes with

various autonomy modes for a world of constant complexity.

2We live in a world in which no robot is completely autonomous due to reprogramming, re-enginerring,

etc., but we use the term to denote a robot that generally runs autonomously.
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Teleoperated and fully autonomous modes lie on the extremes of human-robot inter-

actions. There exist a large number of autonomy modes that require different degrees of

interactions and are represented in Figure 4.2 by a point-to-point scheme in which a robot

is a given a command, such as “turn left at the next intersection,” and is then expected

to carry that command out autonomously, after which more interactions are required.

4.3 Interface Efficiency

Interface efficiency is a measure of the effectiveness of an interface. When a human opera-

tor’s attention is turned to a robot 3, we would expect the robot’s performance to change,

hopefully for the better. The way that the robot’s performance changes during servicing

depends on the interaction scheme being employed. The interface of an interaction scheme,

through its information-presentation and control elements, affects the time it takes for a

human to gain relevant situation awareness, decide on a course of action, determine the

inputs to give to the robot, and then communicate those inputs to the robot.

A poorly designed information-presentation system may cause the process of gathering

information to become a task in and of itself. Consider an extreme example in which

information about obstacles around a robot is communicated to the human operator via

text. In such a situation, the human operator must read the information and create a

mental representation of the world around the robot (which could take considerable time)

before generating a plan about how to deal with the obstacles. Thus, an interface from

which information extraction is difficult extends the time it takes for the operator to switch

from one task to another.

Similar to the way that information-presentation to the human from the robot can

change the characteristics of interaction between a human and a robot, the way of giving

information to the robot from the human can also change the characteristics of interaction.

As an example, consider controlling an airplane with the movements of a mouse. It may

be difficult for the human to determine in what ways mouse movements translate into

3We use the term servicing the robot to describe this action.
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airplane movements in the air. In general, control should be intuitive to the human

operator, otherwise the process of presenting information to the robot also becomes a task

in and of itself.

Figure 4.3 shows how interface efficiency (time-on-task) could hypothetically affect the

performance of a robot for different interaction schemes. The figure expresses the idea

that different interaction schemes affect the way that the performance of a robot changes

during interactions.

Figure 4.3: Qualitative representations of interface efficiency for various presentations of

information.

4.4 World Complexity

Up to this point, we have ignored the effects of world complexity on neglect tolerance

and interface efficiency. Consider, however, the two worlds shown in Figure 4.4. It seems

obvious that it would be easier for a robot to navigate through world b than to navigate

through world a. Thus, the complexity of the robot’s environment affects robot perfor-

mance. Interaction schemes that are designed for a particular level of world complexity

may not perform well for other world complexities. Intuitively, robot performance gener-

ally decreases as world complexity increases.

Some interaction schemes scale better to the effects of world complexity than do others.

An interaction scheme that scales well to complexity (i.e., robot performances changes little
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Figure 4.4: Two worlds with differing world complexities.

with changing world complexity) is said to be complexity tolerance.

4.5 Combining Neglect Tolerance and Interface Effi-

ciency

The performance of a semi-autonomous robot declines as human attention is spent on

other tasks and/or the complexity of the world increases. Additionally, effective human-

robot interactions should cause robot performance levels to remain increase. This implies

that interactions must be frequent enough and last long enough to maintain sufficiently

high robot performance levels.

To illustrate this, consider Figure 4.5. In the figure, (moving from left to right along the

horizontal axis), a robot begins at performance level zero (or from stand-still). A human

operator begins to interact with the robot (Task 1). When this occurs, performance is

modeled as an interface efficiency curve (see Figure 4.3). When a human terminates the

interaction and turns his/her attention to another task (Task 2), the robot’s performance

level begins to deteriorate and is modeled as a neglect tolerance curve (see Figure 4.2).

Before the robot’s performance level drops below acceptable levels, the human must again

turn its attention to the robot (Task 1) and interact with the robot. Because of time

for context switches, these interactions must begin some time before a robot’s expected

performance declines below an acceptable level.
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Figure 4.5: The average frequency and duration of human-robot interactions can be deter-

mined by a combination of interface efficiency and neglect tolerance.

Thus, Figure 4.5 shows how acceptable interaction rates can be derived from the neglect

tolerance and interface efficiency measures. An acceptable interaction rate is a frequency

and duration of interactions such that expected robot performance does not drop below a

certain threshold. The figure shows that the duration of an interaction should be don in

a situation in which the frequency of the interaction is don + doff . Varying the minumum

acceptable performance level (MAPL), or the threshold, changes the acceptable interaction

rate. Additionally, it also changes the average performance of the robot.

As an example, consider lowering the MAPL in Figure 4.5. This would cause doff to

become larger, which in turn could change don. Thus, both the frequency and duration

of the acceptable interaction rate would change. However, lowering the MAPL would

also cause the robot’s average performance to decrease since the robot would spend more

time performing at lower performance levels. Similarly, increasing the MAPL in the figure

would make doff smaller, as well as affecting don, and would cause the robot’s average

performance to increase.
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4.6 Mathematical Measures of Usefulness

The performance of a robot employing interaction scheme, π, is defined by a random

process indexed by time, t, world complexity, c, and the duration of the previous lapse

in interactions, tN (neglect time), between a human and the robot. More formally, the

performace p of a robot is defined as

p = V(π, T ; t, c, tN) (4.1)

where T is the task being performed and c is an estimate of world complexity (obtained

using a complexity metric; see section 4.7.2).

In equation (4.1), we used the generic time term t. However, a different time variable

is used by the neglect tolerance metric than by the interface efficiency metric. The neglect

tolerance metric uses time-off-task toff , which denotes the time elapsed since the robot was

last serviced. The interface efficiency metric uses time-on-task ton, which denotes the time

elapsed since servicing began. Thus, if the robot is currently being serviced, then t is ton.

If the robot is being neglected, then t is toff . Therefore, equation (4.1) becomes

p = V (π; t, c, tN) =


VS(π; ton, c, tN) if being serviced

VN(π; toff , c) otherwise
(4.2)

where the variables are defined as before. Thus, VS(π; ton, c, tN) is a measure of the interface

efficiency of π and VN(π; toff , c) is a measure of the neglect tolerance of π. Notice that

neglect tolerance is not dependent upon tN . This is because we assume that interactions

will always bring expected robot performance up to peak levels, independent of the previous

neglect time, which means that VN(π; tS = 0, c) is independent of tN . For simplicity, we

often refer to V (π; t, c, tN), VS(π; ton, c, tN), and VN(π; toff , c) as V (π), VS(π), and VN(π)

respectively.

The random process V (π) contains a lot of information about the interface efficiency

and neglect tolerance of the interaction scheme π. First, VS(π) shows what happens to

robot performance levels when a robot interacts with a human. Answers to questions such

as, “How long does it take for the robot to return to peak expected performance levels?”
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are available in VS(π). Second, VN(π) shows what happens to robot performance levels

when a robot is neglected. As an example, Vn(π) answers the question, “How long does

it take for the robot’s expected performance level to drop below 50% of peak expected

performance levels?”

V (π) also indicates the average frequency and duration of interactions that should take

place between a human and a robot for any minimum acceptable performance level. This

information is obtained by using the technique shown in Figure 4.5. Additionally, the

average performance of a robot employing interaction scheme π can be estimated using

these acceptable interactions. Such calculations can be used to identify the strengths and

weaknesses of interaction schemes.

4.7 A Note on Related Metrics

We mentioned previously that measures of neglect tolerance and interface efficiency are

dependent on two metrics. These two metrics are instantaneous performance and world

complexity.

4.7.1 Performance Metrics

In the context of this paper, the term performance metric is, perhaps, a little awkward.

The performance metric discussed in this session is necessary to estimate the neglect

tolerance and interface efficiency of an interaction scheme nonparametrically, and should

not be confused with the performance prediction that the interface efficiency and neglect

tolerance metrics perform.

In this paper, the performance of a robot is the work done by a robot with respect to

that robot’s, or, perhaps, some other object’s, capacity to perform work. Therefore, robot

performance is simply the ratio work
capacity

. Note that performance can be either positive or

negative and can take on any value in the range [-1, 1].

It can be difficult to measure the performance of a robot on an ongoing (continuous)

basis. In many instances, it is very easy to measure the performance of a robot after it

23



has completed a task, but it is difficult to measure a robot’s performance while the task

is in progress. In this thesis, however, we assume that performance can be measured or

estimated continuously, and leave situations in which performance can not be measured

or estimated continuously to future work.

The way that a robot’s performance is measured can be different for each task. The

neglect tolerance and interface efficiency metrics require only that at any given time, an

estimate of the instantaneous performance4 of the robot be available. This implies that

we must be able to estimate instantaneous work and instantaneous capacity for work was

well. Assuming we have these estimates, we have

ipt =
iwt

ict

(4.3)

where ipt is the instananeous performance at time t, iwt is the instantaneous work per-

formed at time t and ict is the instantaneous capacity for work at time t.

Robot performance for a whole task should be given by

performance =
∑

t

ipt (4.4)

where ipt is given by equation (4.3). However, since ipt is only required to be an estimate,

equation (4.4) is not required to be perfect in practice. We do, however, note, that the

neglect tolerance and interface efficiency metrics are most effective when the right side of

equation (4.4) does indeed equal, or approach, the left side of the equation.

To summarize, for this thesis, a performance metric is valid if it is able to estimate the

instantaneous performance of a robot at each time t. No specification, at this point, is

made about how performance is measured other than it is some ratio of work performed

and work capacity. Later, we will present one candidate technique for specifying these

measurements.

4We use the term instantaneous performance to indicate the performance of a robot over a small time

interval.
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4.7.2 World Complexity Metrics

Like performance, world complexity is also difficult to measure. World complexity is, in

fact, somewhat subjective. A world can be considered relatively simple or very complex,

depending on the task being performed. Additionally, to one set of robot abilities a world

may be considered complex, whereas to another set of robot abilities the same world may

be considered quite simple.

This being said, world complexity metrics are an important part of the neglect tolerance

and interface efficiency metrics. However, we do no specify how world complexity must

be measured since such a specification would be practical for only one task. We only say

that a way of estimating the complexity of a robot’s world is required. How this is done is

left to the system designer. Good world complexity metrics, however, tend to assign high

complexity estimates to environments that make a task difficult for a robot to perform,

and low complexity estimates to environments that make tasks easy for a robot to perform.

In section 7.1, we provide an example of how world complexity can be measured for a

navigation task. We also provide analysis of this world complexity metric in section 7.3.5.

4.8 Measurement Technology

Previously, we discussed the random process V (π), which is a measure of the neglect

tolerance and interface efficiency of the interaction scheme π. In this section, we discuss

how this random process can be estimated nonparametrically by designing and performing

user experiments that suffiently sample the domain space of the random process V (π).

The domain of the performance random process consists of time, t, neglect time, tN ,

and world complexity, c. As we discussed in the previous section, time, t, is separated into

time-on-task, ton, and time-off-task, toff . To sufficiently sample the time domain, we need

users to spend time both servicing and neglecting a robot. To do this, we require that the

user perform secondary tasks in addition to performing the primary task of servicing the

robot. In this way, the robot will be neglected when the user focuses his/her attention
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on the secondary task. To sample the neglect time domain thoroughly, we must vary how

long the robot is neglected. This is achieved by varying the length of time that a user must

perform a secondary task before returning to service the robot. The complexity domain

can easily be sampled by simply performing the user experiments in worlds of various

complexities.

Since the domain of the random process is continuous, it must be discretized so that

it can be sampled sufficiently. Each data sample from the user study (which is a robot’s

estimated performance at a particular time, neglect time, and world complexity) is placed

in a bin defined by the discretized domain to form a nonparametric estimate of the random

process V (π).

Even after discretizing the domain of the random process, an impractical number of

test subjects must be used in order to sufficiently sample the domain in this manner.

This is because each world complexity estimate is a sample from an unknown distribution.

We address this problem by applying a gaussian filter to the data. Such an approach is

justified by the central limit theorem. A large number of test subjects must still be used,

but not nearly as many.

To summarize, the measurement technology requires that humans and robots must

actually interact in real systems to measure the neglect tolerance and interface efficiency

of these systems. Secondary tasks must also be used to thoroughly sample the domain

space of the random processes.

4.9 Chapter Summary

In this chapter, we developed metrics for neglect tolerance and interface efficiency in

human-robot systems. These metrics identify the interactions that should occur to main-

tain acceptable robot performance levels and can predict the performance of a robot on

a given task given these interactions and the world’s complexity. These metrics have

potential use in a number of areas, including human-robot system design.

Thus, given a random process V (π) for a given task, the performance of the robot
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is known (probabilistically through a random variable). We need only obtain V for each

interaction scheme π and each task T . This is discussed in chapter 7. Before doing that, we

will describe some interaction schemes that we will use to show how the neglect tolerance

and interface efficiency metrics can be approximated.
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Chapter 5

Developing Interaction Schemes with

Varying Degrees of Autonomy

In this chapter, we describe three interaction schemes that we will use to show how the

metrics and measurement technology described in the last chapter work. The interaction

schemes are built for the purpose of performing a navigation task in indoor environments.

The three interaction schemes have autonomy modes with varying degrees of autonomy.

While the control element of the interface for the three interaction schemes vary, the

information-presentation element is largely the same for all three interaction schemes.

The three interaction schemes are described in Table 5.1. The table lists the autonomy

mode and the interface used for each interaction scheme.

In the rest of this chapter we describe the three interaction schemes, beginning with the

information-presentation element and the shared control algorithm that is used by each of

the schemes. We then describe each of the interaction schemes separately.

5.1 Information-Presentation Element

In this section, we describe the information-presentation element used for each of the inter-

action schemes used in this thesis. As we stated previously, the information-presentation

element is part of the interface of an interaction scheme. It presents information about
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Interaction Schemes

Interaction Autonomy Interface

Scheme Mode Information Control

Teleop Shared-Control Typical; Joystick

Teleoperation joystick vector icon

P2P Point-to-Point Typical; Mouse

Mode arrow indicator (Click on Video Feed)

Scripted Scripted Typical; Mouse

Mode goal icons (Click on Map)

Table 5.1: Shows the three interaction schemes used to show how the interface efficiency

and neglect tolerance metrics are obtained and used. The information-presentation element

(Information) has the attribute Typical listed in each scheme to indicate that the same basic

information-presentation element is used for each scheme with the exception of feedback

given of inputs/commands sent from the human to the robot.

the robots in the system (and their environments) to human operators.

Figure 5.1 shows a snap shot of the graphical user interface used to present information

about the robots to a human operator using the scripted interaction scheme. The main

portion of the GUI shows a topographical map of the robots’ world. On the topographical

map, the position of each robot is marked by a triangular objects (the objects are shown

bigger when the robot is currently begin serviced) and the robots’ goals are marked by

a rectangle (the color of the goal matching the color of the robot it corresponds to).

On the right hand side of the GUI various system indicators are listed, such as team

performance, time-based workload, time elapsed, number of goals found, and the operators

math proficiency. Directly below the topological map of the world, the performance of each

individual robot is shown, as well as an estimate of the robot’s current world complexity.

At the bottom of the GUI, the sensory information of the robot currently being serviced

is displayed. The color of the background of this window corresponds with the color of

29



Figure 5.1: The Graphical User Interface (the information-presentation element of the

interface) for the three interaction schemes used in this thesis.
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the robot shown in the global topological map of the world. The robots we used for the

experiments presented in this thesis are equiped with a sonar ring of sixteen sonar which

encompass the robot, a compass, and a black and white video camera. Graphics of these

sonars are all displayed. First is a graphic of the sonar readings, followed by the compass

reading, followed by the video display.

Also in this bottom portion of the GUI is the control panel, which is interaction scheme

dependent. At the lower right hand corner are various buttons: a locate robot button (used

to help the operator locate the current robot on the global map), a locate goal button (used

to help the operator locate the current robot’s goal position), and a done button (used to

terminate the current task and move on to another task; the interface decided the task

that was to be executed next).

When no robot is currently being serviced, the current robot’s sensor information,

the control panel, and the control buttons are replaced by an arithmetic display. In this

display is a two-digit addition or subtraction problem, with four multiple choice answers.

The operator answers the problem by clicking on one of the answers.

5.2 Shared Control

Each interaction scheme’s autonomy mode uses the shared-control algorithm described in

this section. The algorithm requires as input a robot centered vector that indicates the

general desired direction the robot should go. The algorithm outputs a vector indicating

the direction the robot should move, provided that the algorithm can find such a vector

which will not cause the robot to collide with objects the robot can see (with its sonar). If

no such vector is found, the robot is simply directed to spin in place towards the direction

with the nearest open space (as defined by the robot’s sonar).

Our approach to shared-control teleoperation uses a variant of potential fields. In the

algorithm, the vector of each sonar is associated with a behavior. Sonars that measure

nearby obstacles return repelling behaviors, and sonars that measure open spaces return

attracting behaviors. More specifically, sonar distances are classified into three categories:
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repelling, neutral, and attracting. If a sonar returns a distance greater than a pre-defined

safe distance (65 inches in our implementation) then the corresponding behavior is cate-

gorized as an attracting behavior. If a sonar returns a distance less than a pre-defined risk

distance (40 inches in our implementation) then the corresponding behavior is categorized

as a repelling behavior. Otherwise, the corresponding behavior is categorized as a neutral

behavior.

Figure 5.2: A graphical depiction of the algorithm for a robot positioned in a hallway with

a open door on the robot’s right. Raw sonar readings (left) are translated into relevant

behaviors (middle) and combined with the human input to produce the actual robot action

(right).

Additionally, each sonar (or behavior) is assigned a weight based on how relevant it

is to the direction that the robot is asked to move. This is illustrated in Figure 5.2. In

the figure, the human tells the robot to go forward and left (see the image on the left).

Sonar readings that are relevant are identified (see the image in the middle). As a rule,

the seven sonars that represent vectors closest to the input vector are considered relevant

and are weighted (based on how closely their vectors are like the input vector), while the

other sonars have zero weight in the calculation. The output vector is then obtained by

summing these weighted vectors. In the example shown in the fiugre, the robot still moves

forward and left, but does not move as far to the left as suggested by the human.

More formally, weights are assigned to the behaviors in the following way. Let A =

(a0, a1, a2, a3) and R = (r0, r1, r2, r3). Let the center sonar be the sonar with the angle

closest to the angle of the input vector and let n be the number of sonars between sonar i
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and the center sonar plus one. If n is greater than three, then sonar i’s weight is zero. If

sonar i corresponds to an attracting vector, then its weight is an. If sonar i corresponds to

a rejecting vector, then its weight is rn. Otherwise, its weight is zero. For our interaction

schemes, we used A = (0.8, 0.7, 0.4, 0.1) and R = (−1.0,−1.0,−0.45,−0.1) and 1.4 as the

weight of the input vector (behavior). The output vector o of the algorithm is given by

o = (iw)(iv) +
∑

i

wivi

where iw is the weight to the input vector, iv is the input vector, wi is the weight assigned

to sonar i and vi is the vector formed by sonar i.

The direction indicated by the output vector o will usually but not alway cause the

robot to avoid obstacles. For this reason, we implement safeguarding control on the output

vector. Safeguarding is done by simply calculating where the robot will be after a certain

time t. If the robot will depart from the open region defined by the sonar (see Figure 5.2),

then movement by the robot is stopped, and the robot spins in place towards the direction

with the nearest open space (again, defined by the sonar). Otherwise, the robot moves in

the direction pointed by o.

Various autonomy modes can be obtained from this algorithm by simply altering the

way that the input vector is obtained. We specify the way that these input vectors are

obtained for each interaction scheme in the following sections.

5.3 Teleoperation Interaction Scheme

In this section, we describe the remaining details of the teleoperation interaction scheme

(Teleop) used in this thesis.

5.3.1 Teleop’s Interface

The control element of the interface of the Teleop interaction scheme is a Microsoft Force

Feedback II Joystick (no force-feedback was given). The joystick was mapped to try to

emulate the feeling of driving a car. Figure 5.3 depicts the mapping of vector direction to
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wheel movements. For example, moving the joystick forward to the right causes the left

wheel to turn faster than the right, thus causing a right turn.

Figure 5.3: Depicts the mapping of the direction of the output vector (robot centered) to

wheel movements on the robot. The robot is located in the center of the figure. As an

example, the sample vector shown in the figure would cause the robot’s wheels to follow

the tire tracks in the upper righthand corner. So the robot would move forward and to the

right.

The information-presentation element of the teleoperation interaction scheme is iden-

tical to that shown in Figure 5.1 except for the control panel. For Teleop, the vector

supplied to the robot via the joystick was depicted graphically in the control panel. This

helped the operator to understand the direction they were telling the robot to go.

5.3.2 Teleop’s Autonomy Mode

The autonomy mode for Teleop is identical to the autonomy mode used in the case study

described in chapter 3. The input vector to the shared-control algorithm is simply the

angle and magnitude of the joystick. The magnitude of the joystick (how hard the operator

pushes on the joystick in the desired direction) changes the speed that the robot moves.

Teleoperation autonomy modes are potentially very complexity tolerant because the

human operator makes the high level decisions (and is thus able to reason through complex

situations). However, if the information-presentation element does not provide the human

operator with adequate awareness of the robot’s environment, increased world complexity
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can lead to decreased robot performance.

5.4 Point-to-Point Interaction Scheme

In this section we describe the remaining details of the point-to-point interaction scheme

(P2P) used in this thesis.

5.4.1 P2P’s Interface

The control element of the interface of P2P is a mouse. The operator simply clicks on

buttons telling the robot what to do at the next intersection (such as go straight, turn left,

and turn right). Additional buttons are also provided for control (spin left, spin right, stop,

and back up). These buttons, shown in Figure 5.4, are placed in the control panel of the

information-presentation element. As feedback, the button currently employed is made

darker to let the operator know what to expect from the robot. After the robot believes

that it has fulfilled the current command, it notifies the operator by switching back to the

go straight action.

5.4.2 P2P’s Autonomy Mode

The autonomy mode used for this interaction scheme employs the shared-control algorithm

described previously. It differs from the teleoperation mode by the way that the input

vector to the shared-control algorithm is obtained. The operator clicks on a button to

indicate the command that he/she wants the robot to carry out at the next intersection

or at its next opportunity (such as go straight, turn left, or turn right).

To traverse a hallway, a vector pointing straight ahead (robot centered) is input into

the shared-control algorithm. If the command is to turn right (or left) the next chance

it gets, the robot looks for an opening to its right (or left). An opening is when the sum

of three adjacent sonar exceeds 180 inches1. When the robot finds an opening, it inputs

1A single sonar may contribute no more than 72 inches.
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Figure 5.4: Graphic of the buttons that an operator pushes when the P2P interaction

scheme is being employed. The operator tells the robot what to do at the next intersection

(go straight, turn right, turn left). Additional buttons are provided to stop the robot, have

it spin in place, or move backward. The currently employed button is darkened on the

display to help the operator know what to expect from the robot. This display replaces the

control panel shown in Figure 5.1.

a vector 45◦ to the right (or left) of the robot’s straight ahead position. This causes the

robot to turn in the desired direction (according to the mapping shown in Figure 5.3).

The robot must decide when it has turned the correct amount. When it believes that it

has2, it resumes a go straight behavior and communicates to the interface that it is now

performing a go straight behavior.

There are several observations to be made about this autonomy mode. First, the

algorithm assumes that the robot is correctly oriented in the hallway so that when a robot

is asked to traverse a hallway, the straight ahead input vector will direct a robot straight

down the hall. For this purpose, the operator may need to use the spin left and spin right

buttons to correctly orient the robot. It should be noted that the algorithm is robust

enough that the orientation of the robot need only be very general, and doesn’t require

exactness.

Second, hallway clutter can cause the orientation of the robot in the hallway to get

turned around, since the shared-control algorithm will seek to avoid this clutter. Since a

2This is determined by dead reckoning.
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history of directions is not kept by the robot, if the robot must turn too much to go around

an obstacle, it could cause the robot to turn around and move in the opposite direction.

The robot is not equipped with a way of knowing it is now going in the wrong direction.

Thus, this autonomy mode does not promise to be complexity tolerant, since clutter can

certainly contribute to the world complexity measure in such a task as indoor navigation.

Third, when frequent turns are necessary, this algorithm requires more frequent human-

robot interactions (because after each intersection is passed the robot generally needs new

input from the user). Since the branching factor (number of intersections per area) is part

of indoor navigation, it should contribute to a good world complexity measure. Again,

this autonomy mode does not promise to be complexity tolerant.

5.5 Scripted Interaction Scheme

In this section, we discuss the scripted interaction scheme (Scripted) used in this thesis.

We first discuss its interface, followed by its autonomy mode.

5.5.1 Scripted’s Interface

The information-presentation element of Scripted’s interface is the same as it was for the

other interaction schemes with two exceptions. First, the GUI has a statement in the

control panel telling the operator to click on the global map to set goal markers for the

robot to traverse. Second, when the operator clicks on the global map, an icon appears

that indicates where a goal marker has been set on the map. Each goal marker is numbered

according to the order it was placed on the screen, which indicates the order that the robot

will traverse the goals. Figure 5.5 shows a situation in which four goal markers have been

placed on the map of the world directing a robot to its goal.

The control element of the interface for this scheme uses a mouse. An operator issues

commands to the robot by simply clicking on the topological map. Any number of goal

markers can be set. The robot traverses the goal markers in order. The next goal marker

for the robot to reach is labeled “1”, the next is labeled “2”, etc. When the robot reaches
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Figure 5.5: Shows a situation in which four goal markers have been placed on the map of

the world (by the operator) to direct a robot to its goal.
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goal marker “1”, goal marker “2” is relabeled “1”, goal marker “3” is relabeled “2”, etc. A

goal marker can be deleted by clicking on the goal marker and dragging it off of the global

map. Similarly, a goal marker’s location can be moved by simply clicking and dragging

that icon to the desired location.

5.5.2 Scripted’s Autonomy Mode

As mentioned previously, a robot employing Scripted traverses the goal markers set by the

human operator. The robot accomplishes this by again using the shared-control algorithm

defined previously. Again, only the method of obtaining the input vector is different from

the previous autonomy modes.

The input vector is obtained by using the goal marker labeled “1.” The relative vector,

Vg, between the goal marker and the robot is calculated. This vector is compared to the

vector Vd (which is a vector indicating the direction that the robot is facing). If the angle

between these vectors is greater than 45◦, then the robot simply spins in place (in the

direction that decreases the angle between the two vectors). If the angle is less than or

equal to 45◦, then the robot simply inputs Vg into the shared-control algorithm. If there

is no goal marker placed, the robot stays still.

Note that the only effect that branching factor has on this algorithm is that the human

operator must drop more goal markers. This, in many instances, does not take a lot of

time, so it would be expected that this autonomy mode would be relatively tolerant to

this kind of world complexity. However, if obstacles are between the robot and the next

goal marker, it is possible that a robot could get “stuck.” Thus, this interaction scheme is

not necessarily tolerant to this kind of world complexity. Operators are required to check

for themselves whether “blocking” obstacles will be encountered.

It should be noted that this interaction scheme is somewhat ineffective when the topo-

logical map of the world is unknown, or when the map is not very good (whereas the

previous interaction schemes could still be reasonably effective, it would appear). Thus,

it is important to reemphasize that both interface and robot autonomy mode affect the
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efficiency of an interaction scheme.

5.6 Summary

In this chapter, we discussed the interaction schemes that are used in the user studies

presented in this thesis. In the next chapter, we describe the environment used in the

studies.
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Chapter 6

Validation Environment

We used simulated worlds to validate the usefulness of the metrics and measurement

technology described in chapter 4. In this chapter, we first discuss why we use simulated

worlds. We then describe the simulator we used.

6.1 Why Simulated Worlds?

Using simulated worlds for a user study rather than real worlds offers several advantages.

First, it allows that worlds with varying degrees of complexity can easily be created. In

the real world this would be more difficult to do since it would require that worlds be

constructed out of physical objects. This, in and of itself would not be extremely difficult,

except that we would have to create 20 such worlds and have them always fully operational

so as to not compromise the experiments1. Thus, using simulated worlds simplifies the

experimental process significantly.

Second, the reliability of robotic hardware becomes a critical issue since a large number

of experiments must be performed. In chapter 8, we describe ways that measures of neglect

tolerance and interface efficiency can be estimated using a small number of experiments,

and thus less wear-and-tear on robots occurs. However, it is necessary to perform a

1See the next chapter. It would compromise the experiments if this was not done because it would not

allow for the random selection of worlds.
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large number of experiments to show that the random process can be estimated correctly

using only a small number of experiments. In the future, robot hardware technologies

will, hopefully, become more robust. For the time being, however, such wear-and-tear on

the robots significantly complicates the experiments (since robots can break down in the

middle of an experiment). Therefore, we use simulated robots.

6.1.1 Restrictions

Despite the above arguments for the use of simulated worlds in these experiments, they

are not valid if experiments in the simulated world compromise the validity of the results.

In this thesis we seek only to validate the usefulness of the neglect tolerance and interface

efficiency metrics. The results should show how and why the metrics are useful, but the

actual random processes obtained should not be used in the real world.

The simulated worlds are sufficient to validate the metrics only if they generate results

similar to those that would be obtained in the real world. In this context, “similar” means

that the same general trends exist in both the simulated and the real world. The simulated

world should show the same trends exibited in user workload and robot performance.

6.2 The Simulator

In this section, we describe the simulator that we have developed. We will describe the

simulator and then show that it does indeed produce the same trends in user workload

and robot performance as does the real world.

6.2.1 Description

The simulated robots were designed to mimic the Nomad Superscout used in the user study

described in chapter 3. They are equiped with 16 sonar encompassing the robot, a compass,

and a black and white video image. The way the robot responds to input is also designed

to be identical, with little exception. The biggest differences between the simulated robot
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and the real-world robot are in noise; in movements and sensory information. No noise is

introduced into the simulated worlds. Another way that the simulated world is different

from the real world is that network delays are greater in the real world.

It is acknowledged that these differences can be significant. For this reason, simulated

results do not translate directly to the real world. As mentioned previously, however, a

simulator need only show that similar trends exist in order for the measurement technology

to be valid for these experiments.

6.2.2 Trends

To validate that the simulated world produces acceptable trends, we ran the same experi-

ment described in chapter 3 in a simulated world made to look similar to the real world.

Table 6.1 shows the results of the experiments for seven users.

Workload. Time-based workload2 (shown in Table 6.1 as % Neglect) is higher for

manual-control teleoperation than shared-control teleoperation by an average of 72% to

64%. Workload, as indicated by entropy, is also shown to by higher in manual-control

teleoperation than shared-control teleoperation by an average of 0.68 to 0.41. These trends

are similar to those found in the real world (see Table 3.1), where time-based workload

and entropy were both higher in manual-control teleoperation (57% to 38% and 0.70 to

0.46). Thus, trends in workload are similar in the simulator to those found in the real

world.

Robot Performance. In the simulator, the average performance (as a percentage of

capacity) was higher for shared-control teleoperation than manual-control teleoperation

(93% to 84%). This is consistent with the performance trend in the real world in which

shared-control teleoperation outperformed manual-control teleoperation by 85% to 63%.

In the real world, all participants did better performing shared-control teleoperation than

manual-control teleoperation. In the simulator, 5 of the 7 participants did better with

shared-control teleoperation. Thus, while the simulated world results are not as strong

2Calculated, again, by the percentage of time the operator spends doing arithmetic problems.
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Shared-Control Results

Participant A B C D E F G Ave.

% Neglect 74% 72% 77% 61% 73% 72% 74% 72%

% Performance 97% 88% 94% 98% 85% 92% 97% 93%

# per min. 12.0 12.4 10.3 12.1 13.8 16.3 15.8 13.2

% Correct 71% 63% 39% 94% 85% 88% 78% 74%

Entropy 0.37 0.49 0.45 0.32 0.39 0.55 0.29 0.41

Direct-Control Results

Participant A B C D E F G Ave.

% Neglect 65% 70% 70% 34% 70% 68% 73% 64%

% Performance 83% 74% 96% 96% 88% 75% 81% 84%

# per min. 10.2 12.5 9.8 6.4 11.5 12.7 13.4 10.9

% Correct 57% 63% 38% 79% 71% 88% 77% 67%

Entropy 0.68 0.77 0.69 0.57 0.66 0.72 0.67 0.68

Table 6.1: Results for seven subjects (A, B, C, D, E, F, and G) in the experiment. %

Neglect is how much the robot was neglected (the percent of time the operator spent doing

arithmetic problems), Performance is how efficently the primary task was completed (as a

percentage of maximum possible performance), # per min is how many arithmetic problems

were attempted per minute, % Correct is the percentage of attempted arithmetic problems

the subject answered correctly, and Entropy is the joystick steering entropy calculated;

lower values indicate smoother driving. Again, the shared-control system dominates the

manual-control system in every category for most participants. Trends are similar to those

observed in the real world.
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Figure 6.1: A plot of robot performance verses operator workload. The vertical axis rep-

resents robot performance (as a percentage to maximum effectiveness) and the horizontal

axis represents operator workload (in terms of percentage of time-off-task). The x’s rep-

resent results from shared-control, and the o’s from manual-control. The big x and big o

represent the mean values. Note that only six x’s appear in the plot because the results

from two of the test subjects overlapped on shared-control teleoperation.

in showing the dominance of shared-control, they still support the same trends in perfor-

mance.

Figure 6.1 shows performances verses time-off-task (time-based workload) for the exper-

iments performed in the simulator. This figure should be compared to Figure 3.2. Notice

that there appears to be slightly better separation between the two classes (manual-control

vs. shared-control) in the real world. However, similar trends exist in workload and robot

performance in both worlds. Thus, we conclude that the simulator is sufficient for validat-

ing the trends in neglect tolerance and interface efficiency.
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6.3 Chapter Summary

In this chapter, we described the simulated world that the experiments described in this

thesis were performed. Results obtained in the simulator were shown to have similar

trends in workload and robot performance to results obtained in the real world. This was

shown by comparing the results presented in chapter 3 with results of the same experiment

performed in the simulated world.

In the next chapter, we report the user study designed and performed according the to

the specifications of the measurement technology described in chapter 4 to obtain measures

of the neglect tolerance and interface efficiency of the three interaction schemes described

in chapter 5.
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Chapter 7

Validation of Usefulness

In chapter 4, we defined metrics for neglect tolerance and interface efficiency in human-

robot systems. These metrics are random processes that can be estimated via the measur-

ment technology, also discussed in chapter 4. In this chapter, we validate the usefulness

of these metrics by comparing and contrasting the three interaction schemes described in

chapter 5 in a navigation task in the environment described in chapter 6.

In this chapter, we first define the instantaneous performance and world complexity

metrics used by the neglect tolerance and interface efficiency metrics. Next, we describe

the user study performed to estimate the neglect tolerance and interface efficiency random

processes for each interaction scheme. Finally, we report the results and compare and

contrast the three interaction schemes, as well as analyze the world complexity metric

that we used.

7.1 Instantaneous Performance and World Complex-

ity for Navigation

In this section, we describe the instantaneous performance and world complexity metrics

used to derive V (Teleop), V (P2P ) and V (Scripted) for a navigation task.
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7.1.1 Instantaneous Performance Metric

As described in chapter 4, instantaneous performance, ip, is defined as instantaneous work,

iw, divided by instanteous capacity for work, ic. For the navigation of a robot through a

maze world towards a goal position, the instantaneous capacity of the robot is the work

that the robot would do if it moved optimally1 towards its goal at top speed. Since the

simulated robots can travel at the rate of 30 inches per second, we define instantaneous

capacity for work as

ic = 30tε (7.1)

where tε is the time elapsed, usually a small amount of time. The instantaneous work

done by a robot in this task is how much closer it is to its goal after time tε. Let di be the

distance the robot is from its goal at time i. Then, the instantaneous work iw performed

at time i is

iwi =
di − di−tε

tε
. (7.2)

Using Dijkstra’s Algorithm, we can obtain di by calculating the shortest path from the

robot to its goal at time i using the topographical map of the world, which contains

information about the distance between nodes (i.e., intersections) in the world. Thus, by

combining equations 7.1 and 7.2 the instantaneous performance of a robot at time i is

ipi =
iwi

ic
=

di − di−tε

30t2ε
, (7.3)

where the variables are defined as before.

We note that since “cutting corners” can perhaps decrease the shortest path to the

goal and we don’t want to worry about calculating the optimal way to cut corners for our

distance measure, it is possible for ipi to be greater than 1 (or less than -1). In such a case,

ipi is truncated to 1 (or -1). Thus, the sum of all ip over a period of time is not necessarily

equal to the performance of the robot over that same period of time. It is, however, close

to the overall performance, which makes it a good performance metric.

1Optimality, in this context, ignores clutter that might exist in the path from the robot to its goal.
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Thus, we have a performance metric that returns the value of the robot’s instantaneous

performance, which is a value between -1 and 1. This performance metric meets the

requirements for performance metrics we discussed in chapter 4.

7.1.2 World Complexity Metric

Loosely speaking, world complexity for navigation in a maze consists of those things that

make navigation through the maze difficult. The two dominant factors that make naviga-

tion through a maze difficult are the branching factor of the environment and the amount of

clutter in the environment. Branching factor indicates the number of decision points (e.g.,

intersections) per area, and clutter refers to the amount of obstacles in the environment

per area through which a robot must travel.

If we take branching factor B and clutter L as the two elements that affect the complex-

ity of an environment for navigation through a maze, then we can define world complexity

C at any given state S, where S can be a sequence of states2, as some function of B and

L,

C(S) = f(B(S), L(S)).

We must find B, L and the function f that maps B and L to C.

Estimating Branching Complexity

B(S) is the average number of directions of travel afforded to a robot over a defined area.

Moving down a straight hall at any given moment there are two afforded directions of

travel: forward and backward. Likewise, there are three afforded directions of travel at

a “T” intersection, four for a four-way intersection, etc. We define a straight hallway (or

two afforded directions or less) to have zero branching complexity. Let Ap be the number

of afforded directions to travel at position p, which is a coordinate in the robot’s world.

Then, branching complexity at that moment, or instantaneous branching complexity, is

2A state in this context is a snapshot of the conditions of the robot (sensor information, etc.) and the

conditions of its world.
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equal to Ap − 2. By assuming that there are no more than four afforded directions of

travel at a time, this value is scaled to be between 0 and 1 by dividing it by two, except

in the case in which Ap is equal to one. Thus, the instantaneous branching complexity at

position p, ibp, is given by

ibp =
Ap − 2

2
. (7.4)

The average branching complexity B(S) at a given time is the weighted average of the

instantaneous branching complexities over a certain distance of travel. More formally, let

S be the set of states, or robot positions, that the robot has visited in its last D units of

travel. Then,

B(S) =
∑
pεS

(D − ||Pc − p||)ibp

D|S|
2

, (7.5)

where Pc is the robot’s current position, ||Pc−p|| represents the distance the robot traveled

between positions Pc and p and |S| is the number of states in S. In our implementation,

we set D equal to 800 inches3. It is possible that B(S) could be less than zero since Ap

can be less than zero. If it was, then B(S) was set to zero since branching factor can never

be negative.

The number of afforded directions of travel can be determined using the sonar signa-

tures of the robot. A cluster of adjacent sonars that each exceed a given threshold indicates

an afforded direction of travel. For example, the sonar signature shown in Figure 7.1(a) has

three different clusters, each cluster consisting of three adjacent sonars that have values

that exceed the threshold. Figure 7.1(b), however, shows a sonar signature that has just

two clusters, one of which includes three sonars and the other includes six sonars. The

cluster with six sonars probably represents two afforded directions of travel. Therefore, if

the number of sonars in a cluster is more than three, then that cluster is considered to

be two clusters. Likewise, a cluster of sonars greater than six is considered to be three

3800 inches represents about 25-30 seconds of robot travel (for the robots used in the experiments).

This is enough to time to gather sufficient information to estimate the number of afforded directions of

travel per area in the robot’s current environment.
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Figure 7.1: Two different sonar signatures, each consisting of three (a) and two (b) clusters

of sonars that exceed the threshold value. At right, the larger cluster is divided into two

clusters since its size indicates that it probably represents two afforded directions of travel.

Thus, both sonar signatures represent three afforded directions of travel.

clusters, greater than nine is four clusters, etc. Thus, the number of afforded directions of

travel at any given time is determined to be the number of clusters of sonars that exceed

a given threshold.

Estimating Clutter Complexity

To measure the clutter of an environment, L(S), we use (a) directional entropy, Eθ(S),

(b) change in velocity over time, EV (S), and (c) change in sonar values over time, ES(S).

Directional entropy, Eθ(S), is found by using the method described in [35] to compute

the entropy in the direction the robot faced. We modify the method slightly so that more

recent robot behavior has more impact on the directional entropy calculation. This is done

by assigning weights to each robot movement, where the most recent movement receives

the highest weight. Weights assigned to past movements are given in a linearly decreasing

fashion according to the time since each movement was made. Change in velocity over

time, EV (S), can be calculated by averaging the robot’s change in velocity over its last 30

movements. This value is then scaled to be between 0 and 0.5. We obtain change in sonar

values over time, ES(S) by calculating the sum of the sonar values for the current sonar
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readings, Sc, and the previous sonar readings, Sp. From these values, we get

ES(S) =


3|Sc−Sp|

Sp
if |Sc − Sp| <= Sp

0.25 otherwise
.

From these estimates, we can obtain an estimate of clutter complexity via L(S) = ED +

EV + Eθ.

Combining Branching and Clutter Complexities

There are many ways that B(S) and L(S) can be combined, but for this thesis we made

C(S) a weighted sum of B(S) and L(S). Formally,

C(S) =


1.0 if wBB(S) + wLL(S) > 1

wBB(S) + wLL(S) otherwise
, (7.6)

where wB and wL are positive weights assigned to B and L respectively. Notice that the

S used in B(S) may be different than the S used in L(S). However, the S in B(S) is a

superset of the S used in L(S) and, therefore, we use this S in equation 7.6, and L simply

ignores the states of S that it does not need. We use wB = 1.0 and wL = 0.71 in our

metric since these weights give branching and clutter estimates, on average, equal weight.

This returns a value between 0 and 1.0.

Notice that because a robot tends to move differently for each interaction scheme,

world complexity estimates may be slightly different for each interaction scheme because

of differing autonomy modes and control elements. This is true of both the branching and

clutter estimates. In practice, however, world complexity estimates throughout the worlds

were similar for all the interaction schemes used.

Figure 4.4 shows two worlds used in the experiments described in this chapter. Using

this world complexity metric with a teleoperation interaction scheme, the world shown

in Figure 4.4(a) has an average world complexity of 0.373 and the world shown in Fig-

ure 4.4(b) has an average world complexity of 0.216. These numbers indicate that, indeed,

the world complexity metric returns a notably higher estimate for a world that would be

described as more complex than for a more simple world.
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Figure 7.2: Secondary two-digit addition and subtraction problems were used as one of the

secondary task used in the user study. The above display replaced the sensor information

in the GUI shown in Figure 5.1 when the operator was to perform this task.

7.2 The User Study

In this section, we describe the user study performed to estimate the random processes

V (Teleop), V (P2P ), and V (Scripted) for the navigation task in a maze environment. The

user study was performed according to the measurement technology described in chapter

4.

7.2.1 User Study Design and Protocol

The measurement technology in chapter 4 uses secondary tasks to sample random pro-

cesses. In this user study, we used two secondary tasks. The first secondary task that

the human operator was asked to perform was to control a second robot. This made it

possible to gather twice as much data during each test session, so less test subjects were

needed. The other secondary task was to perform two-digit addition and subtraction prob-

lems. The part of the GUI that displays robot sensory information (see Figure 5.1) was

replaced by the math display shown in Figure 7.2 when this secondary task was to be

performed. Thus, the current task to be performed by the operator was displayed in the

bottom portion of the GUI.

When one of the robots was being serviced, the operator was allowed to service that

robot as long as he/she desired. When he/she was done, he/she clicked a button and was

given a different task. A random neglect time was then assigned to this robot and the
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operator was not allowed to service this robot again until the neglect time had elapsed.

After the neglect time had elapsed, the task of servicing this robot was reassigned to the

operator provided that the operator was not currently servicing the other robot. When

both of the robots were being neglected, the operator was assigned the task of solving

arithmetic problems until it was time to service one of the robots again.

We created 21 different worlds, each of different make-up and complexity. The first

world, the training world, was used to train test subjects on the interaction schemes they

were to use. This world included a wide variety of world complexities. The other 20 worlds

were selected for use randomly during test sessions, but restrictions were made on how

many times a world could be used.

Instructions on how each test subject was to proceed with the experiment was read

from a prepared script (included in appendix A). The protocol for the experiment was as

follows:

1. The interaction scheme to be used in each of the three sessions was selected randomly.

Although selections were made randomly, certain stipulations were made. First,

exactly two interaction schemes were used. This was done to try to keep the test

subject from getting too tired of doing the same task over and over, and also limited

the amount of training that was necessary. Second, we needed to be certain that,

after the 120 sessions have been completed, the correct number of sessions were used

for each interaction scheme. Scheduling of the interactions schemes to be performed

was facilitated by creating a schedule (randomly) of interaction schemes to be used

by each subject.

2. The interaction scheme corresponding to the current session number was selected

(chosen in step 1).

3. The subject (i.e., the operator) was trained on the current interaction scheme if

he/she had not been trained on it previously. He/she was trained by navigating a

robot through the training world towards its goal position using the current control
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scheme. Additionally, the operator was allowed to practice neglecting the robot by

clicking on a button, at which time the operator was asked to perform math prob-

lems for a short time. When the robot reached its goal position, another goal was

selected at random in the same world and the process was repeated. The operator

was given as much time as he/she felt was necessary to learn the interaction scheme

well. Tips on how to better control the robot using the current interaction scheme

were read from the prepared script.

4. A world was selected at random from the set of worlds. Again, random selection was

constrained to use all the worlds equally often, and a test subject was not allowed

to see the same world twice. We again facilitated this by creating a schedule of the

order that worlds were to appear. The test subject was asked to perform the same

task described in the training step for two robots simultaneously according to the

specifications described previously. This process continued for 10 minutes, during

which time the following information was recorded: time, robot sensory information,

environmental complexity estimates, robot performance, and operator movements

(e.g., mouse clicks, joystick movements, etc.). In order to encourage high operator

effort, test subjects were told that they were to receive a score based how well they

did4.

Since a robot’s performance immediately drops to zero when it is neglected using

Teleop, this step of the experiment was changed slightly for this interaction scheme.

With Teleop, one of the robots was serviced for about ten seconds, after which the

operator performed one arithmetic problem after which the test subject again ser-

viced one of the two robots, selected at random, for ten seconds, etc. This allowed

the random process of this interaction scheme to be sampled thoroughly.

4This score was calculated based on average robot performance, operator math proficiency, and world

difficulty.
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5. The subject was given a short break.

6. Steps 2 through 5 were repeated until all three sessions were completed.

Each test subject took part in three ten-minute test sessions, using a total of two

different interaction schemes. A total of forty test subjects were used in all, so 120 test

sessions were performed. Of these sessions, 15 were dedicated to the Teleop interaction

scheme, 48 to the P2P interaction schemes, and 57 to the Scripted interaction scheme.

As mentioned in chapter 4, the domain space of the random processes, consisting of

the variables tN , t, and c, must be properly discretized5. In order for tN to be sampled

sufficiently for each interaction scheme, some neglect times must be extended until the

expected performance of the robot approaches zero. This is a different length of time for

each interaction scheme so tN must be discretized differently for each interaction scheme.

For Teleop, tN took on only one value since robot performance immediately dropped to

zero upon being neglected. For P2P , tN was divided into bins of 5, 10, 15, 20, 25, and 30

seconds. For Scripted, tN was divided into bins of 10, 20, 30, 40, 50, and 60 seconds. The

time dimension of the domain space was discretized into half second increments and the

complexity dimension of the domain space was discretized into chunks of 0.05 units.

7.3 Results

In this section, we analyze the three interaction schemes according to the measures of

neglect tolerance and interface efficiency estimated by the user studies. First, we describe

the number of samples obtained for each domain space for the three interaction schemes.

Second, we discuss V (Teleop), V (P2P ), and V (Scripted) individually. Third, we compare

the three interaction schemes. Last, we analyze the world complexity metric that we used

5Recall that tN is the time the robot was neglected prior to its last servicing, t is the current time (ton

or toff), and c is world complexity.
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Teleop

tN 0 8 26 57 61 82 64 50 50 44 39 22 26 26 18 17 5 11 5 4

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

P2P
30 0 7 11 21 26 22 27 24 22 23 14 11 13 12 12 4 1 3 3 2

25 1 0 31 0 33 0 44 2 33 1 27 0 23 0 11 1 4 0 2 0

20 0 6 0 33 0 31 0 22 0 18 0 14 0 10 0 4 0 2 0 0

15 1 0 26 4 31 0 39 2 33 0 26 1 20 1 11 1 5 0 2 0

10 0 6 1 17 0 19 1 11 1 8 0 7 1 8 0 5 0 1 0 0

5 0 0 17 2 40 0 19 0 20 0 11 0 10 0 7 0 3 0 0 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Scripted
60 0 8 5 45 10 42 5 36 6 41 4 28 8 24 2 15 3 4 0 4

50 0 0 29 0 51 1 44 0 37 0 26 0 23 0 22 0 4 0 3 0

40 0 4 0 36 0 30 0 37 1 30 0 21 1 19 0 11 0 6 0 1

30 0 0 22 0 49 1 39 0 31 1 26 0 25 0 20 1 7 0 8 0

20 0 7 0 25 0 33 1 36 0 19 2 17 3 19 1 9 0 3 0 4

10 0 0 34 1 47 0 46 1 30 0 35 0 31 0 18 1 12 0 3 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Table 7.1: Number of samples for each tuple (c, tN), where tN is along the vertical axis

and c is along the horizontal axis. For simplicity, c is represented by the values 0 through

100. We note that for Teleop only one neglect time tN is listed (tN), which indicates that

all of the values are lumped together.

to estimate world complexity.

Following the discretization method described previously, V (Teleop), V (P2P ), and

V (Scripted) were estimated nonparametrically from the data obtained from the user study.

Table 7.1 shows the number of samples for each tuple (c, tN) for the three interaction

schemes. We do not display the t variable for visability’s sake, but the number of samples

along t is fairly uniform.

Table 7.1 shows that at the extremes of complexity, very little sampling occured. The

reason for this is that world complexity rarely reaches these levels. Additionally, the table

shows that for P2P and Scripted, only every other bin was sampled. This is not a problem

since interpolation and filtering can fill in the gaps. In general, the tables show that the

domain space of the random processes were, for the most part, sampled sufficiently.
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Figure 7.3: A plot of the mean of the estimated random process V (Teleop) consisting of

E[VS(Teleop)] (left) and E[VN(Teleop)] (right).

7.3.1 Teleop Results

As mentioned previously, 15 ten-minute sessions were dedicated to estimate the Teleop

interaction scheme for the navigation task. The mean of the estimated random process

V (Teleop) is shown in Figure 7.3. On the left-hand side of the figure is E[VS(Teleop)] and

on the right-hand side of the figure is E[VN(Teleop)].

Interface Efficiency

Figure 7.3(left) shows the expected value of interface efficiency for the Teleop interaction

scheme. Notice that for all levels of complexity, it takes a few seconds before the operator

is able to make the context-switch from a secondary task to driving the robot with the

joytick. After the first few seconds, the expected performance of the robot rises very

quickly for all levels of complexity until it reaches peak levels and then levels out.

Figure 7.4 gives a clearer presentation of interface efficiency for a few different complex-

ity levels. Although the results are noisy, the general trends are obvious. The trends are

as expected. Indeed, increased complexity does tend to lower performance. However, even

at high levels of complexity, expected performance has decayed very little, from a peak

performance of between 0.5 and 0.6 for a world complexity of 0.20 to about 0.4 for a world

complexity of 0.70. This decrease in expected performance is expected since increased
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Figure 7.4: Comparison of expected performance of VS(Teleop) for various levels of com-

plexity.

branching and clutter cause the operator to need to turn and move around obstacles,

which slows the robot’s progress toward its goal.

Neglect Tolerance

The effect that neglect has on the Teleop interaction scheme is not very interesting because

the performance of the robot quickly goes to zero when the human completely neglects it.

Figure 7.3(right) shows this expected result.

Combining Interface Efficiency and Neglect Tolerance

We learned from chapter 3 that moving from manual-control teleoperation to shared-

control teleoperation can reduce the amount of attention that the operator gives to the

human; however, the human must still continue to give continous input to the robot. This

means that the combination of neglect tolerance and interface efficiency requires continous

human-robot interactions, which is consistent with what a combination of neglect tolerance

and interface efficiency specifies unless the minimum acceptible performance level (MAPL)

is defined to be below zero, which would be impractical. Thus, the expected performance

of a robot employing Teleop, given that these interactions occur, is defined, at each level of

world complexity as the peak expected performance level. This peak expected performance
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Figure 7.5: Shows the peak expected performance for Teleop for most complexities. These

peak performance levels correspond to the robot’s expected performance at any given time

(given that interactions are constant, which is what the combination of the measures neglect

tolerance and interface efficiency recommends for this interaction scheme).

level for most complexities is shown in Figure 7.5.

Confidence Measurements

Up to this point we have looked only at the expected value of V (Teleop). However, in some

circumstances there is more reason to be concerned about whether a robot’s performance

is above a certain level rather than what its expected performance is. V (Teleop), being a

random process, also provides this information.

Figure 7.6 shows the probability that performance will be greater than or equal to

0.2, 0.4, 0.6, and 0.8 respectively for VS(Teleop; ton, c = 0.25, tN) and VN(Teleop; ton, c =

0.45). The same information is available through V (Teleop) for all levels of defined world

complexity. The figure shows that, in an environment with estimated complexity of 0.25,

after a robot has been serviced for about ten seconds, a robot’s performance level will be

greater than or equal to 0.2 nearly 70% of the time. The majority of the cases in which

the performance is below 0.2 for teleoperation is when the robot’s performance is zero, or

when the robot is turning in place or moving around obstacles. On the other extreme, a

robot performs at top speed (i.e., above 0.8) only about 30% of the time after ten seconds
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Figure 7.6: Shows the probability that performance will be greater than or equal to 0.2, 0.4,

0.6, and 0.8 of VS(Teleop; ton, c = 0.25, tN) (left) and VN(Teleop; ton, c = 0.45) (right).

of interactions with a human using Teleop. Moving to higher complexity levels lowers these

confidence levels slightly (see Figure 7.6(right)).

Strengths and Weaknesses

Teleop has obvious strengths and weaknesses. Its two greatest weaknesses are, first, that it

requires continuous input from a human operator and, second, it requires that the human

(during interactions) must provide fairly specific details. The latter of these weaknesses

is also a strength since because a human can give specific details to the robot, he/she is

better able to guide the robot in cases that other automation fails. Additionally, it appears

that the price of context switching is relatively low, as a robot is brought from a standstill

to fairly high performance levels in only a few seconds.

7.3.2 P2P Results

There were 48 ten-minute sessions dedicated to P2P . Figure 7.7 shows E[V (P2P )], con-

sisting of E[VS(P2P )](left) and E[VN(P2P )](right), for the navigation task. The function

is shown for neglect time tN = 30 seconds.
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Figure 7.7: A plot of the mean of the estimated random process V (P2P ; c, t, tN = 30) for

the navigation task, consisting of E[VS(P2P ); c, ton, tN = 30] (left) and E[VN(P2P ; c, toff)]

(right).

Interface Efficiency

Figure 7.7(left) shows the expected performance level of a robot using P2P during inter-

actions with a human after having been neglected for 30 seconds. Notice that the general

trends are as we hypothesized. That is, as world complexity increases, expected robot

performance decreases. Also, the function shows the property that robot performance in-

creases as it interacts with a human. It takes the human a couple of seconds to make the

context switch to controlling the robot, after which expected robot performance gradually

begins to increases.

There is a slight trend shown in the figure that we did not predict. The graph shows

a slight valley, or decreased expected performance, for medium range world complexities.

This appears to be caused by the ineffectiveness of our world complexity measure. We

discuss this in more detail later.

Figure 7.8 shows the expected performance of a robot being serviced in a world with

complexity of 0.35 after various neglect times (tN = 10, tN = 20, and tN = 30 seconds).

Interestingly, after only about 4 or 5 seconds, the three plots show little difference. Thus,

at this level of complexity, longer neglect times seem to have little impact on the efficiency

of human-robot interactions with this interaction scheme. This indicates that the human
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Figure 7.8: Plots of expected performance during servicing after various neglect times

(tN = 10, tN = 20, and tN = 30) with a complexity of 0.35.

Figure 7.9: Mean service time after the robot was neglected for various times tN .

does not seem to be relying on working memory directly after context switches. Rather,

the human is relying on the interface to bring him/her up to date with what is going on

with the robot.

To better understand the strengths of the interaction scheme, we also incorporate an

analysis of the average interaction time of operators servicing robots employing P2P for

various world complexities. This is shown in Figure 7.9 after various neglect times tN .

Trends for each tN are similar, with the exception of tN = 5s at high world complexities.

Table 7.1 shows that few samples are available for tN = 5s at high world complexities, so

this unexpected result can be attributed to noise. From the figure, as world complexity

increases, service time increases significantly since the robot’s were not proficient at carry-
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Figure 7.10: Expected performance during time that a robot is neglect in environments with

various world complexities for P2P .

ing out the commands they were given. This caused operators to distrust the robots and

monitor them more closely. Figure 7.9 also shows that interactions are not effective for

high environmental complexities since the length of interaction time increases, yet perfor-

mance still decreases. Thus, during interactions, the P2P interaction scheme is not very

complexity tolerant.

Neglect Tolerance

Figure 7.7(right) shows E[VN(P2P )] for the navigation task. As can be seen, the general

trends we hypothesized for neglect tolerance hold true for this interaction scheme. When

a robot is employing the P2P interaction scheme, its expected performance decreases as

it is neglected. Furthermore, its expected performance decreases faster at higher world

complexities. Figure 7.10 further shows neglect tolerance for various levels of world com-

plexity. In the figure, a robot’s expected performance (using P2P ) degrades in 30 seconds

from 0.6 to 0.15 in a world with complexity 0.2. Meanwhile, a world with complexity

estimate 0.6 causes a robot’s expected performance, which began at about 0.42, to decay

to nearly zero in about 12 seconds6.

6The expected robot performance of 0.0 represents purely random behavior with P2P , since a robot

acts randomly when the last command given to it has been carried out or is no longer applicable. For this

reason, expected performance tends to level out at 0.0 when a robot currently has no operator input.
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Figure 7.11: Shows the average frequence and duration of interactions necessary to keep

a robot above 50% (left) and 70% (right) of peak expected performance levels for different

world complexities.

Combining Interface Efficiency and Neglect Tolerance

Combining neglect tolerance and interface efficiency makes it possible to derive the average

frequency and duration of interactions that must occur between a human and a robot

to maintain high performance levels. The method for obtaining these interactions was

discussed in chapter 4 and is depicted in Figure 4.5.

Figure 7.11 shows the average frequency and duration of interactions derived with

minimum expected performance levels (MAPLs) of 50% and 70% of the peak expected

performance levels obtained by the robot at each complexity level. The expected trend

follows, that as world complexity increases, average interaction time, don, must increase

and neglect time, doff , must decrease to keep expected performance above a given threshold.

An important concept in generating the plots is the concept of context-switching. Since

expected performance continues to drop after servicing has begun, concern must be taken

that servicing begins some time before the expected performance level falls below the

MAPL (see Figure 4.5). Because of this, any neglect of the robot is unacceptable for some

of the higher world complexity levels.

Figure 7.11 illustrates the ineffectiveness of P2P , especially for intermediate world
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Figure 7.12: Robot performance plotted against Robot Attention Demand for three levels of

complexity. Each point represents the average robot performance and RAD corresponding

to a single MAPL.

complexity levels and higher. At these high world complexity levels, P2P becomes merely

an awkward teleoperation scheme, since neglecting the robot means that the robot will

begin to perform poorly almost instantaneously. However, when branching factor and

clutter are not extremely high, the P2P interaction scheme can be quite useful. An

example of such an environment is the hallways of a normal building, where there is little

clutter and only occasional intersections. In such environments, an operator may easily

give a robot a command and then neglect the robot, confident that it will carry out the

command effectively.

Choosing the best MAPL is a key part of finding the best average frequency and

duraction of human-robot interactions for a system. Figure 7.127 illustrates why this is

7These plots are closely related to the attention-operating-characteristic plots in [41].
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the case. In the figure, robot performance is plotted against a time-based workload metric

called Robot Attention Demand [38], or RAD, for three levels of complexity. The RAD is

given by don

don+doff
. In the plots, each point represents the average robot performance and

RAD obtained from a single MAPL. Interactions corresponding to high robot performance

and low RAD are the most desireable. Observe from the plots at each world complexity

that there exists a “sweet spot” at which point increasing the RAD yields very little

increase in robot performance, and even sometimes decreases it. For example, when world

complexity is 0.2, average robot performance increases until the RAD is about 0.5. When

the RAD is increased above this point, robot performance actually decreases. Observe

also that, although robot performance is the highest when the RAD is about 0.5, using a

RAD of 0.3 yields only a small decrease in robot performance. Therefore, depending on

system conditions it may be desireable to decrease operator workload at a small expense

in robot performance.

While the percentage of workload is important, it is not everything. The length of

the interaction cycle, or service time and neglect time added together, is also important.

Whether a short interaction cycle or a long interaction cycle is more desireable depends,

again, on the makeup of the system. Figure 7.11 also shows these cycle lengths for a couple

of different MAPLs.

Confidence Measurements

We again emphasize that more information than just the expected performance of the

robot is available from the interface efficiency and neglect tolerance metrics. Figure 7.13

show the confidence that the robot’s performance level will be above certain levels for world

complexities of 0.20 and 0.40. The graphs are relatively straight forward, and simply show

information about the random processes VS(P2P ; tN = 30seconds) and VN(P2P ).

Strengths and Weaknesses

One of the biggest weaknesses of P2P is that it is not very complexity tolerant. It seems

that this is caused by two different reasons. First, only a single command could be given
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Figure 7.13: Shows the probability that a robot (employing P2P ) will perform above various

levels at world complexities of 0.20 (above) and 0.40 (below). The graphs on the left are

from interface effiency measures and the graphs on the right are from neglect tolerance

measures.
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Figure 7.14: A plot of the mean of the estimated random process V (Scripted; c, t, tN =

60) consisting of E[VS(Scripted; c, ton, tN = 60)](left) and E[VN(Scripted; c, toff , tN =

60)](right).

to the robot at a time. By allowing the human to give multiple commands (e.g., turn right

and then turn left), the interaction scheme could be improved. The second cause of P2P ’s

complexity intolerance can be linked to its inability to carry out commands in cluttered

environments. The obstacles “confuse” the robot so that it frequently loses its way while

trying to avoid the obstacles.

As mentioned previously, however, P2P does indeed provide the ability to neglect the

robot and still maintain high performance levels for some time in less complex environ-

ments. This gives it an advantage over Teleop in some circumstances.

7.3.3 Scripted Results

There were 57 ten-minute sessions dedicated to the Scripted interaction scheme. Fig-

ure 7.14 shows estimated E[V (Scripted)], consisting of E[VS(Scripted)](left) and E[VN(Scripted)](right),

for the navigation task. The figure is shown for neglect time tN = 60 seconds.

Interface Efficiency

Figure 7.14(left) shows the mean of the random process VS(Scripted; c, ton, tN = 60sec.).

Again, the expected trends occur. As a robot employing Scripted interacts with a human,
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Figure 7.15: Plots of expected performance during servicing after various neglect times (tN

= 20, 40, and 60 seconds respectively) with a complexity of 0.35.

its expected performance increases. Additionally, expected performance peaks at lower

levels for high world complexities than it does for low world complexities. Interestingly,

like the Teleop interaction scheme, the peak occurs at about the same time for all levels

of world complexity. Also, just like P2P , robot performance with Scripted seems to

remain constant through the mid-range complexities. Only at very low and very high

world complexities do changes in complexity seem to affect performance significantly.

Figure 7.15 gives an idea of what happens to the random process after smaller neglect

times for a world complexity of 0.35. From the figure we see that when tN is small (e.g., tN

= 20 seconds) performance has not dropped as far as for the other values of tN . However,

it takes nearly the same amount of time for the expected performance to peak as it does

for the other values of tN . In all cases, it takes more than ten seconds for the expected

performance to peak. All this is similar to the interface efficiency of P2P (see Figure 7.8).

Like we did for the P2P interaction scheme, we would like to show the mean service

time for various levels of complexity and neglect time. Figure 7.16 shows the mean ser-

vicing time. Interestingly, the mean servicing times for when tN = 20 and 40 seconds

are similar. However, mean interaction time for all middle and upper complexity levels

increases significantly after a robot has been neglected for 60 seconds. We attribute these
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Figure 7.16: Mean service time after the robot was neglected for various neglect times tN .

results to command queueing. Since the operator can send a large number of commands

to the robot at a time, many interactions using Scripted consists of only a brief checkup

by the operator on the robot. If the robot is proceeding as expected with the queued

commands, the operator simply moves on to another task. However, after long neglect

times, the robot is more likely to have reached its goal, so the next interaction requires

the operator to issue a new sequence of commands to get the robot to its new goal.

The plots for tN = 20 and 40 seconds have some unexpected behaviors. We attribute

such behaviors to noise, since they generally occur at the extremes of world complexity

were there is a deficiency in data samples.

Neglect Tolerance

Figure 7.14(right) shows the expected performance of a robot based on world complexity

and neglect time. The trends we hypothesized are also born out in this figure. As neglect

time increases, the expected performance of the robot decreases. Additionally, as com-

plexity increases, the expected performance of the robot decreases at a faster rate when it

is neglected.

Figure 7.17 shows the decay of performance over time for a few complexity levels in

a clearer manner. These plots show a pecular trend. Just after interactions between the

human and robot cease, expected performance continues to increase for a few seconds
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Figure 7.17: Expected performance during time that a robot is neglect in environments with

various complexities for Scripted.

before beginning to decay. When a robot is given a command, it takes a couple of seconds

for the robot to begin to move, since it must spin to face its next target. The sharp increase

in performance can be attributed to this and indicates that the operators tended to trust

that the robot would fulfill the command successfully. Thus they did not check to make

sure the robot was performing the command properly before neglecting the robot.

The figure also indicates that performance degrades quite slowly over time. Even after

60 seconds, the graphs for all complexities show positive expected robot performance.

Although world complexity does have an impact on performance, expected performance is

relatively the same for world complexities of 0.4 and 0.6. However, when world complexity

is very low (e.g., 0.2), performance degrades much less.

Combining Interface Efficiency and Neglect Tolerance

As we did with P2P , we can use interface efficiency and neglect tolerance to obtain the

average frequency and duration of interactions needed to maintain high expected robot

performance levels. These average interactions for MAPLs of 50% and 70% of peak per-

formance levels are shown in Figure 7.18. The average interactions are significantly more

desireable than those required by P2P for all levels of complexity. Notice that interaction

cycles are smaller when the MAPL is 70% rather than 50%.
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Figure 7.18: Average interaction rates for Scripted with MAPLs of 50% (left) and 70% of

peak expected performance. The black represents time spent on-task, and the gray represents

time spent off-task.

Figure 7.19 shows how changing the MAPL affects RAD and average robot performance

for several world complexities. The graphs show that as world complexity increases, av-

erage robot performance decreases and RAD increases. However, such changes are not as

drastic as those in P2P (see Figure 7.12).

Confidence Measurements

Figure 7.20 shows the probabilities that a robot’s performance level will be greater than

or equal to certain levels for world complexities of 0.20 and 0.40 respectively. The general

trends in the graphs are the same for those seen in the expected performance plots (see

Figures 7.15 and 7.17).

Strengths and Weaknesses

The Scripted interaction scheme has many strengths. First, robot performance can remain

high after the robot is neglected for some time due to the ability the operator had to queue

commands. Second, low operator workload is required. Finally, Scripted performs fairly

well when world complexity is high.

Scripted, however, is not without its weaknesses. Its main weakness is that it requires
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Figure 7.19: Plots of percent operator workload verses performance for various MAPLs for

world complexities of 0.20, 0.40, and 0.60.
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Figure 7.20: Shows the probability that a robot (employing Scripted) will perform above

various levels at world complexitis of 0.20 (above) and 0.40 (below). The graphs at left

show probabilites during interactions (tN = 60 seconds) and those at right show probabilities

when the robot is being neglected.
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Figure 7.21: Plots comparing the expected performance levels of robots employing the three

interaction schemes at a world complexity of 0.35. The plot at left shows expected robot

performance levels during interactions (after significant neglect times), and the plot at left

shows expected robot performance when the robots are being neglected.

a global map of the world. Without such a map, the interaction scheme is more difficult

to use. Additionally, robots employing Scripted occasionally could not find their way

around obstacles. Improving this aspect of the robot’s autonomy mode would make the

interaction scheme much more desireable.

7.3.4 Interaction Scheme Comparison

In this subsection, we compare the three interaction schemes according to their measures

of neglect tolerance and interface efficiency.

Figure 7.21 compares the three interaction schemes at a world complexity of 0.35. The

plots show the expected performance of robots employing each of the three interaction

schemes. Figure 7.21(left) shows the expected performance of robots during interactions

after significant neglect time. From the figure, the performance of a robot employing

Teleop reaches peak expected performance levels much quicker than do robots employ-

ing the other two interaction schemes. The other two interaction schemes peak at about

the same time. P2P peaks at about the same level that the Teleop interaction scheme

does. However, the Scripted interaction scheme peaks at lower levels. This result can be
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somewhat deceiving. This graph was created by assuming that an operator quit servicing

a robot when the robot had reached peak performance levels. This led to the assump-

tion that if servicing had continued, the robot would have continued performing at this

same level. This assumption is false with the Scripted interaction scheme, as seen in Fig-

ure 7.21(right), which shows expected performance level during times of neglect. In this

figure, the expected performance level of a robot employing Scripted continues to increase

after interactions ceased.

Figure 7.21(right) shows the differences in neglect tolerance for the three interaction

schemes. After 30 seconds of being neglected, a robot employing Scripted is still ex-

pected to be performing at about 40% of capacity, while robots employing the other two

interaction schemes have already reached, or approached, zero.

Figure 7.22 shows the time it takes for a robot employing each of the three interaction

schemes to reach peak expected performance levels during interactions after significant

neglect times. In this case, “peak” is defined as 85% of the highest performance levels

reached. As can be seen, Teleop peaks much quicker than do the other interaction schemes

for all levels of complexity. Robots employing Scripted and P2P each take about the same

amount of time at very low complexity levels. However, at medium and high complexity

levels, it takes a few more seconds for a P2P robot to peak than it does for a Scripted

robot to peak. Notice the spike in the graph of P2P at medium complexity levels. At

these points, the robot reaches fairly high expected performance levels just as quickly as

at other complexity levels, but did not reach 85% of peak performance for some time.

The last two figures indicate that performance peaks during interactions much quicker

with Teleop. Additionally, P2P has no advantage in this way over Scripted (for this task),

since Scripted takes less time to reach peak performance levels, for most complexities, while

having much more tolerance to neglect.

We next compare the average frequency and duration of interactions that the combi-

nation of interface efficiency and neglect tolerance derives for a couple of different MAPLs.

Figure 7.23 shows the average interactions for a MAPL of 50% (above) and of 70% (be-
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Figure 7.22: The time it takes for a robot’s expected performance to reach 85% of the peak

expected performance when servicing begins. For P2P and Scripted, data is collected after

a neglect time of 30 seconds, while data from Teleop is calculated after various neglect

times.

low). Teleop interaction times are based off of the time it takes for the robot to reach

peak expected peak performance levels. Again, Scripted dominates P2P . When Scripted

is employed, average interactions are shorter and tolerance to neglect is much greater than

when P2P is employed for all levels of world complexity, except interaction duration at

very low world complexities. While bringing a robot up to peak performance levels is

much shorter for Teleop than the other two interaction schemes, it allows for no neglect.

Therefore, it is not desireable for many circumstances.

Figure 7.24 compares the three interaction schemes in terms of RAD and average robot

performance. Plots are shown for world complexities of 0.20, 0.40, 0.60, and 0.70. In the

plots, each of the points is taken from the MAPL that maximizes the robot’s average

performance for each of the interaction schemes. Again, interaction schemes are typically

better if their points are in the upper left-hand corner of the plots, and are not as good

if they are towards the bottom right-hand corner of the plots. As can be seen, P2P

approaches the bottom right-hand corner as complexity increases much faster than does

Scripted. The expected performance levels of both Teleop and Scripted do not decrease

much (comparatively) with increased world complexity. Again, however, Teleop requires
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Figure 7.23: Shows a comparison of the average interactions of each of the three interaction

schemes with a minimum acceptable performance level of 50% (above) and of 70% (below).

Teleop interaction times are based off of the time it takes for the robot to reach peak

expected peak performance levels.
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Figure 7.24: Comparison of the three interaction schemes in terms of operator workload

and performance for four different world complexities. In the graphs, points in the upper

left-hand corner are more desireable than points in the lower right-hand corner.

100% operator workload, while Scripted requires much less.

From these graphs and discussions, we have shown that for the navigation task tested in

the simulated world, Scripted almost completely dominates P2P . Additionally, it obtains

as high or higher average robot performance levels as does Teleop, while requiring much

less operator workload. While these results are true in a simulated world, this does not

necessarily mean that they will be true in the real world, although we would expect the

same general trends to exist.
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7.3.5 Analyzing the World Complexity Metric

As mentioned previously, some of the data seems to show that there is perhaps a small

problem with the world complexity metric that we have been using. Such problems seem

to appear somewhat in Figures 7.7(left) and 7.14(left). In these two figures, complexity

significantly affects robot performance during interactions at the extremes of world com-

plexity. However, through medium complexity levels, expected performance evens out, and

even exhibits slightly increased expected performance for some higher world complexities

than lower world complexities.

We explain why this happens by showing the mean performance of the random pro-

cesses for Teleop, P2P , and Scripted using different world complexity metrics. Figure 7.25

shows the mean of the random processes if only the clutter estimate from our world com-

plexity metric is used to estimate the complexity of a robot’s environment. With the

exception of noise, caused by a lack of data samples at the extremes of complexities, the

trends shown are what we would expect in all the random processes. The trends actually

seem to be followed even more closely than do the random processes obtained using the

original complexity measure. So why not just use this world complexity metric instead?

We answer this question later.

Figure 7.26 shows the mean of the random processes if only the branching estimate from

our world complexity metric is used to estimate the complexity of a robot’s environment.

The results shows that Teleop is affected somewhat by branching complexity, although

certainly not to the same extreme that it was affected by clutter complexity. P2P shows

the same trend, although a little bit more strongly than does Teleop. During interactions

(bottom-left), Scripted shows almost a wave-like behavior, with performance dropping

quickly at the high extreme of world complexity. We cannot explain this, except to say

that it appears that branching complexity affects Scripted very little during interactions, if

at all. The neglect tolerance measure of Scripted shows no wave-like behavior, and follows

the trend that expected robot performance degrades more quickly in complex environments

as neglect time increases.

81



Figure 7.25: The mean of the random processes V (Teleop), V (P2P ; t, c, tN = 30sec.),

and V (Scripted; t, c, tN = 60sec.) using only the clutter estimate (omitting the branching

estimate) for the world complexity metric.
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Figure 7.26: The mean of the random processes V (Teleop), V (P2P ; t, c, tN = 30sec.),

and V (Scripted; t, c, tN = 60sec.) using only the branching estimate (omitting the clutter

estimate) for the complexity metric.
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Since, in general, both clutter and branching factors do indeed make the task of nav-

igation more difficult for a robot, we are not justified in omitting the one or the other

from our complexity metric. However, as has been seen from the results, a weighted sum

of the two estimates is not perfect either and this appears to be the biggest problem with

our world complexity metric. However, it is still a useful world complexity metric for the

navigation task since it is able to estimate world complexity fairly well.

7.4 Chapter Summary

In this chapter, we presented the results of a user study involving 40 test subjects. From

the data logged during the user study, we were able to measure the neglect tolerance and

interface efficiency of three interaction schemes for a navigation task. The measures of

neglect tolerance and interface efficiency helped identify the strengths and weaknesses of

each interaction scheme.

The neglect tolerance and interface efficiency metrics showed that Scripted was almost

universally superior to P2P for the navigation of a robot through a maze world. Also,

Scripted was able to obtain nearly the same performance levels as Teleop.

We also analyzed the world complexity metric that was used. While the complexity

metric is not perfect, it appears to be sufficient to allow comparison of different interaction

schemes at different world complexities.

In the next chapter, we will discuss how the neglect tolerance and interface efficiency

metrics can be estimated using only a few user experiments.
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Chapter 8

Approximating Neglect Tolerance

and Interface Efficiency

It took 40 test subjects, each performing three ten-minute test sessions, to estimate the

neglect tolerance and interface efficiency of the three interaction schemes described in

chapter 5. In many situations, however, such a large number of experiments are costly

and impractical. In this chapter, we discuss how approximations of neglect tolerance and

interface efficiency can be made using only a few user experiments. First, we will describe

the algorithm used to make the approximations, after which we will show the results.

8.1 Approximation Algorithm

To approximate measures of neglect tolerance and interface efficiency for an interaction

scheme, the same user experiments described in the previous chapter are performed, only

not as many are needed. For good results, these test sessions should be run in worlds of

varying complexities.

Once the experiments are run, measures of interface efficiency and neglect tolerance are

obtained as before, with three exceptions. First, in the previous chapter, a sample obtained

at time t0, complexity c0, and neglect time tN0 contributed only to the nonparametric

estimate of the random variable V (π; t = t0, c = c0, tN = tN0). However, when not enough
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samples are available, we can make the assumption that a data sample obtained with

neglect time tN0 would be similar to data sample obtained with neglect time tN1 . To give

this affect in the random process V (π), each random variable V (π; t = t0, c = c0, tN = tN1)

is influenced by a sample occurring at time t0, complexity c0, and neglect time tN0 by the

amount M
|tN1

−tN0
|+M

, where M is the distance between the bins along the neglect time axis,

tN of the discretized random process V (π) (see Section 7.2.1). For example, with Scripted,

the distance between the bins along tN is ten seconds, so M equals ten for Scripted.

Second, in chapter 7, a gaussian filter with a small variance of 0.051 was used along

the complexity axis to smooth the data. Since less samples are available when we only use

a few user experiments, we must use a gaussian filter with a larger variance to adequately

smooth and distribute the data. In this thesis, we used a variance of 0.152. Increasing the

variance on this gaussian filter makes the assumption that there are no sharp changes in

performance along the complexity axis of the random process.

Third, a filter is also applied along each value of the time axis t of the random process

V (π). This filter is [1, 2, 1], meaning

V (π; ti, c0, tN0) =
V (π; ti−1, c0, tN0) + 2V (π; ti, c0, tN0) + V (π; ti+1, c0, tN0)

4
.

This smooths the data along this axis.

8.2 Results

Using the method described above, we obtained the results shown in Figure 8.1. The

figure shows the means of the approximated random processes V (Teleop), V (P2P ), and

V (Scripted). To approximate V (Teleop), three ten-minute test sessions were performed,

each with a different test subject. V (P2P ) and V (Scripted) were approximated using

1This variance was chosen since it seemed to work well. This value can change depending on the

distribution from which the world complexity estimates are drawn. Since this distribution is unknown, we

have no way of specifying what the variance should be for the generic case.
2Again, this value is arbitrarily chosen and seems to work well for the data obtained for this thesis.

However, different variances can be used.
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three test subjects each, where each test subject performed two ten-minute test sessions.

Sessions from the case study in the previous chapter were randomly selected for use in this

case study.

The trends discussed throughout this thesis are generally born out in Figure 8.1. As

can be seen, for the most part, as world complexity increases, robot performance decreases.

There are a few exceptions to this. For example, the interface efficiency graph of Scripted

does not demonstrate this phenomenon. However, overall, the graphs show the same basic

results that Figures 7.3, 7.7, and 7.14 show.

Figure 8.2 shows the difference between the mean of the random processes obtained

using the measurement technology described in chapter 4 (and shown in Figures 7.3,

7.7, and 7.14), and the mean of the random processes obtained using the approximation

algorithm. The figure shows that the differences in the mean between the two sets of

random processes is usually bounded by 0.2.

Since the small number of samples obtained are not statistically significant, we also

show a second set of experiments, also randomly selected, to demonstrate the differences

that different users and different worlds cause to occur. Figure 8.3 shows the means of

these estimated random processes. The results shown in Figure 8.3 are similar to those

shown in Figure 8.1. While there are differences, which are to be expected, the trends in

interface efficiency, neglect tolerance, and complexity tolerance are generally born out in

the results.

Figure 8.4 shows the difference between the mean of the random processes obtained

using the measurement technology described in chapter 4 (and shown in Figures 7.3,

7.7, and 7.14), and the mean of the random processes obtained using the approximation

algorithm tih the second set of experiments (Group2). Like the difference plots using

the first set of experiments (Group1), the figure shows that the differences in the mean

between the two sets of random processes is usually bounded by 0.2. Notice, however, that

some of these difference plots show the trend of higher differences around the extremes of

world complexity because the approximation algorithm has more difficulty approximating
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Figure 8.1: Shows the mean of the random processes V (Teleop), V (P2P ), and V (Scripted)

obtained by the approximation algorithm for one set of experiments.
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Figure 8.2: Shows the difference between the mean of the random processes obtained using

the measurement technology described in chapter 4 (and shown in Figures 7.3, 7.7, and

7.14), and the mean of the random processes obtained using the approximation algorithm

for the first set of experiments used (shown in Figure 8.1).
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Figure 8.3: Shows the mean of the random processes V (Teleop), V (P2P ), and V (Scripted)

obtained by the approximation algorithm for a second set of experiments.
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expected robot performance at the the extremes of world complexity. However, in general,

it does a pretty good job of approximating neglect tolerance and interface efficiency.

Figures 8.5 and 8.6 show the average frequency and duration of interactions that should

occur between human and robot, with a MAPL of 50% of peak robot performance levels,

for the two different sets of user experiments. The results are similar to those shown in

Figure 7.23, and thus indicate that the approximation algorithm is quite effective. Just

like the results from the larger user study, P2P is basically dominated by Scripted.

Figures 8.7 and 8.8 show average robot performance plotted against RAD for MAPLs

that maximize average robot performance. Again, the trends are quite similar to those

obtained in chapter 7 (see Figure 7.24) for both both test groups.

Thus, while the the results presented in this chapter are not identical to those presented

in the previous section, they are similar. Therefore, the approximation algorithm presented

in this chapter appears to be an adequate solution (in some circumstances) to the cost

of performing the large number of user experiments that is required by the algorithm

presented in chapter 4 and shown in chapter 7. However, when high precision is needed,

the approximation algorithm may not be useful.
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Figure 8.4: Shows the difference between the mean of the random processes obtained using

the measurement technology described in chapter 4 (and shown in Figures 7.3, 7.7, and

7.14), and the mean of the random processes obtained using the approximation algorithm

for the second set of experiments used (shown in Figure 8.3).
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Figure 8.5: Shows the average frequency and duration of interactions that should occur for

the three interaction schemes when a MAPL of 50% of peak robot performance levels is

used. This data was gather from Group1.

Figure 8.6: Shows the average frequency and duration of interactions that should occur for

the three interaction schemes when a MAPL of 50% of peak robot performance levels is

used. This data was gather from Group2.
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Figure 8.7: Comparison of the three interaction schemes in terms of operator workload and

performance for four different world complexities using Group1. In the graphs, points in

the upper left-hand corner are more desireable than points in the lower right-hand corner.

The results are similar to those shown in Figure 7.24.
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Figure 8.8: Comparison of the three interaction schemes in terms of operator workload and

performance for four different world complexities using Group2. In the graphs, points in

the upper left-hand corner are more desireable than points in the lower right-hand corner.

The results are similar to those shown in Figure 7.24.
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Chapter 9

Conclusions and Future Work

In chapter 3 we reported a user study that compared shared-control teleoperation with

manual-control teleoperation. In the user study, a human operator navigated a mobile

robot through an indoor environment using the two teleoperation modes. The shared-

control method increased robot performance over the manual-control method, as well as

lowering operator workload. This user study indicates that changing a interaction scheme,

which is the combination of a robot’s autonomy mode and the interface between human

and robot, changes both system performance and operator workload.

In chapter 4 we defined metrics for interface efficiency and neglect tolerance in human-

robot systems. Measures of interface efficiency and neglect tolerance for human-robot in-

teraction schemes are estimated via a measurement technology that uses secondary tasks

in user studies. These measures can be used to predict the average human-robot interac-

tions that must take place, predict the performance of robots employing these interactions,

and identify the strengths and weaknesses of an interaction scheme.

In chapter 5 we described three different interactions schemes that were used to val-

idate the usefulness of the neglect tolerance and interface efficiency metrics. The three

interaction schemes were shared-control teleoperation (Teleop), point-to-point (P2P ), and

scripted (Scripted).

In chapter 6 we described the environment in which we performed a large user study to

validate the usefulness of the neglect tolerance and interface efficiency metrics. We used
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simulated worlds because they allowed the use of many worlds with varying complexities.

We performed in the simulated world the same experiment performed in the real world

that was reported in chapter 3. The results from this experiment showed that the same

trends in robot performance and operator workload exist in the simulated world as exist

in the real world. Therefore, the simulated world is sufficient to validate the usefulness of

the neglect tolerance and interface efficiency metrics.

In chapter 7 we described a user study involving 40 test subjects. The user study was

performed in accordance to the measurement technology discussed in chapter 4. From the

user study, data was gathered to measure the neglect tolerance and interface efficiency

of each of the three interaction schemes described in chapter 5. We then analyzed the

strengths and weaknesses of each interaction scheme as well as the average frequency and

duration of human-robot interactions that should occur for each interaction scheme. We

also showed the trade-offs in operator workload (RAD) and average robot performance for

each interaction scheme.

In chapter 8 we described how interface efficiency and neglect tolerance can be approx-

imated using only a few test subjects. The approximated measures show the same trends

as those obtained in chapter 7. Thus, the metrics can be used even when large user studies

are not practical.

The main contribution of this work is the neglect tolerance and interface efficiency

metrics, as well as the accompanying measurement technology. From the metrics, char-

acteristics of human-robot systems such as robot performance, operator workload, and

acceptable human-robot interactions can be estimated and predicted. These metrics can

be used for human-robot system design and other applications.

The metrics can also be powerful in conjunction with the principles of adjustable au-

tonomy. Because robot performance and the necessary operator workload of an interaction

scheme can estimated via these metrics, these metrics can be used by robots to adjust their

autonomy. In [13] we extend the work done in this thesis to begin to facilitate this, but

we leave the main portion of this idea to future research.
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While we showed that the metrics and measurement technology described in this thesis

can be useful, it would be desirable for humans and robots to be able to learn the proper

interaction schemes that should be employed. For robots, this would mean the development

of a learning algorithm to determine the proper interaction schemes to employ at a given

time (see [23]). Such a learning algorithm would rely implicitly on the concepts of interface

efficiency and neglect tolerance discussed in this thesis.
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Appendix A

Neglect Tolerance Experiments

Script

Included here is the script which was read to the test subjects during the experiments ex-

plained in chapter 7. Comments meant for the experiment presenter but not meant to be

read are included in italics.

Introduction

You will be asked to guide two robots at a time through three different worlds for

ten minutes each. You will use a total of two control methods, and you will be trained

appropriately on each. The total duration of the experiment should last about 1 hour (give

or take a few minutes). If you don’t currently have that much time, we would appreciate

it if you would reschedule a time that you would have that much time.

Make sure the test subject has at least 1 hour to take the experiment. If they do, have

them read and sign the form. Record their name.

In addition to navigating the robots through the world, you will be asked to perform

two-digit addition and subtraction problems. Multiple choices will be provided. You will

be given a score based on how well you control the robots and how well you complete math

problems. Scores will be kept anonymous, however, so you need not fear that you will be

made fun of for your efforts. If you desire, however, you may ask for your score and how
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you compare with others that have taken the experiment. We will now proceed with the

experiments.

GUI Explanation

Fire up the program.

Enter the first and last name you wish to be known by. The first name and last name

must be separated by a space. Press the return key when you have finished.

Make sure they do it correctly. When they have done it correctly, a window should pop

up which will have a big “Train Me” button on it.

When you are ready to proceed with training on the first control method, press the

button on the screen labeled “Train Me.”

Wait for them to push the button.

I will now explain the user interface that is before you on the screen. The main portion

of the user interface shows a map of the world. The map is a connected graph of the world.

Each node is in effect a landmark (or intersection), and indicates general directions that

the robot should be able to go from that position in the world. This graph isn’t perfect, but

it is reliable. Blue and green triangle-like objects on the map indicate the positions of the

robots in the world. (The robots are not actually this shape, however.) Additionally, blue

and green colored squares around nodes in the world indicate goal positions for the robots

respectively. When a robot reaches the goal position, it will automatically be given a new

goal position. Currently, only the blue robot is in the world, but in testing conditions,

both robots will be present.

The lower portion of the GUI shows the sensory information of the robot that you are

currently controlling. The background color of this portion of the screen indicates which

robot you are currently controlling. If you are having problems locating the robot or its

goal on the map, you may click on the “locate robot” and “locate goal” buttons in the

lower right hand corner of the GUI. A line will appear that goes from the clicked button

to the robot or goal. This line will disappear after a predetermined amount of time. Feel

free to click on these buttons to get accustomed to them.
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Pause to give them time to play around with the buttons for a second if they desire.

The robot is equipped with a camera, sixteen sonars (which are arranged in a ring

around the robot), and a compass. A display of each of these sensors is displayed in the

lower portion of the GUI. At the left is a graphic of the sonar readings. The light regions

indicate areas of that the robot thinks it can go without hitting walls and obstacles, and

the dark areas indicate places the robot thinks are obstacles. The robot is located in the

center of this region and is facing up with reference to this graphic.

Make sure the user understands this display. It is important.

Next is a graphic of the compass on the robot. North is up on the map. Next is a

black and white camera image from the robot. The camera is pointed in the direction the

robot is facing.

Also included in this lower portion of the GUI is a control panel (to the right of the

camera image). This will be different for each control mode. At the bottom right of the

GUI is a button labeled “Done.” This button is to be clicked when you are done servicing

the robot. When you are done servicing the current robot, you should push this button so

you can attend to other tasks such as answering math problems and controlling the other

robot when it is time to service it.

Go ahead and click on the “Done” button. When you do so, the math display replaces

the robot view in the lower portion of the GUI. A math problem (addition or subtraction)

is displayed, and there are four answers to its right. To answer, simply click on the answer

you think is correct. If you are correct, the answer will be displayed in green. If you are

incorrect the answer will be displayed in red. When it is time for a robot to be serviced,

this display will automatically be removed, and the robot view of the robot to be serviced

will be displayed.

Directly above the robot view are small icons indicating the performance of each robot

over the last 30 seconds or so. On the right side of the GUI (to the right of the map)

are other various system indicators. At the top of this panel the time for this section

is indicated (you will go until 10 minutes are up). Below that, the number of goals that
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your robots have reached is displayed, followed by a display of time-based workload (which

indicated the time when you serviced each robot). Under that is a display of overall robot

team performance. 100 % indicates that all robots are operating absolutely perfectly, and

isn’t achieved realistically. Don’t panic if this percentage drops very low (although you

want to keep it high). Your math performance is also displayed on the right hand side of

the GUI. It isn’t incredibly important that you understand all of these system indicators

completely, but if you have any questions about any of them, feel free to ask now.

Make sure they don’t have any questions about the system indicators.

Next, you will train them on a control mode. Locate the script for the current control

mode they are to be trained on. After you are done with that, return to this spot in the

script.

Repeat steps 1 - 6 three time

1 Remember, your goal is to get the robots to reach as many goals as possible and answer

as many math problems as possible in the allotted time. You must perform well on

both to get a high operator rating.

2 Read the script above the button to the test subject.

3 Let the test subject perform the experiment. Only help the test subject if they are having

problems that are so obviously stupid you can’t help it (like them forgetting for a long

while to push in the trigger on the joystick). Try not to distract them in any way.

4 When the test subject is finished with this test session, have them stand up and take a

break for a few minutes. They may want to proceed very quickly, but make sure they

at least stand and stretch for a second.

5 The program will next indicate whether the test subject should be trained on a different

control scheme, or if they should proceed with another test session on a previously

performed control mode. If they need to be trained, locate the script for the current

control mode they are to be trained on.
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6 Jump to the beginning of the loop and proceed

Thank you for participating as a test subject.

Teleoperation Training

If you haven’t already, press the button labeled “Train Me.”

You will now be trained on how to operate the robot for the coming session. In this

session, you will use a joystick to control the robots.

The robots are equipped with assisted control when operated by the joystick. This

means that the robots will automatically avoid obstacles. It won’t crash into them. If you

direct a robot towards an obstacle, the robot will turn away from it. With the joystick,

you need only direct the robot in the general direction that you desire it to go.

To control the robot, push the trigger with your index finger, (help the test subject

to find it) and point the robot joystick in the direction you want the robot to go. A red

arrow will appear in the robot view control panel (point on the screen to where that is)

that indicates the direction and the magnitude that you are giving the robot. Direction

is with respect to the robot. You can increase the magnitude by pushing harder on the

joystick. If you want the robot to spin in place, let go of the trigger and twist the joystick

in the direction that you want it to spin.

Practice controlling the robot until you feel comfortable driving it through the training

world. Practice driving the robot to its goal position. When you feel that you are ready

to proceed with the test session, tell me.

Let the test subject drive the robot around until he/she feels comfortable, and indicates

that they are ready to proceed.

When you are controlling the robot in this control mode, you will drive one of the

robots for a predetermined amount of time. Control of this robot will be taken from you

and you will be asked to answer a math problem. You will then be asked to control the

next robot. The process will continue in this manner for ten minutes.

Close the GUI window. A new window now will pop up which is the window in which

you will perform a ten-minute test session.
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Point-to-Point Training

If you haven’t already, press the button labeled “Train Me.”

You will now be trained on how to operate the robot for the coming session. In this

session, you will use a mouse to control the robots. This control method is called point-

to-point control.

With this control method you control the robot by giving it commands of what it

should do when it reaches the next intersection. For example, at the next intersection

you may want to tell the robot to go left, or to proceed straight through the intersection.

Commands are given to the robot by clicking on the buttons in the control panel (if need

be, point on the screen to where that is). To tell the robot to go straight at the next

intersection, push the button labeled “Straight.” To have the robot turn right the next

chance it gets, push the button labeled “R.” To have the robot turn left the next chance it

gets, push the button labeled “L.” After any of these buttons are pushed, the robot may

be neglected. This is done by pressing the “Done” button in the lower right-hand corner

of the GUI. This will allow you to attend to other tasks while the robot carries out the

command.

Note that the robot will not always fulfill the commands as you feel that it should. This

is because the robot isn’t perfect. However, it should do pretty well in most circumstances.

Practice will help you to predict how the robot will behave. Notice the sonar signature

in the robot view. This could be of help, as the robot will turn (when commanded) when

the sonars allow it to.

If need be, additional commands can be given to the robot. Push the button labeled

“Stop” to tell the robot to stop moving. Push the button labeled “SL” to tell the robot

to spin in place turning counterclockwise (or left), and push the button labeled “SR” to

tell the robot to spin in place turning clockwise (or right). The robot can be made to go

backward by pushing the button labeled “Back.”

The basic protocol you should follow with this control scheme is to service the current

robot (i.e., give it the command or sequence of commands that will get it moving towards
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its goal). Then press the “Done” button to move to a different task (either performing

math calculations or servicing the other robot). When it is time to service a robot again,

you will be given control (robot neglect times vary and are determined by the computer).

Changes in current task will be indicated by changes in the robot view.

Go ahead and practice driving the robot through the current world using this control

method. Be sure to try to learn how the robot reacts to commands. You should also

practice neglecting the robot by pushing on the “Done” button after giving the robot

commands (when you feel that it is appropriate to do so). The “Done” button will give

you control of a different task (such as servicing another robot or doing math problems)

until it is time to again service that robot.

When you feel that you are ready to proceed with the test section, tell me and we will

move on.

Wait for the test subject to practice.

Close the GUI window. A new window now will pop up which is the window in which

you will perform a ten-minute test session.

Scripted Training

If you haven’t already, press the button labeled “Train Me.”

You will now be trained on how to operate the robot for the coming session. In this

session, you will use a mouse to control the robots. This control method is called scripted

control.

This control mode allows you to drop a sequence of goals or markers on the map to

tell the robot where to go. These goals can be dropped on the map by simply clicking

the mouse on the spot on the graph you want the robot to go to. Each goal will have a

number associated with it that tells you the order the robot will traverse the goals.

If you want to move a goal, simply click on it and drag it to the location you want to

move it to and then drop it. If you want to delete a goal, simply drag it to a position on

the screen that is not on the map of the world.

There is one thing that you must be weary of when using this control mode. Sometimes

105



obstacles get in the robots path (on its way to the goal markers) which the robot has

trouble getting around. You can help the robot to get past these obstacles by dragging

and dropping the goal marker labeled “1” to a place that will help the robot get around

the obstacles. After you have helped the robot around the obstacle, move the goal marker

labeled “1” back to the place you want the robot to move to.

The basic protocol you should follow with this control scheme is to service the current

robot (i.e., give it the command or sequence of commands that will get it moving towards

its goal by dropping goals in progress on the map). Then press the “Done” button to move

to a different task (either performing math calculations or servicing the other robot). When

it is time to service a robot again, you will be given control (robot neglect times vary and

are determined by the computer). Changes in current task will be indicated by changes

in the robot view.

Go ahead and practice moving the robot around its world using this method. Make

sure you learn how the goal markers make the robot behave. Remember to also practice

neglecting the robot by pushing the “Done” button and moving on to other tasks. When

it is time to control the robot again, control will be given back to you. When you are

ready to proceed with the next test section, tell me.

Wait for the test subject to indicate they are ready to proceed.

Close the GUI window. A new window now will pop up which is the window in which

you will perform a ten-minute test session.
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